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Compactly Supported Refinable Functions with Infinite Masks

§1. Introduction and Main Results

The central equation in wavelet analysis is the refinement equation for the scaling

function φ:

φ(x) =
∑

k∈ZZ

a(k)φ(2x − k). (1.1)

In approximation theory, the sequence a := {a(k)} is the mask. In signal processing these

a(k) are the coefficients of a lowpass filter.

A solution φ of (1.1) is called a refinable function (or distribution) associated with

the mask a. Usually in wavelet analysis, we assume that the mask is finitely supported.

Then φ is compactly supported and its properties can be determined from the mask [3,

10].

The simplest refinement equation (or dilation equation) has only two coefficients:

β(x) = β(2x) + β(2x − 1). It is certain that the solution will be supported on [0, 1]. In

this case β(x) is just Haar’s box function, β(x) = 1 for 0 ≤ x < 1. We are interested in

the following example which is supported on [0, 2] but its mask is infinite.

Consider a combination γ(x) = 2β(x) + β(x − 1) of the Haar function and its shift

(see Figure 1). This two-box function is also refinable, but with infinite mask:

γ(x) = γ(2x) +
1

2
γ(2x − 1) +

1

4
γ(2x− 2) +

∞
∑

k=0

(

−
1

2

)k
3

8
γ(2x − k − 3).

This shows that the refinement equation (1.1) may have a compactly supported solution

while the mask is infinitely supported. Another such example appeared in [13, p. 897].
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β(x) = β(2x) + β(2x − 1) γ(x) = 2β(x) + β(x − 1)

Figure 1. Haar and two-box scaling functions

Define the symbol ã(Z) corresponding to the mask a as the formal Laurent series

ã(Z) :=
∑

k∈ZZ

a(k)Zk.

The symbol for Haar is β̃(Z) = 1 + Z, while the two-box case has an infinite symbol:

γ̃(Z) = 1 +
1

2
Z +

1

4
Z2 +

∞
∑

k=0

(

−
1

2

)k
3

8
Zk+3 = (2 + Z2)(1 + Z)/(2 + Z).

The simple ratio in the last formula is no surprise. Since β(x) and γ(x) are refinable,

their Fourier transforms must satisfy two-scale relations involving the masks β̃ and γ̃:

β̂(2ξ) =
1

2
β̃(e−iξ)β̂(ξ), γ̂(2ξ) =

1

2
γ̃(e−iξ)γ̂(ξ).

By construction γ(x) is a combination of translates of β(x), so γ̂(ξ) = (2 + e−iξ)β̂(ξ) or

β̂(ξ) = γ̂(ξ)/(2 + e−iξ). Substituting this formula and comparing the two-scale relations

reveals that

γ̃(e−iξ) = (2 + e−i2ξ)β̃(e−iξ)/(2 + e−iξ) = (2 + e−i2ξ)(1 + e−iξ)/(2 + e−iξ).

Our purpose is to show that this example is typical. When φ is finitely supported, its

symbol is rational and of a special form. This fact was proved in [9] (for scalar coefficients

a(k)) and was pointed out to the third author by Amos Ron while we were writing the

paper. We analyze the case of matrix coefficients also. Moreover, if φ1 is a finite linear

combination of the translates of φ then we confirm that φ1 is also refinable.
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Theorem 1. If φ is a nontrivial compactly supported distribution satisfying (1.1), then

there are two finite Laurent polynomials b̃(Z) and c̃(Z) such that

ã(Z)b̃(Z) = b̃(Z2)c̃(Z). (1.2)

Hence ã(Z) is rational: ã(Z) = b̃(Z2)c̃(Z)/b̃(Z).

The two-box example has b̃(Z) = (2 + Z) and c̃(Z) = (1 + Z).

Theorem 1 is a corollary of the characterization (given in Theorem 2) of existence of

compactly supported refinable distributions in terms of the masks. Actually, we are able

to provide this characterization for vector refinement equations.

A vector refinement equation takes the same form as (1.1). But the coefficients

a(k) are r × r matrices, and φ = (φ1, · · · , φr)
T is an r-vector of functions or distributions.

For a sequence d := {d(k)}k∈ZZ of m×n matrices, we define the symbol d̃(Z) as the matrix

of formal Laurent series

d̃(Z) :=
∑

k∈ZZ

d(k)Zk.

If d is finitely supported, d ∈ (`0(ZZ))m×n, then d̃(Z) becomes a Laurent polynomial.

The existence of refinable vectors of compactly supported distributions can be char-

acterized in terms of the mask as follows.

Theorem 2. Let r ∈ IN and a := {a(k)}k∈ZZ be a nontrivial sequence of r × r ma-

trices. Then the vector refinement equation (1.1) has a nontrivial compactly supported

distributional solution φ = (φ1, · · · , φr)
T if and only if there are m ∈ {1, · · · , r}, b ∈

(`0(ZZ))r×m, c ∈ (`0(ZZ))m×m such that c̃(1) has an eigenvalue of the form 2n, n ∈ IN, b̃(z)

has rank m except at finitely many points, and

ã(Z)b̃(Z) = b̃(Z2)c̃(Z). (1.3)

The condition (1.3) is a generalization of the two-scale similarity transform which

corresponds to the case m = r and can be found in [12].

Definition. Let a and c be sequences of r × r and m×m matrices, respectively. We say

that ã and c̃ are two-scale similar if there is some nonzero sequence b ∈ (`0(ZZ))r×m such

that (1.3) holds.
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This concept of two-scale similarity can be used for different purposes in multiple

wavelets. In Section 4 we shall provide such an example and show how to characterize

nontrivial refinable subspaces for a refinable shift-invariant space.

§2. Compactly supported refinable distributions

In this section we shall prove the main result (Theorem 2) on compactly supported

refinable distributions. The proof of Theorem 1 then follows by setting r = 1.

The following result of Jia [5] on shift-invariant spaces plays an essential role in our

proof. The shift-invariant space S(φ) contains all (infinite) combinations of the shifts of

φ1, · · · , φr:

S(φ) =
{

r
∑

j=1

∑

k∈ZZ

fj (k)φj(· − k) : fj(k) ∈ C
}

.

Jia’s Lemma. Let φ = (φ1, · · · , φr)
T be a nontrivial vector of compactly supported dis-

tributions. Then there exists another vector ψ = (ψ1, · · · , ψm)T of compactly supported

distributions with the following properties:

(a) The shifts of ψ1, · · · , ψm are linearly independent;

(b) m ≤ r;

(c) S(φ) = S(ψ);

(d) φ(x) =
∑

k∈ZZ
b(k)ψ(x − k), where {b(k)} ∈ (`0(ZZ))r×m.

The linear independence was characterized by Jia and Micchelli in [6]: the shifts of

ψ1, · · · , ψm are linearly independent if and only if (ψ̂(ξ + 2kπ))k∈ZZ has rank m for every

ξ ∈ C. The linear independence implies the existence of duals [1]. Hence if f ∈ S(ψ) is

compactly supported and

f(x) =
∑

k∈ZZ

f(k)ψ(x − k),

where f(k) ∈ C1×m for each k, then the sequence {f(k)} is finitely supported. Therefore,

a compactly supported distributional solution φ of (1.1) with the mask being not finite

can never be linearly independent, but can be stable, see the example in [13]. We are now

in a position to prove Theorem 2.
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Proof of Theorem 2. Necessity. Suppose that φ = (φ1, · · · , φr)
T is a nontrivial

compactly supported distributional solution of (1.1). Applying the Lemma, we find some

ψ satisfying all the properties (a) - (d).

The combination of (d) and (1.1) tells us that

φ(x) =
∑

k

a(k)
∑

l

b(l)ψ(2x − k − l) :=
∑

k∈ZZ

f(k)ψ(2x − k), (2.1)

where f(k) =
∑

l a(k − l)b(l) ∈ Cr×m for each k ∈ ZZ. Since φ is compactly supported,

{f(k)} is finitely supported.

By (c), ψ1, · · · , ψm ∈ S(φ). Hence there is a sequence {g(k)} of m× r matrices such

that

ψ(x) =
∑

k∈ZZ

g(k)φ(x− k).

Since {f(k)} is finitely supported, this in connection with (2.1) tells

ψ(x) =
∑

k∈ZZ

{

∑

l∈ZZ

g(l)f(k − 2l)
}

ψ(2x − k).

Set c as the sequence {
∑

l g(l)f(k − 2l)}k∈ZZ. Then

ψ(x) =
∑

k∈ZZ

c(k)ψ(2x − k). (2.2)

Since ψ is compactly supported, the sequence c is finitely supported.

The property (d) and (2.2) show that

φ(x) =
∑

k∈ZZ

{

∑

l∈ZZ

b(l)c(k − 2l)
}

ψ(2x − k).

On the other hand, (1.1) and (d) tell us that

φ(x) =
∑

k∈ZZ

{

∑

l∈ZZ

a(l)b(k − l)
}

ψ(2x − k).

These two expressions for φ in connection with the linear independence of ψ imply that

∑

l∈ZZ

a(l)b(k − l) =
∑

l∈ZZ

b(l)c(k − 2l), ∀k ∈ ZZ.
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Hence as formal Laurent series,

ã(Z)b̃(Z) = b̃(Z2)c̃(Z).

This proves (1.3).

By (d),

φ̂(ξ) = b̃(e−iξ)ψ̂(ξ).

It follows from the equality S(φ) = S(ψ) that b̃(z) has rank m except at finitely many

points.

Finally, taking the Fourier transform in (2.2), we have

ψ̂(2ξ) =
1

2
c̃(e−iξ)ψ̂(ξ).

Since ψ̂ is a vector of analytic functions, there is some n ∈ IN such that ψ̂(0) = · · · =

ψ̂(n−2)(0) = 0 and ψ̂(n−1)(0) 6= 0. Hence 2n−1 is an eigenvalue of c̃(1)/2 corresponding to

the eigenvector ψ̂(n−1)(0). This proves the necessity.

Sufficiency. Suppose that all the conditions hold. Since c̃(1) has an eigenvalue 2n for

some n ∈ IN, we know from [7, 14] that there exists a nontrivial vector ψ = (ψ1, · · · , ψm)T

of compactly supported distributions such that

ψ(x) =
∑

k∈ZZ

c(k)ψ(2x − k).

Define a vector φ = (φ1, · · · , φr)
T of compactly supported distributions by

φ(x) =
∑

k∈ZZ

b(k)ψ(x − k).

Then

φ̂(ξ) = b̃(e−iξ)ψ̂(ξ), ξ ∈ C.

Since b̃(e−iξ) has rank m for ξ ∈ C except at finitely many points, we know that φ is

nontrivial.

Let us check the refinement relation for φ. By the definition of φ and the refinement

equation for ψ,

φ(x) =
∑

l

b(l)
∑

k

c(k)ψ(2x − 2l − k) =
∑

k∈ZZ

{

∑

l∈ZZ

b(l)c(k − 2l)
}

ψ(2x − k).

6



The two-scale similarity (1.3) tells us that
∑

l a(l)b(k−l) =
∑

l b(l)c(k−2l) for each k ∈ ZZ.

Hence

φ(x) =
∑

k∈ZZ

{

∑

l∈ZZ

a(l)b(k − l)
}

ψ(2x − k) =
∑

k∈ZZ

a(k)φ(2x − k).

Therefore, the vector refinement equation (1.1) associated with the mask a has a nontrivial

compactly supported distributional solution φ. This completes the proof of Theorem 2.

The proof shows that if φ is a compactly supported distributional solution of (1.1)

associated with an arbitrary mask, then any distribution f in S(φ) can be written as

f(x/2) =
∑

k∈ZZ

f(k)Tφ(x/2 − k) =
∑

k∈ZZ

{

∑

l∈ZZ

f(l)T b(k − l)
}

ψ(x/2 − k)

=
∑

k∈ZZ

{

∑

l∈ZZ

[

∑

n∈ZZ

f(n)T b(l − n)
]}

c(k − 2l)ψ(x − k) ∈ S(ψ) = S(φ).

Hence S(φ) is refinable in the sense that f(x/2) ∈ S(φ) for any f ∈ S(φ).

Moreover, the following result holds.

Theorem 3. Suppose φ is finitely supported and refinable. If φ1 is a finite linear combi-

nation of the translates of φ then φ1 is also refinable and finitely supported.

Proof. By Jia’s Lemma, there exist compactly supported distributions ψ and ψ1 such

that S(ψ) = S(φ) and S(ψ1) = S(φ1) (with φ ∈ S0(ψ) and φ1 ∈ S0(ψ1)) and the integer

translates of ψ (ψ1) are linearly independent. Since φ1 ∈ S(φ) = S(ψ), we know that

S(φ1) = S(ψ1) ⊂ S(ψ). By the linear independence,

ψ̂1(ξ) = d̃(e−iξ)ψ̂(ξ),

where d is a finitely supported sequence. Since ψ1 is also linearly independent, the char-

acterization of Jia and Micchelli [6] tells us that d̃(e−iξ) 6= 0 for any ξ ∈ C. Therefore, the

only zero that d̃(Z) may have is the origin. Hence, d̃(Z) = const ·Z l for some l ∈ ZZ. This

implies that

ψ1(x) = const · ψ(x − l).

It follows that S(φ1) = S(ψ1) = S(ψ) = S(φ) is refinable. That means

φ1(x/2) ∈ S(φ1) and φ1(x) =
∑

k∈ZZ

b(k)φ1(2x − k)

for some sequence b.
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§3. Examples with infinite masks

Before discussing the applications of two-scale similarity transforms in Section 4, let us

provide some examples of compactly supported distributional solutions of the refinement

equations with infinite masks.

We consider the scalar case r = 1 only. Theorem 2 tells us that the existence of

nontrivial compactly supported φ is equivalent to the existence of nonzero Laurent poly-

nomials b̃ and c̃ such that c̃(1) = 2n for some n ∈ IN and (1.3) holds. We may assume

in (1.3) that b̃(z) is a polynomial with b̃(0) 6= 0, b̃(1) 6= 0; c̃(z) = zsc̃0(z) for some s ∈ ZZ

and a polynomial c̃0 with c̃0(0) 6= 0; and that b̃ and c̃0 are coprime. Then the degree of

b̃(z2)c̃0(z) is greater than the degree of b̃(z) (unless both b̃ and c̃0 are constants).

Our first example corresponds to the transfer functions of the Butterworth filters [8].

For the regularity of these refinable functions, see Cohen and Daubechies [2].

Example 1. Let N > 1 and the sequence aN be given by

ãN (z) =
2(z + 1)2N

(z + 1)2N + (−1)N (z − 1)2N
.

Then the scalar refinement equation (1.1) associated with the mask aN has no compactly

supported distributional solution.

Proof. Write PN (z) = (z+1)2N +(−1)N (z − 1)2N . When N is even, PN is a polynomial

of exact degree 2N with PN (0) 6= 0. When N is odd, PN(z) = zQN (z) where QN (z) is a

polynomial of exact degree 2N − 2 with QN (0) 6= 0. Note that PN (z) and (z + 1)2N are

coprime.

The conclusion for even N is trivial, since (1.3) in connection with degPN = deg(z +

1)2N would imply that both b̃ and c̃ are constants, which is a contradiction.

When N is odd (N ≥ 3), (1.3) means that s = −1 and

b̃(z2)

b̃(z)
c̃0(z) =

2(z + 1)2N

QN (z)
.

This implies that deg{b̃(z2)c̃0(z)} − degb̃(z) = degb̃+ degc̃0 = 2 and QN divides b̃. Hence

degb̃ ≥ degQN = 2N − 2 ≥ 2. Therefore, we must have degc̃0 = 0, degb̃ = 2 and N = 3.

Thus, (z + 1)6 divides b̃(z2), which is again a contradiction.
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The simplest example in the scalar case should be ã(z) = q̃(z)/(z − λ2) with λ 6= 0

and q̃(λ2) 6= 0. If degq̃ = 2, then it can be easily seen that the existence of compactly

supported distributional solution is equivalent to q̃(z) = 2n(z2 − λ2) for some n ∈ IN.

When degq̃ = 3, we have

Example 2. Let λ 6= 0, ã(z) = q̃(z)/(z − λ2), where q̃ is a polynomial of exact degree 3

with q̃(λ2) 6= 0 and q̃(0) 6= 0. Then the refinement equation (1.1) associated with the mask

a has a nontrivial compactly supported distributional solution if and only if q̃(z) is one of

the following three types: 2n(z − λ)(z2 + λ); 2n(z + λ)(z2 − λ); (z2 − λ2)(2n + t(z − 1))

with t 6= 0, where n is a positive integer.

Proof. By Theorem 2, the existence φ is equivalent to

q̃(z)

z − λ2
=

(z2 − λ2)d̃(z2)

(z − λ2)d̃(z)
c̃0(z),

where d̃, c̃0 are polynomials and d̃(0) 6= 0, d̃(1) 6= 0, c̃0(1) = 2n for some n ∈ IN. Since

degq̃ = 3, this means either degd̃ = 1 and degc̃0 = 0; or degd̃ = 0 and degc̃0 = 1. In

the first case, the equivalent condition is that d̃(z) = d0(z ± λ) and c̃0(z) ≡ 2n. Hence

q̃(z) = 2n(z−λ)(z2 +λ) or 2n(z+λ)(z2 −λ). In the second case, the equivalent statement

is that q̃(z) = (z2 − λ2)c̃0(z) where c̃0(1) = 2n. Hence our conclusion holds.

§4. Refinable subspaces

The two-scale similarity transform plays an essential role in our characterization of

refinable vectors of compactly supported distributions with infinite masks. In this section,

we apply this transform to study the inclusion of refinable subspaces. This problem was

considered by Hardin and Hogan in [4]. The special case of refinability of components (of

refinable vectors) was studied by Strang and Zhou in [11].

By Theorem 2, for any refinable vector φ of compactly supported distributions with

an arbitrary mask, there always exists another refinable vector ψ with a finite mask and

linearly independent shifts such that S(φ) = S(ψ). So we may assume that the shifts of

ψ are linearly independent (hence the associated mask c is finitely supported) when we

consider the subspaces of S(ψ).

9



Theorem 4. Let ψ = (ψ1, · · · , ψm)T be a vector of compactly supported distributions

with linearly independent shifts satisfying the vector refinement equation

ψ(x) =
∑

k∈ZZ

c(k)ψ(2x − k).

Let r ∈ {1, · · · ,m − 1}. If S(φ) is a nontrivial refinable subspace of S(ψ), generated by a

vector φ = (φ1, · · · , φr)
T of compactly supported distributions with linearly independent

shifts, then there exist nonzero sequences a ∈ (`0(ZZ))r×r and b ∈ (`0(ZZ))r×m such that

(1.3) holds, and

φ(x) =
∑

k∈ZZ

b(k)ψ(x − k). (4.1)

Conversely, if nonzero sequences a ∈ (`0(ZZ))r×r , b ∈ (`0(ZZ))r×m satisfy (1.3), then φ

defined by (4.1) generates a nontrivial refinable subspace S(φ) of S(ψ). Moreover, the

sequence a is the refinement mask for φ in both statements.

Proof. Necessity. Suppose that φ = (φ1, · · · , φr)
T generates a nontrivial refinable sub-

space S(φ) and the shifts of φ are linearly independent. Since φ ∈ S(φ) ⊂ S(ψ), there is

a nonzero sequence b ∈ (`0(ZZ))r×m such that (4.1) holds. The refinement equation for ψ

tells that

φ(x) =
∑

k∈ZZ

[

∑

l∈ZZ

b(l)c(k − 2l)
]

ψ(2x − k).

Since S(φ) is refinable and the shifts of φ are linearly independent, there exists a nonzero

sequence a ∈ (`0(ZZ))r×r such that

φ(x) =
∑

k

a(k)φ(2x − k) =
∑

k

[

∑

l

a(l)b(k − l)
]

ψ(2x − k).

The above two expressions for φ in connection with the linear independence of ψ imply

that
∑

l∈ZZ

a(l)b(k − l) =
∑

l∈ZZ

b(l)c(k − 2l), k ∈ ZZ.

Hence

ã(Z)b̃(Z) = b̃(Z2)c̃(Z).

This proves (1.3) and the first statement.
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To see the second statement, suppose that (1.3) holds for nonzero sequences a and b.

Let

φ(x) =
∑

k∈ZZ

b(k)ψ(x − k).

Then S(φ) is a nontrivial subspace of S(ψ).

To see that S(φ) is refinable, we use the two-scale similarity transform. By our

definition of φ and the refinement equation for ψ,

φ(x) =
∑

k∈ZZ

[

∑

l∈ZZ

b(l)c(k − 2l)
]

ψ(2x − k).

Then (1.3) tells that

φ(x) =
∑

k∈ZZ

[

∑

l∈ZZ

a(l)b(k − l)
]

ψ(2x − k) =
∑

k∈ZZ

a(k)φ(2x − k).

Hence φ is refinable. This completes the proof of Theorem 4.

Let us show how to apply Theorem 4 in the special case when suppc = [0, 1], i.e.,

c̃(z) = c(0) + c(1)z. In this case, under the assumption that c(0) is invertible, Hardin and

Hogan gave a characterization of refinable subspaces in terms of (left) invariant subspaces

of c(0). Our result here is constructive; we give the refinement mask a and the combination

coefficients b for φ. Also, we do not assume that c(0) is invertible.

By changing the generator φ by its shifts, we may assume that a is supported on

[0,N ], hence suppφ ⊂ [0,N ]. Then (4.1) tells that suppb ⊂ [0,N − 1]. Thus the two-scale

similarity transform (1.3) is reduced to a system of quadratic equations. We should not

expect to bound the length N by the support of c. For example, if we take ψj (x) =

xj−1, j = 1, · · · ,m, then the cardinal B-spline φ of order m generates a refinable subspace

of S(ψ), while N = m can be arbitrarily large. However, it is possible to bound the length

N by m and the support of c. Let us give such an example with r = 1.

Theorem 5. Let ψ = (ψ1, · · · , ψm)T be a vector of compactly supported distributions

with linearly independent shifts satisfying the vector refinement equation

ψ(x) = c(0)ψ(2x) + c(1)ψ(2x − 1).

11



If V is a nontrivial refinable subspace of S(ψ), generated by a compactly supported distri-

bution with linearly independent shifts, then there exist nonzero sequences a ∈ (`0(ZZ))r×r

and b ∈ (`0(ZZ))r×m, supported on [0,m] and [0,m− 1] respectively, such that (1.3) holds,

and φ defined by (4.1) is a generator of V = S(φ).

Proof. Let φ be a generator of V such that φ has minimal support of length not greater

than N ∈ IN and suppφ ⊂ [0,N ]. Then φ is linearly independent and refinable. These two

properties imply the well-known fact that the refinement mask a of φ has support [0,N ]

with a(0) 6= 0 and a(N) 6= 0; φ|[l,l+1) 6= 0 for each l ∈ {0, · · · ,N − 1} and {φ|[l,l+1)}
N−1
l=0

are linearly independent. The linear independence of ψ tells that

φ(x) =
N−1
∑

k=0

b(k)ψ(x − k)

for some b ∈ (`0(ZZ))1×m supported in [0,N − 1]. Also, b(k) 6= 0 for each 0 ≤ k ≤ m − 1.

The proof of Theorem 4 shows that (1.3) holds.

We state that N ≤ m. Suppose to the contrary that N > m. Then {b(k)}N−1
k=0 are

linearly dependent. There exist numbers λk, k = 0, · · · ,N − 1, not all zero, such that

N−1
∑

k=0

λkb(k) = 0.

Observe that
N−1
∑

k=0

λkφ(x+ k) =
∑

n∈ZZ

[
N−1
∑

k=0

λkb(k + n)]ψ(x − n).

Therefore, as a distribution on [0, 1),

N−1
∑

k=0

λkφ(x + k)|[0,1) = [

N−1
∑

k=0

λkb(k)]ψ(x)|[0,1) = 0.

Hence
N−1
∑

k=0

λkφ|[k,k+1) = 0.

This contradicts the linear independence of {φ|[k,k+1)}
N−1
k=0 , and shows that N ≤ m. The

proof of Theorem 5 is complete.
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The above mentioned example of cardinal B-splines tells us that the bound N ≤ m

given in Theorem 5 is sharp.

Let us finish our discussion with an example in the case m = 2. We may assume a

canonical form for c̃(1) = c(0) + c(1) =

[

2 0
0 λ

]

with |λ| < 2.

Example 3. Let 0 6= u, s, t ∈ C with |s+ t| < 2. Consider the vector refinement equation

ψ(x) =

[

1 0
u s

]

ψ(2x) +

[

1 0
−u t

]

ψ(2x − 1).

The compactly supported distributional solution ψ = (ψ1, ψ2)
T with ψ̂(0) = (1, 0)T lies

in (L1(IR))2 and has linearly independent shifts if and only if |s| + |t| < 2. The subspace

S(ψ1), ψ1 = χ[0,1), is refinable. S(ψ) contains another nontrivial refinable subspace S(φ)

generated by a compactly supported function φ if and only if −1/2 < t < 3/2, t 6= 0, 1,

and s = 1 − t. In this case, the generator φ satisfies the refinement equation

φ(x) = (1 − t)φ(2x) + φ(2x − 1) + tφ(2x− 2). (4.2)

Proof. The first statement and the refinability of S(ψ1) are trivial.

Suppose that S(φ) is another nontrivial refinable subspace of S(ψ). By Theorem 5 we

may assume that φ has linearly independent shifts and is given by

φ(x) = b(0)ψ(x) + b(1)ψ(x − 1),

where b̃ satisfies (1.3) for some nonzero sequence a supported in [0, 2]. Since a is the

refinement mask of φ, ã(1) = 2.

The two-scale similarity transform (1.3) here is equivalent to the following relations:

a(0)b(0) = b(0)c(0), a(2)b(1) = b(1)c(1),

and

a(1)b(0) + a(0)b(1) = b(0)c(1), a(2)b(0) + a(1)b(1) = b(1)c(0).

Note that (1, 0) is the common left eigenvector of c(0) and c(1) with eigenvalue 1. If

either b(0) or b(1) equals α(1, 0) for some α ∈ C, then S(φ) = S(ψ1).
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If neither b(0) nor b(1) is α(1, 0) for any α ∈ C, then

a(0) = s, b(0) = α(1, (s − 1)/u) with α 6= 0

and

a(2) = t, b(1) = β(1, (1 − t)/u) with β 6= 0.

Under this condition, (1.3) is equivalent to that

a(1)α(1, (s − 1)/u) = α(2 − s, t(s − 1)/u) − sβ(1, (1 − t)/u)

and

a(1)β(1, (1 − t)/u) = β(2 − t, s(1 − t)/u) − tα(1, (s − 1)/u).

This yields

a(1) = 2 − s− sβ/α = 2 − t− tα/β =⇒ α/β = −1 or tα/β = s.

If α/β = −1, then a(1) = 2. The second condition would imply s + t = 2, which is a

contradiction.

If tα/β = s, then a(1) = 2 − s − t. The second condition implies that s + t = 1 or 2.

Since |s+ t| < 2, we must have s+ t = 1. In this case, if t = 0 or s = 0, then S(φ) = S(ψ1).

Therefore, we must have s + t = 1, t 6= 0, 1. The requirement |s| + |t| < 2 tells us that

−1/2 < t < 3/2.

Conversely, suppose that −1/2 < t < 3/2, t 6= 0, 1, s = 1 − t. Let 0 6= α, β ∈ C such

that α/β = s/t. Define

ã(z) = (1 − t) + z + tz2, b̃(z) = (β(1 − t)/t,−tα/u) + (β, (1 − t)/u)z.

Then the two-scale similarity relation (1.3) holds. By Theorem 4, S(ψ) contains a nontrivial

refinable subspace S(φ), and φ satisfies (4.2). Hence S(φ) 6= S(ψ1). Also, φ ∈ L1(IR), and

it has linearly independent shifts. This completes the proof of the statements in the

example.

In Example 3, we provide the explicit refinement mask for φ which is unknown in [4,

Example 4.2]. From this refinement mask we know that for 1 ≤ p <∞, φ ∈ Lp(IR) if and

only if |t|p + |1 − t|p < 2, while φ is continuous if and only if 0 < t < 1. Here, we do not

assume that c(0) is invertible.
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