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Abstract

In this paper we consider the problem of determining a balanced ordering of the
vertices of a graph; that is, the neighbors of each vertex v are as evenly distributed
to the left and right of v as possible. This problem, which has applications in graph
drawing for example, is shown to be NP-hard, and remains NP-hard for bipartite
simple graphs with maximum degree six. We then describe and analyze a number
of methods for determining a balanced vertex-ordering, obtaining optimal orderings
for directed acyclic graphs, trees, and graphs with maximum degree three. For
undirected graphs, we obtain a 13/8-approximation algorithm. Finally we consider
the problem of determining a balanced vertex-ordering of a bipartite graph with a
fixed ordering of one bipartition. When only the imbalances of the fixed vertices
count, this problem is shown to be NP-hard. On the other hand, we describe an
optimal linear time algorithm when the final imbalances of all vertices count. We
obtain a linear time algorithm to compute an optimal vertex-ordering of a bipartite
graph with one bipartition of constant size.
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1 Introduction

A number of algorithms for graph drawing use a ‘balanced’ ordering of the
vertices of the graph as a starting point [22, 23, 31, 37, 37, 38]. Here balanced
means that the neighbors of each vertex v are as evenly distributed to the left
and right of v as possible. In this paper we consider the problem of determining
such a vertex-ordering.

Throughout this paper G = (V,E) is a connected graph without loops which
may be directed or undirected. We assume G is simple unless explicitly called
a multigraph. The number of vertices of G is denoted by n = |V | and the
number of edges of G is denoted by m = |E|. vw refers to the undirected edge
{v, w} ∈ E if G is undirected, and to the directed edge (v, w) ∈ E if G is
directed. We denote by E(v) the set of (outgoing) edges {vw ∈ E} incident to
a vertex v. The degree of v is deg(v) = |E(v)|.

A vertex-ordering π of G is a total ordering on V or equivalently a number-
ing (v1, v2, . . . , vn) of V . Each edge vivj ∈ E(vi) with i < j is a successor
edge of vi, and vj is a successor of vi. Similarly each edge vivj ∈ E(vi) with
j < i is a predecessor edge of vi, and vj is a predecessor of vi. The num-
ber of predecessor and successor edges of a vertex vi is denoted by predπ(vi)
and succπ(vi), respectively. That is, predπ(vi) = | {vivj ∈ E(vi) : j < i} | and
succπ(vi) = | {vivj ∈ E(vi) : i < j} |. We omit the subscript π if the ordering
in question is clear. Note that for directed graphs, we only count the number
of outgoing edges incident to a vertex vi in pred(vi) and succ(vi). In a given
vertex-ordering, a vertex v is called a

(min {pred(v), succ(v)} ,max {pred(v), succ(v)}) -vertex,

and the imbalance of v is defined to be

φ(v) = |succ(v)− pred(v)| .

We say v is balanced if φ(v) is minimum, taken over all partitions of the edges
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incident to v into predecessor and successor edges. A vertex has even imbalance
if and only if it has even degree; hence the imbalance of a vertex with odd
degree is at least one. In a vertex-ordering of a simple graph, a vertex v is
balanced if and only if φ(v) ≤ 1.

The total imbalance of a vertex-ordering is the sum of the imbalance of each
vertex. We say a vertex-ordering is perfectly balanced if every vertex is bal-
anced. Thus a vertex-ordering of a simple graph is perfectly balanced if and
only if the total imbalance is equal to the number of odd degree vertices. For
a given graph, a vertex-ordering with minimum total imbalance is said to be
optimal. We are interested in the following problem.

Balanced Vertex-Ordering
Instance : A (directed) graph G = (V,E), integer K ≥ 0.
Question : DoesG have a vertex-ordering with total imbalance

∑
v∈V

φ(v) ≤ K?

The balanced vertex-ordering problem can be described in a number of differ-
ent ways. In a particular vertex-ordering, define

ψ(v) = max {succ(v), pred(v)} .

Then
φ(v) = 2ψ(v)− deg(v) . (1)

Hence the problem of finding an optimal vertex-ordering is equivalent to find-
ing a vertex-ordering that minimizes∑

v∈V

ψ(v) . (2)

However, for approximation-purposes, the balanced vertex-ordering problem
and minimizing (2) are not equivalent. Since 1

2
deg(v) ≤ ψ(v) ≤ deg(v), an

arbitrary vertex-ordering will be a 2-approximation for the problem of mini-
mizing (2).

There is another equivalent formulation of the balanced vertex-ordering prob-
lem, which shall prove useful to consider. In a particular vertex-ordering, let
φ′(v) = 2b1

2
|succ(v)− pred(v)|c. Here, φ′(v) may be zero for both even and

odd degree vertices v. Since∑
v

φ(v) = | {v : deg(v) is odd} |+
∑
v

φ′(v) ,

a vertex-ordering is optimal if and only if it minimizes
∑

v φ
′(v).

In a vertex-ordering of an undirected graph G = (V,E), the total imbalance
is equal to the total imbalance of the same vertex-ordering of the symmet-
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ric directed graph (V, {(v, w), (w, v) : vw ∈ E}). Hence the balanced ordering
problem for directed graphs is a generalization of the same problem for undi-
rected graphs.

In related work, Wood [37] takes a local minimum approach to the balanced
vertex-ordering problem. The algorithms here apply simple rules to move ver-
tices within an existing ordering to reduce the total imbalance. Certain struc-
tural properties of the produced vertex-orderings are obtained, which are used
in an algorithm for graph drawing.

In this paper we present the following results. In Section 2 we show, using
a reduction from NAE-3SAT, that the balanced vertex-ordering problem is
NP-complete. In particular, we prove that determining whether a given graph
has a perfectly balanced vertex-ordering is NP-complete, and remains NP-
complete for bipartite graphs with maximum degree six.

Section 3 considers the balanced vertex-ordering problem on weighted trees.
We prove that this problem is (weakly) NP-complete in general. On the other
hand, we give a pseudo-polynomial time algorithm for its solution that runs
in linear time in the case of unweighted trees.

Section 4 explores the relationship between balanced vertex-orderings and the
connectivity of undirected graphs. We describe an algorithm for determining a
vertex-ordering with the minimum number of highly unbalanced vertices; that
is, vertices v with pred(v) = 0 or succ(v) = 0. The same algorithm determines
optimal vertex-orderings of undirected graphs with maximum degree three.

Section 5 describes and analyses an algorithm for determining a balanced
vertex-ordering of an arbitrary graph. This algorithm has been successfully
used in [4, 36] to establish improved bounds for the area of orthogonal graph
drawings. We analyze the performance of this algorithm, establishing a worst-
case upper bound on the total imbalance which is tight in the case of the com-
plete graph. Furthermore, the method determines perfectly balanced vertex-
orderings of directed acyclic graphs. We prove that this algorithm is a linear-
time 13/8-approximation algorithm for the problem of minimizing (2) in undi-
rected graphs.

In Section 6 we consider the problem of determining a balanced vertex-ordering
of a bipartite graph where a fixed vertex-ordering of one bipartition is given.
The problem where only the imbalance of the fixed vertices in the ordering
counts, is shown to beNP-complete. On the other hand, we present linear time
algorithms for the problems where only the final imbalance of the unsettled
vertices counts, and where the final imbalance of all vertices count. A corollary
of this final result is that the balanced ordering problem is solvable in linear
time if the number of vertices in one bipartition is constant.
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2 Complexity

In this section we show that the balanced vertex-ordering problem is NP-
complete. Our reduction is from the Not-All-Equal-3SAT problem (NAE-3SAT
for short). Here we are given a set U of boolean variables and a collection C of
clauses over U such that each clause c ∈ C has 2 ≤ |c| ≤ 3. The problem is to
determine whether there is a truth assignment for U such that each clause in
C has at least one true literal and at least one false literal. In a given instance
of NAE-3SAT, the number of times a variable x appears is called the order of
x, and is denoted by dx. NAE-3SAT is NP-complete [33], and it is well-known
(see [26] for example) that NAE-3SAT remains NP-complete if all literals are
positive and/or every variable x has dx ≤ 3.

Theorem 1 Determining if a given graph has a perfectly balanced vertex-
ordering is NP-complete, and remains NP-complete for bipartite undirected
graphs with maximum degree six.

PROOF. Let I be an instance of NAE-3SAT such that all literals are positive
and every variable x has dx ≤ 3. We now convert I to an instance of the
balanced vertex-ordering problem. Construct a graph G as follows. For each
variable x ∈ U add the gadget shown in Fig. 1 to G. In particular, add the
vertices x0, x1, . . . , x2dx to G. We call x0 the variable vertex associated with
the variable x. Now add edges xjxj+1, 1 ≤ j ≤ 2dx − 1, to G, along with the
edges x0x2j−1, 1 ≤ j ≤ dx. In addition, add a clause vertex c0 to G for each
clause c ∈ C, and insert an edge x0c0 for each variable x appearing in c.







to

clause

vertices
x0 x1 x2 x3 x4

�����

x2dx−1 x2dx

Fig. 1. The gadget associated with a variable x.

We claim that the instance of NAE-3SAT is satisfiable if and only if G has a
perfectly balanced vertex-ordering. To prove the only-if direction construct a
vertex-ordering of G with all the clause vertices in the middle of the vertex-
ordering in arbitrary order, and for each variable x, put x0, x1, . . . , x2dx to the
left (respectively, right) of the clause vertices if x is true (false). For the true
variables x, order the vertices x2dx , x2dx−1, . . . , x0 from left to right, and for the
false variables x, order the vertices x0, x1, . . . , x2dx from left to right. For each
variable x ∈ U , the vertex x0 has dx predecessor edges and dx successor edges
(going to clause vertices and to {x2j−1, 1 ≤ j ≤ dx}). Thus x0 is balanced.
The vertices xj, 1 ≤ j ≤ 2dx, are either (1, 1), (1, 2) or (0, 1)-vertices, and
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are thus balanced. Since every clause c ∈ C contains at least one true literal
and at least one false literal, the vertex c0 has at least one successor and at
least one predecessor. Since deg(c0) ≤ 3, c0 is balanced. Hence every vertex is
balanced, and thus the vertex-ordering is perfectly balanced.

For the if direction, assume we have a perfectly balanced vertex-ordering, and
consider the vertex x0 for some variable x.

Case 1. x1 is to the right of x0: As x1 has degree two, x2 must be to the right
of x1. Similarly, as x2 has degree two, x3 must be to the right of x2. As x3 has
degree three, and already has two predecessors x0 and x2, its third neighbor
x4 must be to the right of x3. By induction, all of x1, x2, . . . , x2dx must be to
the right of x0. Thus x0 is to the left of its neighbors x1, x3, . . . , x2dx−1. Since
x0 is balanced, it must be to the right of its remaining dx neighbors, which
are the clause vertices of the clauses containing x. Set the variable x to false.

Case 2. x1 is to the left of x0: Then symmetrically, x0 is to the left of its dx

adjacent clause vertices. Set x to true.

A clause vertex c0 has degree two or three. Hence c0 has at least one predecessor
and at least one successor, and thus c contains at least one false variable and
at least one true variable; that is, c is satisfied.

We have shown that the given instance of NAE-3SAT is satisfied if and only if
the graph G has a perfectly balanced vertex-ordering. G is simple and bipartite
(with the vertices partitioned into the sets {c0 : c ∈ C}∪{x2j−1 : x ∈ U, 1 ≤ j ≤ dx}
and {x2j : x ∈ U, 0 ≤ j ≤ dx}). Observe that the maximum degree ofG is twice
the maximum order which is at most three. Thus the maximum degree of G
is at most six. It is trivial to check if a given vertex-ordering is perfectly
balanced. Since NAE-3SAT is NP-complete [33], and the construction of G
is polynomial, testing if a graph has a perfectly balanced vertex-ordering is
NP-complete for simple bipartite graphs with maximum degree six. 2

For an intended application in 3-D orthogonal graph drawing [38] it is impor-
tant to consider balanced vertex-orderings of graphs with minimum degree five
and maximum degree six. We now show that we still have NP-completeness
in this case, at least for multigraphs.

Lemma 2 Determining if a bipartite undirected multigraph with minimum
degree five and maximum degree six has a perfectly balanced vertex-ordering is
NP-complete.

PROOF. Let I be an instance of NAE-3SAT containing only positive lit-
erals. For each clause c of I, if c = x∨ y ∨ z then set c = x∨ x∨ y ∨ y ∨ z ∨ z,
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and if c = x ∨ y then set c = x ∨ x ∨ x ∨ y ∨ y ∨ y. Thus each clause now has
exactly six literals. This does not affect whether there is a solution to I.

For each variable x with dx ≥ 4, introduce two new variables y and z, called
replacement and special variables, respectively. Replace two occurrences of x
by y, and add new special clauses x ∨ z and y ∨ z. Thus dx decreases by one,
and in any not-all-equal truth assignment, x receives the same value as y; that
is, this operation does not affect whether I is satisfiable. Repeat the above
step until each variable has order two or three. Since this operation can be
applied at most 3m times, where m is the number of clauses, the size of the
instance is still polynomial. All clauses now contain two or six variables. Now
construct a graph G similar to that in Theorem 1, but using the gadget shown
in Fig. 2.

x0

x1 x2 x3

x4
x5























to

clause

vertices

Fig. 2. The gadget associated with a variable x.

Since each clause has two or six literals, each clause vertex has degree two or six
in G. If a clause vertex has degree two in G; that is, it corresponds to a special
clause, then simply replace it by an edge between its two neighbors. This does
not affect whether the graph has a perfectly balanced ordering. Thus all clause
vertices now have degree six. A variable vertex x0 has degree five if dx = 2,
and degree six if dx = 3. A vertex xi, 1 ≤ i ≤ 5, has degree five or six. Thus
the graph has minimum degree five and maximum degree six. Furthermore
the graph is bipartite with the following 2-coloring. For each original variable
or replacement variable, color the gadget as shown in Fig. 2. For each special
variable, color the gadget in the opposite way to Fig. 2. Special variables were
only in special clauses, and since the corresponding special clause vertices have
been replaced by an edge, the only neighbors of a special variable vertex are
original or replacement variable vertices (and of course the vertices within the
gadget). Thus the graph is bipartite.

We now show that a similar argument as in Theorem 1 holds for this graph.
A clause vertex c0 is perfectly balanced if and only if c0 is a (2,4)-vertex or
a (3,3)-vertex if and only if c contains at least one true literal and at least
one false literal. A variable vertex is perfectly balanced if and only if it is a
(2,3)-vertex or a (3,3)-vertex, and thus must appear completely to the right
or left of the vertices corresponding to the clauses containing it. Clearly, any
arrangement of the vertices within a gadget other that shown in Fig. 2 will

7



increase the imbalance (except for the reverse order). By the same argument
in Theorem 1, it follows that this graph has a perfectly balanced ordering if
and only if the instance of NAE-3SAT is satisfiable. 2

A strategy for producing 3-D orthogonal point-drawings of maximum degree
six graphs which is employed by Eades et al. [17] and Wood [38], is to position
the vertices along the main diagonal of a cube. For graphs with minimum
degree five, minimizing the number of bends in such a drawing is equivalent
to finding an optimal ordering of the vertices along the diagonal; see [38]. As
a consequence of Lemma 2 we therefore have the following result.

Theorem 3 Let G be a bipartite undirected multigraph with maximum degree
six. It is NP-hard to find a 3-D orthogonal point-drawing of G with a diagonal
vertex layout, and with the minimum number of bends. 2

3 Weighted Trees

A natural generalization of the balanced ordering problem is to consider
weighted graphs. Given a vertex-ordering (v1, v2, . . . , vn) of a graph G = (V,E)
with positive integer weights ω : E → N on the edges of G, for each vertex
vi ∈ V , we define pred(vi) to be the sum of the weights of the predecessor
edges of vi, and succ(vi) to be the sum of the weights of the successor edges
of vi. That is,

pred(vi) =
∑

vivj∈E(vi)
j<i

ω(vivj) and succ(vi) =
∑

vivj∈E(vi)
i<j

ω(vivj) .

Clearly these definitions with all edge-weights equal to one are equivalent
to the unweighted case. (One can think of a graph with edge-weights as a
multigraph where the multiplicity of an edge equals its weight.) Thus the
weighted balanced ordering problem is NP-complete (since the unweighted
version is), but in fact, it remains NP-complete even for trees, whereas the
unweighted version is solvable on trees, as we now show.

Lemma 4 It is NP-complete to determine if a given weighted graph has a
perfectly balanced vertex-ordering, and remains so for weighted trees.

PROOF. We reduce the partition problem to the weighted balanced ordering
problem. Given a set w1, w2, . . . , wn of positive integers, the partition problem
(which is NP-complete [25]) asks whether there is a set I ⊆ {1, 2, . . . , n}
such that

∑
i∈I wi =

∑
i6∈I wi. Given positive integers w1, w2, . . . , wn, consider
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the star graph on n + 1 vertices, which has one vertex connected to all other
vertices, and with w1, w2, . . . , wn being the weights on the edges. Let W =∑

iwi. For any ordering of the vertices, the total imbalance is at least W ,
since each leaf must have imbalance wi. We have a vertex-ordering with total
imbalance ofW if and only if we can split w1, w2, . . . , wn into two sets that each
sum to exactly 1

2
W ; that is, there is a solution to the partition problem. 2

Thus the weighted problem is NP-complete, even if the graph is a tree. How-
ever, it is only weaklyNP-complete, since the partition problem is only weakly
NP-complete. We now describe a pseudo-polynomial time algorithm for de-
termining a perfectly balanced vertex-ordering of a weighted tree.

Weighted Tree Ordering
Input : tree G = (V,E) with edge-weights ω : E → N .
Output : vertex-ordering of G

Let (v1, v2, . . . , vn) be a pre-order vertex-ordering of G;
(that is, every vertex, except v1, has exactly one predecessor).

Initialize the current ordering to be (v1).
for i = 1, 2, . . . , n do

Let vk be the predecessor of vi (if i > 1).
Partition E(vi) into Li and Ri such that:

•
∣∣∣∣∣
( ∑

vivj∈Li

ω(vivj)

)
−
( ∑

vivj∈Ri

ω(vivj)

)∣∣∣∣∣ is minimized, and

• vivk ∈ Ri if vkvi ∈ Lk, and vivk ∈ Li if vkvi ∈ Rk.
Insert each successor vj of vi into the current ordering
• to the right of vi if vivj ∈ Ri, and
• to the left of vi if vivj ∈ Li.

end-for

Theorem 5 The Weighted Tree Ordering algorithm determines a per-
fectly balanced vertex-ordering of the given graph in pseudo-polynomial time.

PROOF. Every vertex vi, except for v1 which is inserted into the current
ordering at the beginning of the algorithm, is inserted into the current ordering
in the k-th iteration, where vk is the (sole) predecessor of vi. Thus every vertex
is inserted into the current ordering exactly once.

In the i-th partitioning step we can swap Li and Ri if vivk ∈ Li ∩ Lk or
vivk ∈ Ri ∩ Rk. Hence for all edges vivj ∈ E, we have vivj ∈ Li ∩ Rj or
vivj ∈ Ri ∩ Lj. Thus when vertices are inserted into the current ordering, a

9



vertex vi is to the left of an adjacent vertex vj if and only if vivj ∈ Ri ∩ Lj.
Therefore the imbalance

φ(vi) =

∣∣∣∣∣
( ∑

vivj∈Li

ω(vivj)

)
−
( ∑

vivj∈Ri

ω(vivj)

)∣∣∣∣∣ ,
which is chosen to be minimum. Thus each vi is balanced, and therefore the
ordering is perfectly balanced.

Using a dynamic programming algorithm (see [21] for example) the partition-
ing of E(v) can be completed in O(Wv · deg(v)) time, where Wv is the sum of
the weights of the edges incident to v. Hence the total time is proportional to∑
v∈V

∑
vw∈E(v)

deg(v)·ω(vw) =
∑

vw∈E

ω(vw) (deg(v) + deg(w)) ≤ 2∆
∑

vw∈E

ω(vw) = 2∆W ,

where W is the sum of all edge-weights, and ∆ is the maximum degree of G.
Clearly, O(∆W ) is pseudo-polynomial time. Note that for unweighted trees,
the partition of E(v) is trivial, and the algorithm runs in linear time. 2

4 Connectivity and Maximum Degree

We now examine relationships between balanced vertex-orderings and the
vertex-connectivity of a graph.

4.1 st-Orderings

A vertex-ordering (v1, v2, . . . , vn) of an undirected graph G = (V,E) is an
st-ordering if v1 = s, vn = t, and for every other vertex vi, 1 < i < n, with
deg(vi) ≥ 2, we have pred(vi) ≥ 1 and succ(vi) ≥ 1. Lempel et al. [27] show
that for any biconnected graph G = (V,E) and for any s, t ∈ V , there exists
an st-ordering of G. Cheriyan and Reif [8] extended this result to directed
graphs. Even and Tarjan [19, 20] develop a linear time algorithm to compute
an st-ordering of an undirected biconnected graph (also see [7, 18, 29, 35, 35]).
Under the guise of bipolar orientations, st-orderings have also been studied in
[9, 12, 32]. In related work, Papakostas and Tollis [31] describe an algorithm
for producing so-called bst-orderings of graphs with maximum degree four;
these are st-orderings with a lower bound on the number of perfectly bal-
anced vertices of degree four. In general, st-orderings do not have minimum
imbalance (in [2] we give an example of a graph for which every st-ordering
is not optimal), but st-orderings immediately give the following upper bound
on the total imbalance.
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Lemma 6 The total imbalance in an st-ordering of an n-vertex m-edge graph
G = (V,E) is at most 2m− 2n+ 4 if G is undirected and m− 2n+ 4 if G is
directed. 2

The following algorithm determines a vertex-ordering of a graph based on st-
orderings of its biconnected components (blocks). In Corollary 13 below we
prove that given an optimal vertex-ordering of each biconnected component,
it is NP-hard to find an optimal vertex-ordering of the graph. However, this
algorithm and variations of it have proved useful in many graph drawing al-
gorithms [3, 28, 34] as it gives bounds on the number of highly unbalanced
vertices (see Lemma 7 below). Moreover, we employ this method to obtain
optimal vertex-orderings of graphs with maximum degree three.

It is well-known that the blocks of a graph can be stored in the form of a tree;
this is the so-called block-cut-tree, which we denote by BC(G) for a graph G.
A block containing exactly one cut-vertex is called an end-block.

Combine st-Orderings
Input : undirected graph G = (V,E)
Output : vertex-ordering of G

Let B1 be an end-block of G.
Complete a depth-first traversal of BC(G) starting at B1, and

let B1, B2, . . . , Br be the depth-first numbering of the blocks of G.
Let t1 be a cut-vertex of B1, and let s1 be a vertex of B1 distinct from t1.
Initialize the current ordering to be an s1t1-ordering of B1.
for i = 2, 3, . . . , r do

Let si be the (unique) cut-vertex of Bi with some block Bj with j < i.
if Bi is an end-block of G then

Let ti be a vertex of Bi distinct from si.
else

Let ti be a cut-vertex of Bi with some block Bj with j > i.
end-if
Let (vi

1, v
i
2, . . . , v

i
ni

) be an siti-ordering of Bi (with vi
1 = si and vi

ni
= ti).

Append (vi
2, v

i
3, . . . , v

i
ni

) to the current ordering.
end-for

Lemma 7 Let G be an undirected graph with k end-blocks, and assume k ≥ 2;
that is, G has at least one cut-vertex. Then Combine st-Orderings algo-
rithm determines a vertex-ordering in linear time, with one vertex v having
pred(v) = 0, and k − 1 vertices v having succ(v) = 0.
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PROOF. By the definition of st-ordering, a vertex v ∈ V that is not si or
ti for some i, has pred(v) > 0 and succ(v) > 0. We now count the number
of vertices with zero successors. A vertex si has succ(si) > 0. A vertex ti for
which Bi is not an end-block has succ(ti) > 0. The vertex t1, for which B1 is
an end-block, has succ(ti) > 0. The remaining vertices ti with Bi an end-block
have succ(ti) = 0. Hence the number of vertices v having succ(v) = 0 is k− 1.
We now count the number of vertices with zero predecessors. A vertex ti has
pred(ti) > 0. For each i ≥ 2, si is chosen to be the cut-vertex with some block
Bj (j < i) — such a block must exist because of the depth-first numbering
of the blocks. Hence si has predecessors in Bj, and therefore the only vertex
with zero predecessors is s1. Since the block-cut-tree and the st-orderings can
be determined in linear time, and since the block-cut-tree has linear size, the
algorithm runs in linear time. 2

The next result easily follows from Lemma 7.

Lemma 8 Given a non-biconnected n-vertex m-edge undirected graph with k
end-blocks, the Combine st-Orderings algorithm determines in linear time
a vertex-ordering with total imbalance at most 2m− 2n+ 2k. 2

We now show that the Combine st-Orderings algorithm determines a
vertex-ordering with the minimum number of vertices with zero predecessors
or zero successors. Consider an end-block B. Then either the first vertex of B
in the ordering has no predecessors, or the last vertex of B in the ordering has
no successors, for in an end-block B only one vertex has neighbors outside of
B. The next result follows.

Lemma 9 Every vertex-ordering of an undirected graph with k end-blocks has
at least k vertices v having pred(v) = 0 or succ(v) = 0. 2

Note that for a triangulated planar graph G, vertex-orderings can be de-
termined that are more balanced than st-orderings. de Fraysseix et al. [13]
show that G has a canonical vertex-ordering (v1, v2, . . . , vn) with pred(vi) ≥ 2
for every vertex vi, 3 ≤ i ≤ n, and with succ(vi) ≥ 1 for every vertex vi,
1 ≤ i ≤ n − 1. Kant [22] generalizes canonical orderings to the case of 3-
connected planar graphs, and it is easy to extend canonical orderings to 3-
connected non-planar graphs (Kant, private communication, 1992; see also
[11]). Kant and He [23] show that if G is planar and 4-connected, then G has
a vertex-ordering with every vertex vi, 3 ≤ i ≤ n− 2, having succ(vi) ≥ 2 and
pred(vi) ≥ 2. The next result follows.

Lemma 10 An n-vertex m-edge 4-connected triangulated planar undirected
graph has a vertex-ordering with total imbalance at most 2m− 4n+ 12. 2
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4.2 Graphs with Maximum Degree Three

We now apply the results from the previous section to obtain optimal vertex-
orderings of graphs with maximum degree three.

Lemma 11 Any st-ordering of a biconnected undirected graph G with maxi-
mum degree at most 3 is optimal.

PROOF. Suppose G has n vertices. Clearly the result holds if n = 2. Assume
from now on that n ≥ 3. In this case, all vertices have degree at least two by
biconnectivity and at most three by assumption. Let n3 be the number of
degree three vertices in G. In an st-ordering,

∑
v

φ(v) =


2 + 2 + n3 = n3 + 4 , if deg(s) = deg(t) = 2

3 + 3 + (n3 − 2) = n3 + 4 , if deg(s) = deg(t) = 3

2 + 3 + (n3 − 1) = n3 + 4 , if {deg(s), deg(t)} = {2, 3} .

By considering the degrees of the first and last vertex, and since every degree
three vertex v has φ(v) ≥ 1, it is easily seen that any vertex-ordering of G has
total imbalance at least n3 + 4. 2

Theorem 12 Given an undirected graph G = (V,E) with maximum degree at
most three, the Combine st-Orderings algorithm determines in linear time
an optimal vertex-ordering of G.

PROOF. As noted in Section 1, finding an optimal vertex-ordering is equiv-
alent to minimizing

∑
v φ

′(v), where φ′(v) = 2b1
2
|succ(v)− pred(v)|c. For

graphs with maximum degree three, φ′(v) = 2 if v is a (0, 2)- or (0, 3)-vertex,
and φ′(v) = 0 otherwise. Hence minimizing

∑
v φ

′(v) is equivalent to mini-
mizing the number of (0, 2)- and (0, 3)-vertices. Every vertex with degree one
must have zero predecessors or zero successors, thus minimizing the number
of (0, 2)- and (0, 3)-vertices is equivalent to minimizing the number of ver-
tices with zero predecessors or zero successors. By Lemma 7 and Lemma 9,
the Combine st-Orderings algorithm determines in linear time, a vertex-
ordering with the minimum possible number of vertices with zero predecessors
or zero successors. Therefore the Combine st-Orderings algorithm deter-
mines an optimal vertex-ordering for graphs with maximum degree three. 2

Observe that in the reduction in Theorem 1, the variable vertices are cut-
vertices, and that each biconnected component has maximum degree three.
By Theorem 12, an optimal ordering of a graph with maximum degree three
can be determined in linear time. Hence, we have the following result.

13



Corollary 13 Finding the optimal vertex-ordering of a graph is NP-hard,
even if given an optimal vertex-ordering of each biconnected component. 2

5 Median Placement Algorithm

We now describe an algorithm for the balanced vertex-ordering problem. The
algorithm inserts each vertex, in turn, mid-way between its already inserted
neighbors. At any stage of the algorithm we refer to the ordering under con-
struction as the current ordering. Similar methods were introduced by Biedl
and Kaufmann [4] and Biedl, Madden, and Tollis [5].

Median Placement
Input : vertex-ordering I = (u1, u2, . . . , un) of a (directed) graph G

(called the insertion ordering)
Output : vertex-ordering of G

for i = 1, 2, . . . , n do
Let w1, w2, . . . , wk be the predecessors of ui in the insertion ordering,

ordered by their position in the current ordering.
if k = 0 then Insert ui arbitrarily into the current ordering.
else if k is even then Insert ui arbitrarily between wk/2 and wk/2+1.
else (k is odd) Insert ui immediately before or after w(k+1)/2

to minimize the imbalance of w(k+1)/2.
(In this case w(k+1)/2 is called the median neighbor of ui.)

end-for

Using the median-finding algorithm of Blum et al. [6], and the algorithm of
Dietz and Sleator [14] to maintain the vertex-ordering and orderings of the
adjacency lists of G, the algorithm can be implemented in linear time.

For a given insertion ordering I of a (directed) graph G = (V,E), let X be
the set of vertices u ∈ V for which predI(u) is odd.

Lemma 14 The algorithm Median Placement determines in linear time
a vertex-ordering of a (directed) graph G = (V,E) with total imbalance∑

v∈V

φ(v) ≤ |X|+
∑
u∈V

succI(u) .

PROOF. When a vertex u is inserted into the current ordering, the predeces-
sors of u in I are precisely the neighbors of u that have already been inserted
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into I. Thus immediately after u is inserted, φ(u) = 0 if predI(u) is even and
φ(u) = 1 if predI(u) is odd. Even if all the successors of u (in the insertion
ordering) are inserted on the one side of u, in the final ordering, the imbalance
φ(u) ≤ succI(u) if predI(u) is even, and φ(u) ≤ succI(u) + 1 if predI(u) is
odd. Thus the total imbalance is at most |X|+∑

u succI(u). 2

5.1 Undirected Graphs

Theorem 15 The algorithm Median Placement determines in linear time
a vertex-ordering of an n-vertex m-edge undirected graph with total imbalance

∑
v

φ(v) ≤ m+ min {|X|, n− |X|} ≤ m+
⌊
n

2

⌋
.

PROOF. That
∑

v φ(v) ≤ m+ |X| follows immediately from Lemma 14 since∑
u succI(u) = m for undirected graphs. For each vertex v ∈ V , let X(v) be the

set of vertices u ∈ X such that v is the median neighbor of u when u is inserted
into the current ordering. Thus elements of X(v) are successors of v in I, and∑

v |X(v)| = |X|. Since vertices in X(v) are inserted to balance v, φ(v) ≤
succI(v)−|X(v)| if predI(v)+ |X(v)| is even, and φ(v) ≤ 1+succI(v)−|X(v)|
if predI(v) + |X(v)| is odd. Thus∑

v

φ(v) ≤ n+
∑
v

succI(v)−
∑
v

|X(v)| = n+m− |X| .

2

A simple calculation shows that any vertex-ordering of the complete graph
Kn has total imbalance bn2

2
c = m+ bn

2
c. Thus Theorem 15 provides an upper

bound on the total imbalance that is tight in this case. Comparing the bound
on the total imbalance established by the Median Placement algorithm
(Theorem 15) versus the analogous bound for the imbalance of st-orderings of
biconnected graphs (Lemma 6), the Median Placement algorithm is better
for simple graphs with average degree at least five. One the other hand, for
simple 4-connected triangulated planar graphs (which have average degree just
under six), the bound in Lemma 10 is better than that in Theorem 15.

We now prove that the vertex-orderings produced by the Median Place-
ment algorithm are in some sense locally optimal.

Lemma 16 For undirected graphs, assuming the existing vertex-ordering is
fixed, each iteration of the Median Placement algorithm inserts the vertex
u to minimize the increase in the total imbalance.
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PROOF. When inserting a vertex u, only the imbalance of u and its neigh-
bors may change. Thus we need only consider the positions in the current
ordering between the neighbors of u as potential places for the insertion of u.
If k is even the position in the current ordering between wk/2 and wk/2+1 is
called the median position. If k is odd there are two median positions : immedi-
ately before and after w(k+1)/2. Assume that there exists a position to insert u
in the current vertex-ordering, which is not a median position, but minimizes
the total imbalance of the current ordering.

Suppose k is even. If moving u to the median position involves moving u past
t neighbors of u, then doing so decreases φ(u) by 2t, while the imbalance of
each of these t neighbors increases by at most 2. Thus moving u to the median
position does not increase the total imbalance.

Suppose k is odd. If moving u to the closer median position involves moving u
past t neighbors of u, then doing so decreases φ(u) by 2t, while the imbalance
of each of these t neighbors increases by at most 2. Thus moving u to the closer
median position does not increase the total imbalance. The imbalance of u is
the same in either median position, and only the imbalance of w(k+1)/2 differs
with u in the different median positions. Thus by inserting u in a median
position that minimizes φ(w(k+1)/2), we minimize the total imbalance. 2

Recall that ψ(v) denotes max {succ(v), pred(v)} for each vertex v in a vertex-
ordering. As mentioned in Section 1, any vertex-ordering is a 2-approximation
for the problem of minimizing

∑
v ψ(v). This observation can be improved as

follows.

Theorem 17 There is a linear-time 13/8-approximation algorithm for the
problem of determining a vertex-ordering of an undirected graph that mini-
mizes

∑
v ψ(v).

PROOF. We proceed by induction on |V | with the hypothesis that every
undirected graph G = (V,E) with k vertices of odd degree, has a vertex-
ordering with ∑

v∈V

ψ(v) ≤ 13

8

(
|E|+ k

2

)
.

This will imply the claimed approximation factor, since in every vertex-ordering
of G, ∑

v∈V

ψ(v) ≥
∑
v

⌈
deg(v)

2

⌉
= |E|+ k

2
.

First suppose that G has a vertex v of degree one. Let w be the neighbor of
v. Let G′ = (V ′, E ′) be the subgraph of G induced by V ′ = V \ {v}. Say G′
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has k′ vertices of odd degree. By induction, G′ has a vertex-ordering with

∑
x∈V ′

ψ(x) ≤ 13

8

(
|E| − 1 +

k′

2

)
.

Suppose that degG(w) is even. Then degG′(w) is odd, and k′ = k. Insert v
into the ordering of G′ to minimize the resulting imbalance of w. Thus ψ(w)
is unchanged by the insertion of v, and ψ(v) = 1. We obtain a vertex-ordering
of G with

∑
x∈V

ψ(x) ≤ 1 +
∑

x∈V ′
ψ(x) ≤ 1 +

13

8

(
|E| − 1 +

k

2

)
<

13

8

(
|E|+ k

2

)
.

Now suppose that degG(w) is odd. Then degG′(w) is even, and k′ = k − 2.
Insert v arbitrarily into the ordering of G′. Thus ψ(w) increases by at most
one, and ψ(v) = 1. We obtain a vertex-ordering of G with

∑
x∈V

ψ(x) ≤ 2 +
∑

x∈V ′
ψ(x) ≤ 2 +

13

8

(
|E| − 1 +

k − 2

2

)
<

13

8

(
|E|+ k

2

)
.

This completes the case in which G has a vertex of degree one.

Now suppose that G has a vertex v of degree two. Let u and w be the neighbors
of v. Let G′ = (V ′, E ′) be the graph obtained from G by contracting v. That is,
V ′ = V \ {v} and E ′ = (E \ {vu, vw})∪ {uw}. Observe that G′ has k vertices
of odd degree, and |E ′| = |E|−1. By induction, G′ has a vertex-ordering with

∑
x∈V ′

ψ(x) ≤ 13

8

(
|E| − 1 +

k

2

)
.

Insert v into the ordering of G′ between u and w. Thus ψ(u) and ψ(w) are
unchanged, and ψ(v) = 1. We obtain a vertex-ordering of G with

∑
x∈V

ψ(x) ≤ 1 +
∑

x∈V ′
ψ(x) ≤ 1 +

13

8

(
|E| − 1 +

k

2

)
<

13

8

(
|E|+ k

2

)
.

Now suppose thatG has minimum degree three. By Theorem 15, the algorithm
Median Placement determines a vertex-ordering of G with total imbalance∑

v φ(v) ≤ |E|+ |V |/2. By (1), φ(v) = 2ψ(v)− deg(v). It follows that,

∑
v

ψ(v) ≤ 3|E|
2

+
|V |
4

. (3)

Let n3 be the number of vertices in G with degree exactly three. Since the
minimum degree is three,

2|E| =
∑
v

deg(v) ≥ 3n3 + 4(|V | − n3) = 4|V | − n3 .
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Hence 4|V | ≤ 2|E|+n3 ≤ 2|E|+k ≤ 2|E|+13k, and 24|E|+4|V | ≤ 26|E|+13k.
Thus by (3),

∑
v

ψ(v) ≤ 3|E|
2

+
|V |
4

≤ 13

8

(
|E|+ k

2

)
,

as desired. The above approach can be implemented in linear time using the
Median Placement algorithm, by placing the low degree vertices at the
end of the insertion ordering. 2

5.2 Directed Graphs

We now analyze the Median Placement algorithm in the general case of
directed graphs. For undirected graphs, Lemma 16 proves that the Median
Placement algorithm inserts each vertex to minimize the increase in the
total imbalance. The example in Fig. 3 shows that this property does not hold
for directed graphs. Using the Median Placement algorithm the total im-
balance becomes four, whereas there exists a position, illustrated in Fig. 3(b),
to insert u with total imbalance two.

v u

1-1
w x

2-0
y

2-0

(a) median placement insertion

v u

2-0
w x

1-1
y

1-1

(b) minimum imbalance insertion

Fig. 3. Inserting vertex u into a vertex-ordering of a directed graph.

Lemma 14 suggests that a good insertion ordering for the Median Place-
ment algorithm applied to a directed graph, is one with small

∑
u succ(u).

For any vertex-ordering of a directed graph,
∑

u succ(u) or
∑

u pred(u) is at
most m

2
. Thus using an arbitrary vertex-ordering or its reverse as the insertion

ordering in the Median Placement algorithm we obtain a vertex-ordering
with total imbalance at most m

2
+ n. For acyclic graphs, a reverse topological

ordering has succ(u) = 0 for all vertices u. Since such an ordering can be
determined in linear time (see [10] for example) we have the following result
(which was implicitly used by Biedl and Kaufmann [4, Theorem 4] to establish
upper bounds on the area of orthogonal graph drawings.)

Theorem 18 A perfectly balanced vertex-ordering of a directed acyclic graph
can be determined in linear time (with total imbalance |X|). 2
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For a directed graph G = (V,E) which is not necessarily acyclic, a good
insertion ordering can be obtained by first removing edges to make G acyclic.
A feedback arc set of G is a set of edges F ⊆ E such that G\F is acyclic. Since
the successor edges in a vertex-ordering form a feedback arc set, and a reverse
topological ordering of the graph obtained by removing a feedback arc set F
has

∑
u succ(u) = |F |, finding a vertex-ordering with minimum

∑
u succ(u) is

equivalent to finding a minimum feedback arc set, which is NP-hard [25].

Berger and Shor [1] establish an asymptotically tight bound for the size of
a feedback arc set. They show that, for directed graphs of maximum degree
∆ and without 2-cycles, the minimum of

∑
u succ(u) (taken over all vertex-

orderings) is m
2
− Θ(m/

√
∆), and a vertex-ordering with

∑
u succ(u) = m

2
−

Θ(m/
√

∆) can be determined in O(mn) time. Using this as the insertion
ordering in algorithm Median Placement, by Lemma 14 with |X| ≤ n, we
obtain the following result.

Theorem 19 Every n-vertex m-edge directed graph without 2-cycles has a
vertex-ordering, which can be computed in O(mn) time, with total imbalance

∑
v

φ(v) ≤ n+
m

2
−Θ

(
m√
∆

)
.

2

Only for small values of ∆ is the constant in the Θ(m/
√

∆) term evaluated;
thus for graph drawing purposes only the n + m/2 term can be used. This
bound can be improved by using a result of Eades et al. [16]. They give a
linear time greedy heuristic for finding a feedback arc set, and prove an exact
bound on

∑
u succ(u), which in a number of instances, provides a better result

than that in [1]. In particular, they show that every directed graph without 2-
cycles has a vertex-ordering with

∑
u succ(u) ≤ m

2
−n

6
. For directed graphs with

2-cycles simply delete both edges in each 2-cycle, apply the above result, and
insert the 2-cycles back into the graph. This adds one successor to one vertex,
and increases the number of edges by two. Thus the same bound

∑
u succ(u) ≤

m
2
−n

6
holds. Using this ordering as the insertion ordering in algorithm Median

Placement, by Lemma 14 with |X| ≤ n, we obtain the following result.

Theorem 20 Every n-vertex m-edge directed graph has a vertex-ordering,
which can be computed in linear time, with total imbalance at most m

2
+ 5n

6
. 2

The above result can be improved by the following randomized approach.

Theorem 21 Every directed graph G with n vertices and m edges has a
vertex-ordering with total imbalance m+n

2
.

PROOF. Take a random permutation π of the vertices as the ordering. Con-
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sider a vertex v of (out-)degree d. We claim that in π, succ(v) = i and
pred(v) = d− i with probability 1

d+1
. To prove this, we only need consider per-

mutations of v and its neighbors. (There are equal numbers of permutations
of the whole vertex set for each permutation of v and its neighbors.) Now, if
v is placed in the (i + 1)-st position, then succ(v) = i and pred(v) = d − i.
There are d! such permutations. Thus with probability d!/(d+1)! = 1/(d+1),
we have succ(v) = i and pred(v) = d− i, as claimed.

Define ψ(v) = max {pred(v), succ(v)}. Thus

E[ψ(v)] =
d∑

i=0

max(i, d− i)

d+ 1
=

1

d+ 1

bd/2c∑
i=0

(d− i) +
d∑

i=bd/2c+1

i

 .

For even d,

E[ψ(v)] =
1

d+ 1

(
d

2
+
d

2

(
d+

d

2
+ 1

))
<

3d+ 1

4
.

For odd d,

E[ψ(v)] =
1

d+ 1

(
d+ 1

2

(
d+

d+ 1

2

))
=

3d+ 1

4
.

Thus,

E

[∑
v

ψ(v)

]
≤ 3

4

∑
v

deg(v) +
n

4
=

3m

4
+
n

4
.

Thus there exists an ordering with
∑

v ψ(v) ≤ 3m
4

+ n
4
. By (1), it follows that∑

v φ(v) ≤ m+n
2

. 2

We can derandomize the proof of Theorem 21 using the method of condi-
tional expectations to obtain a polynomial time algorithm. For details on this
standard method of derandomization we refer the reader to the monograph of
Motwani and Raghavan [30]. For undirected graphs G, Theorem 21 applied to
the symmetric directed graph of G, matches the result in Theorem 15. In one
sense, however, the median placement algorithm is superior to the randomized
approach. Using conditional probabilities one has to choose the vertex that
minimizes the increase in the total imbalance as the next vertex to be in-
serted, whereas Theorem 21 can be obtained using the Median Placement
algorithm regardless of the insertion ordering.

Applying Theorem 21 with the algorithm of Biedl and Kaufmann [4] for or-
thogonal graph drawing with bounded aspect ratios, yields an improved bound
of (3

4
m+ 1

4
n)×(3

4
m+ 1

4
n) for the area, compared with area (3

4
m+ 1

2
n)×(3

4
m+ 1

2
n)

as stated in [4, Theorem 5].
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6 Partially Fixed Orderings of Bipartite Graphs

We have seen that the Median Placement algorithm finds an optimal or-
dering for an acyclic directed graph, but in general, does not necessarily find
an optimal ordering. We now turn to another special case where this algorithm
finds an optimal ordering.

Consider the following variant of the balanced ordering problem: Given a
bipartite graph G = (A,B;E) and a fixed ordering of the vertices of A, how
difficult is it to insert the vertices of B into this ordering so that the resulting
ordering has minimum total imbalance? There are actually three variants of
the problem. We can consider the total imbalance, or only the imbalance of
the vertices in B, or only the imbalance of vertices in A. We now show that
the first two of these problems are solvable with the Median Placement
algorithm, whereas (surprisingly so) the third problem is NP-complete.

6.1 Total imbalance and imbalance in B

If only the final imbalance of vertices in B counts, then the Median Place-
ment algorithm determines a perfectly balanced vertex-ordering, since a ver-
tex v ∈ B is placed in the middle of its neighbors, and no neighbor of v is
inserted into the current ordering after v is inserted. We now prove that a
variant of the Median Placement algorithm determines an optimal vertex-
ordering if we count the imbalance of all vertices.

Theorem 22 Given a bipartite graph G = (A,B;E) and a fixed vertex-
ordering of A, there is a linear time algorithm that determines an optimal
vertex-ordering of G.

PROOF. It follows from the same technique used in the proof of Lemma 16
that there is an optimal vertex-ordering in which each vertex in B is placed
in (one of) its median position(s). Thus we need only consider such vertex-
orderings. A vertex in B with even degree has one median position, and a
vertex in B with odd degree has two median positions (either side of its median
neighbor). Which of these two positions a vertex in B with odd degree is placed
only affects the imbalance of the median neighbor. Recall that for each vertex
v ∈ A, X(v) is the set of vertices u ∈ B with odd degree such that v is the
median neighbor of u.

Thus an optimal vertex-ordering can be determined as follows. Starting with
the given ordering of A, apply the Median Placement algorithm using an
arbitrary insertion ordering for B. For each vertex v ∈ A, partition X(v) into
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sets L(v) and R(v) such that by placing the vertices in L(v) immediately to
the left of v, and placing the vertices in R(v) immediately to the right of v,
the imbalance of v is minimized. (This is similar to the partitioning step in
the Weighted Tree Ordering algorithm in Section 3.) To do so, we also
count the neighbors of v not in X(v) in the imbalance of v; for each such
neighbor we know whether it will be placed to the left or to the right of v. In
the resulting ordering, each vertex in B is in (one of) its median position(s),
and subject to this constraint, each vertex in A has minimum imbalance. Thus
the ordering is optimal. The partitioning step and thus the entire algorithm
can be computed in linear time. 2

Consider the following algorithm to compute a vertex-ordering of a bipartite
graph G = (A,B;E). For every vertex-ordering of A, apply the algorithm
described in Theorem 22 with this ordering of A fixed. By Theorem 22 this
algorithm will compute an optimal vertex-ordering of G. We therefore have
the following result.

Corollary 23 There is a linear time algorithm to compute an optimal vertex-
ordering of a bipartite graph G = (A,B;E) if |A| ∈ O(1). 2

From the standpoint of parameterized complexity (see [15]) this result is of
some interest. While the balanced ordering problem is NP-complete for bi-
partite graphs, if the number of vertices in one color class is constant, the
problem becomes fixed parameter tractable.

6.2 Imbalance in A

Theorem 24 Given a bipartite graph G = (A,B;E), it is NP-complete to
determine whether a fixed vertex-ordering of A can be extended to a vertex-
ordering of G in which all vertices in A are balanced.

PROOF. Let I be an instance of NAE-3SAT such that all literals are pos-
itive. Construct a graph G with one vertex cj for each clause cj, and four
vertices xi, x

′
i, li and ri for each variable xi. Connect each vertex xi to each

clause vertex cj for which cj contains the variable xi. Also connect each of xi

and x′i to both li and ri. The resulting graph is bipartite, with all the xi and x′i
vertices in one color class, and all remaining vertices in the other color class,
whose vertex-ordering is fixed to

( l1, l2, . . . , ln, c1, c2, . . . , cm, r1, r2, . . . , rn ) .
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Suppose there is a vertex-ordering of G in which all fixed vertices are balanced.
In particular, this means that for each i, one of xi and x′i is to the left of li
and the other one is to the right. (No other vertices are connected to li.) Also,
one of xi and x′i is to the left of ri and the other one is to the right. (No other
vertices are connected to ri.) Thus one of xi and x′i is to the left of li, and the
other one is to the right of ri. Let xi be true if xi is to the left of li, and false
if xi is to the right of ri. Since the clause vertices are balanced, it is easy to
see that this gives a solution to NAE-3SAT.

If I is satisfiable, construct a vertex-ordering with xi to the left of the fixed
part and x′i to the right if xi is true, and with xi to the right of the fixed
part and x′i to the left if xi is false. Every vertex li or ri is a (1, 1)-vertex, and
every clause vertex is a (1, 2)-vertex. Thus every vertex in one color class is
balanced. Therefore the problem is NP-complete. 2

While the the above problem is NP-complete in general, it becomes solvable
if the maximum degree of the vertices in B is two (regardless of the degrees
of vertices in A). In fact, we prove the following stronger result.

Lemma 25 Given a bipartite graph G = (A,B;E) such that every vertex in
B has degree at most two, there is a polynomial time algorithm to extend a
fixed vertex-ordering of A into a vertex-ordering of G such that every vertex
in A is balanced.

PROOF. We proceed by induction on the number of edges. The claim clearly
holds if G has no edges. Assume G has an edge. If G contains a cycle C =
(v1, u1, . . . , vk, uk), then without loss of generality assume v1 is the leftmost
vertex in the ordering of A, and vi ∈ A and ui ∈ B for 1 ≤ i ≤ k. Find a
balanced ordering of G − C by induction. Insert u1 to the left of v1 in the
ordering, and for each vertex vi, 2 ≤ i ≤ k, if ui−1 is to the left of vi, put ui to
the right of vi and vice versa. Since v1 is the leftmost vertex, the last vertex
uk can be placed to the right of v1 regardless of what side of vk it has to be
placed. We have added one predecessor and one successor to every vertex in
A, so the ordering again is balanced. If G contains no cycle, then it is a forest.
Let P be a path of G whose endpoints are leaves, and insert the vertices in
P ∩B into the ordering in a similar manner to that for cycles. If a vertex in A
has degree two in P then it will remain balanced. If a vertex in A has degree
one in P then it is a leaf of G, has no more incident edges in the remaining
part of G, has odd degree in the original G, and will have an imbalance of
one in the vertex-ordering. Now, remove P from G, and repeat the above step
until G is empty. At this point, all even degree vertices in A are balanced, and
all odd degree vertices in A have an imbalance of one. 2
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7 Conclusion and Open Problems

We have considered the problem of determining a balanced ordering of the
vertices of a graph. This problem is shown to be NP-hard, and remains NP-
hard for bipartite simple graphs with maximum degree six. Note that Kára
et al. [24] have recently extended the method developed in this paper to prove
that the balanced ordering problem is NP-hard for graphs of maximum de-
gree four, and for planar graphs. We then described and analyzed a number of
methods for determining a balanced vertex-ordering, obtaining optimal order-
ings for trees, directed acyclic graphs and graphs with maximum degree three.
We presented a 13/8-approximation algorithm for the problem on undirected
graphs. Obtaining a good approximation algorithm for directed graphs, and
improving the approximation factors for undirected graphs are challenging
open problems. Linear or semi-definite programming would seem a potential
approach. However, we have found that these methods tend to give an ap-
proximation factor that is at least logarithmic in the size of the graph.
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