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The Limits of Refinable Functions

§1. Introduction and Main Results

The central equation in wavelet analysis is the refinement equation for the scaling

function φ(x):

φ(x) =
N

∑

k=0

a(k)φ(2x − k). (1.1)

In approximation theory, the sequence {a(k)} is the mask. In signal processing these are

the coefficients of a lowpass filter.

For a given mask {a(k)}, wavelet theory yields the properties of the family {φ(x −
k)}. We can determine whether these translates form a Riesz basis of a subspace in

L2(IR), whether this basis is orthogonal, and which polynomials 1, x, · · · , xp−1 are linear

combinations of the translates. This theory is summarized in [3] and [13]. What we do not

know is how to choose the mask {a(k)} so that φ(x) is close to a given function f(x).

This “inverse problem” arises naturally in applications. We want to recognize objects

whose shape is indicated by f(x). We hope that a scaling function of similar shape will

allow us to identify a good match. The thesis of Chapa [2] made a start on this problem

using band-limited scaling functions. In that case the Fourier transform φ̂(ξ) has compact

support and the sequence {a(k)} is infinite.

We want to start again, by answering this preliminary question: What is the closure

of the set S of all refinable functions in L2(IR)? A solution to (1.1) is a refinable function.

More generally, we say that

φ is refinable (φ ∈ S) if and only if φ(x) ∈ span{φ(2x− k) : k ∈ ZZ}. (1.2)

Thus an infinite mask is allowed. We wondered at first whether this set S is closed. We

will show that it is not closed, and Theorem 1 will describe its closure S.

The crucial questions involve the zeros of the Fourier transform. The transform of

the refinement equation (1.1) is

φ̂(ξ) = (
1

2

∑

k∈ZZ

a(k)e−ikξ/2)φ̂(
ξ

2
) ≡ ã(

ξ

2
)φ̂(

ξ

2
). (1.3)
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For convenience we rescale to φ̂(2ξ) = ã(ξ)φ̂(ξ). The function ã(ξ) is clearly 2π-periodic.

In the inverse direction, f(x) will be refinable if f̂ (2ξ)/f̂ (ξ) happens to be 2π-periodic,

and f̂ (ξ) is never zero. Then f(x) will solve equation (1.1) with mask given by

ã(ξ) =
f̂ (2ξ)

f̂(ξ)
.

But if f̂ (ξ) has zeros (which is typical!), we have to consider their relation to the zeros of

f̂ (2ξ). This eventually leads to our characterization of the closure of S:

Theorem 1. A function f(x) lies in S, the closure of S in L2(IR), if and only if for any

positive integers j and k,

f̂ (2j(ξ + 2kπ))f̂ (ξ) = f̂ (2jξ)f̂ (ξ + 2kπ) for almost every ξ. (1.4)

As an example, the function f(x) ∈ L2(IR) given by

f̂ (ξ) =







1, if ξ ∈ (− 4
3π,− 2

3π) ∪ ( 2
3π,

4
3π),

0, otherwise

is in S, but is not refinable. The condition (1.4) certainly holds in the band-limited case

when f̂ (ξ) is supported in [− 4
3π,

4
3π], because for ξ in this interval we have

|2j(ξ + 2kπ)| ≥ 2(2π − |ξ|) ≥ 4

3
π.

Then both sides of (1.4) are identically zero and f(x) ∈ S. Section 3 will show that if

b > 4
3π, there are functions with f̂ (ξ) supported on [−b, b] for which (1.4) does not hold.

Our second main result is a lower bound on the distance d(f, S) from f to S:

d(f, S) = inf{‖f − φ‖2 : φ ∈ S}.

From the characterization of Theorem 1, it is natural to measure this distance in terms of

the family of functions

Dj,k(f)(ξ) := f̂ (2j (ξ + 2kπ))f̂ (ξ) − f̂(2jξ)f̂ (ξ + 2kπ).

Theorem 2. Let f(x) be a nonzero function in L2(IR). Then

d(f, S) ≥
√

2 − 1

12π‖f‖2
sup
k∈IN

{ ∞
∑

j=1

‖Dj,k(f)‖1

}

. (1.5)

X-Mozilla-Status: 0000

¿From the proof of Theorem 1 given in Section 2, we shall easily see the following

characterization of refinable functions.
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Theorem 3. Let f(x) ∈ L2(IR) and define Kj (f), j = 0, 1, · · ·, by

Kj(f) :=
{

ξ ∈ [−π, π) : f̂(2j (ξ + 2lπ)) 6= 0 for some l ∈ ZZ
}

. (1.6)

Then f(x) lies in S if and only if f(x) ∈ S and the set ∪∞
j=1Kj(f) \K0(f) has measure

zero.

Corollary. If f(x) ∈ S \ S, then f̂ (ξ) vanishes on a set of positive measure.

The final sections of the paper deal with smaller points in the theory of refinable

functions:

Section 4: Nonuniqueness of the mask.

Section 5. Refinable solutions to inhomogeneous refinement equations.

Section 6. Multiple refinable functions (leading to multiwavelets).

Section 7. Fully refinable functions (all translates φ(x− t) are refinable).

§2. Proof of the Main Results

We need the following characterization of closed shift-invariant subspaces in L2(IR)

given by de Boor, DeVore, and Ron [1]. Each such subspace is associated with a function

φ in L2(IR). The subspace is

S2(φ) =
{

f(x) ∈ L2(IR) : f̂ (ξ) = τ (ξ)φ̂(ξ) for a 2π-periodic function τ (ξ)
}

. (2.1)

Proof of Theorem 1.

Necessity of (1.4). Suppose that there is a sequence {φn(x)} ⊂ S such that ‖φn−f‖2 →
0 as n→ ∞. Then ‖φ̂n − f̂‖2 → 0. Hence there is a subsequence {φ̂nk

(ξ)} such that

lim
k→∞

φ̂nk
(ξ) = f̂ (ξ)

almost everywhere. By replacing {φn(x)} with this subsequence, we may assume that

lim
n→∞

φ̂n(ξ) = f̂ (ξ), ∀ξ ∈ IR \ T, (2.2)

where T is a set of measure zero (null set).
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Since φn(x) is refinable, by (2.1) there is a 2π-periodic function ãn(ξ) such that

φ̂n(2ξ) = ãn(ξ)φ̂n(ξ) (2.3)

almost everywhere. By recursion this implies for all n and all j = 1, 2, · · · that

φ̂n(2jξ) = ãn(2j−1ξ) · · · ãn(ξ)φ̂n(ξ), ∀ξ ∈ IR \ T ′, (2.4)

where T ′ is another null set. Then Tj = (T ′ + 2πZZ) ∪ (2−jT + 2πZZ) ∪ (T + 2πZZ) is also a

null set. Suppose ξ ∈ IR \ Tj .

Let k ∈ IN. If f̂ (ξ + 2kπ) = f̂(ξ) = 0, then (1.4) holds trivially.

If f̂ (ξ + 2lπ) 6= 0 for some l ∈ {0, k}, then (2.2) and (2.4) imply that

lim
n→∞

ãn(2j−1ξ) · · · ãn(ξ) = f̂ (2j(ξ + 2lπ))/f̂ (ξ + 2lπ).

By the 2π-periodicity, taking the limits in (2.2) and (2.4) again, we have

f̂ (2j(ξ + 2pπ)) =
f̂ (2j(ξ + 2lπ))

f̂ (ξ + 2lπ)
f̂ (ξ + 2pπ), ∀p ∈ ZZ.

In particular, the choice p ∈ {0, k} \ {l} implies (1.4).

Thus (1.4) is true for every k ∈ IN and this ξ.

Since the set Tj has measure zero, (1.4) holds almost everywhere. This proves the

necessity of (1.4).

Sufficiency. Suppose that (1.4) is true. It is still true if we replace ξ by 2m(ξ + 2lπ)

and k by 2mk, for m ∈ IN and l ∈ ZZ. Now change j +m back to j and k + l back to k.

The result is

f̂ (2j(ξ + 2kπ))f̂ (2m(ξ + 2lπ)) = f̂ (2j(ξ + 2lπ))f̂ (2m(ξ + 2kπ)) (2.5)

for any j,m ∈ IN, k, l ∈ ZZ and every ξ ∈ IR \ T , where T is a null set.

Let us define a sequence {φn(x)} of refinable functions tending to f(x).

Let Mj(f) be the union of the sets K0(f), · · · ,Kj−1(f) defined in (1.6):

Mj(f) := ∪j−1
i=0Ki(f) = {ξ ∈ [−π, π) : f̂(2i(ξ + 2lπ)) 6= 0 for some 0 ≤ i < j and l ∈ ZZ}.
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For ξ ∈ K0(f), define

φ̂n(ξ + 2kπ) = f̂ (ξ + 2kπ), ∀k ∈ ZZ. (2.6)

For j ∈ IN and ξ ∈ Kj(f) \Mj(f), define

φ̂n(ξ + 2kπ) = f̂(2j (ξ + 2kπ))/n, ∀k ∈ ZZ. (2.7)

For ξ ∈ [−π, π) \M∞(f), define

φ̂n(ξ + 2kπ) = 0, ∀k ∈ ZZ. (2.8)

Thus, φ̂n(ξ) has been defined for all ξ. We first show that φ̂n(ξ) → f̂ (ξ) in L2(IR).

By equations (2.6) and (2.8),

φ̂n(ξ + 2kπ) − f̂ (ξ + 2kπ) = 0, ∀ξ ∈ K0(f) ∪
(

[−π, π) \M∞(f)

)

, k ∈ ZZ.

Hence

‖φ̂n − f̂‖2
2 =

∞
∑

j=1

∫

Kj(f)\Mj(f)

∑

k∈ZZ

|φ̂n(ξ + 2kπ) − f̂(ξ + 2kπ)|2dξ

=

∞
∑

j=1

∫

Kj(f)\Mj(f)

∑

k∈ZZ

|f̂(2j (ξ + 2kπ))/n|2dξ

≤
∞
∑

j=1

∫

IR

|f̂ (2jξ)|2dξ/n2

= ‖f̂‖2
2/n

2 → 0.

Therefore, φn(x) ∈ L2(IR) and limn→∞ ‖φn − f‖2 = 0.

Next we show that φn(x) is refinable, by constructing ãn(ξ) on [−π, π) such that

φ̂n(2(ξ + 2kπ)) = ãn(ξ)φ̂n(ξ + 2kπ), ∀k ∈ ZZ, ξ ∈ [−π, π) \ T. (2.9)

Let j ∈ IN∪{0} and ξ ∈ Kj(f)\Mj (f), we choose kξ ∈ ZZ such that f̂ (2j(ξ+2kξπ)) 6= 0.

Define

ãn(ξ) =







φ̂n(2(ξ + 2kξπ))/f̂ (ξ + 2kξπ), if j = 0,

nφ̂n(2(ξ + 2kξπ))/f̂ (2j(ξ + 2kξπ)), if j ∈ IN.
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For ξ ∈ [−π, π) \M∞(f), we can define ãn(ξ) arbitrarily.

Let us now verify the refinement relation (2.9), first for ξ ∈M∞(f) \ T .

Let j ∈ IN ∪ {0} and ξ ∈ Kj(f) \Mj(f) \ T . For every k ∈ ZZ,

ãn(ξ)φ̂n(ξ + 2kπ) =
φ̂n(2(ξ + 2kξπ))

f̂ (2j(ξ + 2kξπ))
f̂ (2j(ξ + 2kπ)). (2.10)

To see that this equals φ̂n(2(ξ + 2kπ)), write 2ξ as η + 2sπ with η ∈ [−π, π) and s ∈ ZZ.

Then if η 6∈M∞(f),

φ̂n(2(ξ + 2lπ)) = φ̂n(η + 2sπ + 4lπ) = 0, ∀l ∈ ZZ.

Hence (2.10) equals φ̂n(2(ξ + 2kπ)) in this case.

If η ∈ K0(f), then

φ̂n(2(ξ + 2lπ)) = φ̂n(η + 2sπ + 4lπ) = f̂ (η + 2sπ + 4lπ) = f̂ (2(ξ + 2lπ)).

Hence (2.10) equals φ̂n(2(ξ + 2kπ)) again by the condition (2.5).

If η ∈ Km(f) \Mm(f) for some m ∈ IN, then

φ̂n(2(ξ + 2lπ)) = φ̂n(η + 2sπ + 4lπ) = f̂(2m(η + 2sπ + 4lπ))/n = f̂(2m+1(ξ + 2lπ))/n.

Hence (2.10) equals φ̂n(2(ξ + 2kπ)) in this final case by the condition (2.5).

Thus, the refinement relation (2.9) has been proved for ξ ∈M∞(f) \ T .

Next we consider ξ ∈ [−π, π) \M∞(f) \ T . Here we have

φ̂n(ξ + 2lπ) = 0, ∀l ∈ ZZ.

Let us show that φ̂n(2(ξ + 2lπ)) = 0 for every l ∈ ZZ. Write 2ξ as η + 2sπ again with

η ∈ [−π, π) and s ∈ ZZ.

If η 6∈M∞(f), then

φ̂n(2(ξ + 2lπ)) = φ̂n(η + 2sπ + 4lπ) = 0, ∀l ∈ ZZ.

If η ∈ K0(f), then ξ 6∈ K1(f) implies that for every l ∈ ZZ,

φ̂n(2(ξ + 2lπ)) = f̂ (η + 2sπ + 4lπ) = f̂ (2(ξ + 2lπ)) = 0.
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If η ∈ Kj(f) \Mj(f) for some j ∈ IN, then

φ̂n(2(ξ + 2lπ)) = φ̂n(η + 2sπ + 4lπ) = f̂ (2j(η + 2sπ + 4lπ))/n

= f̂ (2j+1(ξ + 2lπ))/n = 0, ∀l ∈ ZZ,

since ξ 6∈ Kj+1(f).

Thus, in all the three cases,

φ̂n(2(ξ + 2lπ)) = 0, ∀l ∈ ZZ.

Therefore, the refinement relation (2.9) holds true on [π, π) \ T . Hence φn(x) is

refinable; it lies in S. Then lim ‖φn − f‖2 = 0 tells us that f(x) lies in the closure of S.

Once we have proved Theorem 1, the proof of Theorem 2 follows quickly.

Proof of Theorem 2.

For φ(x) ∈ S, Theorem 1 gives Dj,k(φ)(ξ) = 0 almost everywhere. Then

‖Dj,k(f)‖1 = ‖Dj,k(f) −Dj,k(φ)‖1

=

∫

IR

|
[

f̂(2j (ξ + 2kπ)) − φ̂(2j(ξ + 2kπ))
]

f̂ (ξ)

+ φ̂(2j(ξ + 2kπ))
[

f̂(ξ) − φ̂(ξ)
]

+ φ̂(2jξ)
[

φ̂(ξ + 2kπ) − f̂ (ξ + 2kπ)
]

+ f̂ (ξ + 2kπ)
[

φ̂(2jξ) − f̂ (2jξ)
]

|dξ.
Applying the Schwarz inequality, we get

‖Dj,k(f)‖1 ≤ 2

(
∫

|f̂ (2jξ) − φ̂(2jξ)|2dξ
)1/2

‖f̂‖2 + 2

(
∫

|φ̂(2jξ)|2dξ
)1/2

‖f̂ − φ̂‖2

= 21−j/2‖f̂ − φ̂‖2(‖f̂‖2 + ‖φ̂‖2).

For each k we sum over j ∈ IN:

‖f − φ‖2(‖f‖2 + ‖φ‖2) ≥
√

2 − 1

4π

∞
∑

j=1

‖Dj,k(f)‖1. (2.11)

In computing the distance d(f, S) we may restrict to φ ∈ S with ‖φ‖2 ≤ 2‖f‖2, since

otherwise ‖φ − f‖ ≥ ‖0 − f‖. Then (2.11), for each k, yields the lower bound on d(f, S)

in Theorem 2:

d(f, S) 3‖f‖2 ≥
√

2 − 1

4π

∞
∑

j=1

‖Dj,k(f)‖1. (2.12)

The proof of Theorem 2 is complete.
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Remark on Condition (1.4)

If the Fourier transform of a refinable function were never zero, division would be

allowed and everything becomes easy:

f̂ (2ξ)

f̂(ξ)
is periodic by the refinement equation. (2.13)

f̂ (2jξ)

f̂ (ξ)
=

f̂ (2jξ)

f̂ (2j−1ξ)
· · · f̂ (2ξ)

f̂ (ξ)
is periodic by induction. (2.14)

Condition (1.4) is simply the periodicity of f̂ (2jξ)/f̂ (ξ) after multiplication to clear out

the (possibly zero!) denominators.

Since the periodicity (2.14) for all j follows from (2.13) for j = 1, it is natural to ask

whether this is also true in Condition (1.4). Must we impose this condition for all j ∈ IN?

The following example shows that we must.

Example 1. Let f̂ (ξ) = 1 for ξ ∈ (−π,−π/2)∪(−π/2m+1,−π/2m+2)∪(2π−π/2m+1, 2π−
π/2m+2) and zero elsewhere. Then (1.4) holds for j = 1, · · · ,m and all k, but not for

j = m+ 1 and k = 1.

Proof. If ξ > 0, then

f̂ (ξ + 2kπ) = f̂ (2j(ξ + 2kπ)) = 0 for all j, k ∈ IN.

If ξ < −π, then

f̂ (ξ) = f̂ (2jξ) = 0 for all j ∈ IN.

If −π < ξ < 0, then

f̂ (2j(ξ + 2kπ)) = 0 for all j, k ∈ IN.

If −π < ξ < −π/2m+1 or −π/2m+2 < ξ < 0, then

f̂ (ξ + 2kπ) = 0 for all k ∈ IN.

If −π < ξ < 0, then

f̂ (ξ + 2kπ) = 0 for all k ≥ 2.

Thus we only need to check Condition (1.4) for −π/2m+1 < ξ < −π/2m+2 and k = 1.

In this case, f̂(ξ + 2π) = 1. For j = 1, · · · ,m, f̂(2jξ) = 0 which implies (1.4). However,

f̂ (2m+1ξ) = 1 which contradicts (1.4) for k = 1.
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§3. Band-limited Functions

Let Xb be the set of band-limited functions with frequencies ξ restricted to the band

[−b, b]:
Xb :=

{

f(x) ∈ L2(IR) : suppf̂ ⊂ [−b, b]
}

.

We observed in the introduction that Xb ⊂ S for b ≤ 4
3π. The converse is also true.

Theorem 4. Xb ⊂ S if and only if b ≤ 4
3
π.

Proof. If b > 4
3π, let f(x) ∈ L2(IR) be given by its Fourier transform as

f̂ (ξ) =







1, if |ξ| < B := min{b, 2π},

0, otherwise.

Then for j = 1, k = 1,−B < ξ < − 4
3π, we have

f̂ (2(ξ + 2π)) = f̂ (ξ) = 1 but f̂ (2ξ) = 0.

Hence (1.4) does not hold on the interval (−B,− 4
3
π) for j = 1, k = 1. Thus, f(x) ∈ Xb\S.

Now we show that some functions are not refinable but are the limits of refinable

functions. The example in the introduction was

f̂ (ξ) =







1, if ξ ∈ (− 4
3
π,− 2

3
π) ∪ ( 2

3
π, 4

3
π),

0, otherwise.

Theorem 5. Suppose f(x) is band-limited: f(x) ∈ X2π. Then f(x) ∈ S if and only if

f̂ (2ξ) = 0 almost everywhere on the sets

A = {ξ ∈ [−π, π) : f̂ (ξ) = 0} and C = {ξ ∈ [−π, π) : |f̂ (ξ + 2π)| + |f̂ (ξ − 2π)| > 0}.

Proof. Note that for f(x) ∈ X2π ,

Kj (f) = {ξ ∈ [−π, π) : f̂ (2jξ) 6= 0}, j ∈ IN.
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Suppose f(x) ∈ S. Then (1.4) holds for j = 1, k = ±1. This tells that f̂ (2ξ) = 0

almost everywhere on the set C, since |2(ξ ± 2π)| > 2π and f̂(2(ξ ± 2π)) = 0.

The set {ξ ∈ [−π, π) : f̂ (ξ) = f̂ (ξ+2π) = f̂ (ξ−2π) = 0} is a subset of [−π, π)\K0(f).

Hence Theorem 3 tells that this set is contained in [−π, π) \K1(f) up to a null set, that

is, f̂ (2ξ) = 0 almost everywhere on this set. This proves the necessity.

For the sufficiency, suppose f̂ (2ξ) = 0 on A and C. We first prove that f(x) ∈ S.

Let j, k ∈ IN. The equation (1.4) is trivially true for ξ 6∈ [−2π, π] or k ≥ 2.

Let k = 1, s ∈ {0, 1}. For ξ ∈ (−π, π) − 2sπ, we have f̂ (2j(ξ + 2(1 − s)π)) = 0, and

f̂ (2j(ξ + 2(1 − s)π))f̂ (ξ + 2sπ) = 0.

If f̂ (ξ+2(1− s)π) 6= 0, then ξ+2sπ ∈ C. By our condition, f̂ (2(ξ+2sπ)) = 0. Hence

f̂ (2j(ξ + 2sπ)) = · · · = f̂ (2(ξ + 2sπ)) = 0 if |2j(ξ + 2sπ)| < 2π by our condition; while

f̂ (2j(ξ + 2sπ)) = 0 if |2j(ξ + 2sπ)| > 2π.

Therefore, almost everywhere

f̂ (2j(ξ + 2sπ))f̂ (ξ + 2(1 − s)π) = 0.

Thus, for any j, k ∈ IN, (1.4) is true almost everywhere. By Theorem 1, f(x) ∈ S.

Next, we show that M∞(f) \K0(f) has measure zero.

By our condition, the set T := {ξ ∈ [−π, π] : f̂ (ξ) = 0, f̂ (2ξ) 6= 0} is a null set.

For j ∈ IN and ξ ∈ Kj(f) \Mj (f) \ {−π}, we have f̂ (2jξ) 6= 0 and f̂(2j−1ξ) = 0,

which implies |2jξ| ≤ 2π and 2j−1ξ ∈ T . Hence, M∞(f) \K0(f) is a null set, since

M∞(f) \K0(f) = ∪∞
j=1

(

Kj(f) \Mj(f)

)

⊂ ∪∞
j=1

(

21−jT ∪ {−π}
)

.

Thus, by Theorem 3, f(x) is refinable.

Combining Theorems 4 and 5, we know that every nonzero function in X 4

3
π whose

Fourier transform vanishes on [− 2
3π,

2
3π] lies in S \ S.

The following result follows from Theorems 4 and 5, or directly from Theorem 3.

Theorem 6. A function f(x) ∈ Xπ is refinable if and only if the set {ξ ∈ [−π/2, π/2] :

f̂ (ξ) = 0, f̂ (2ξ) 6= 0} has measure zero.
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§4. Refinable Functions and Masks: Nonuniqueness

We apply the characterization of refinable functions in Theorem 3 to show that the

function may not determine the mask (and vice versa). Observe from (2.1) that a refinable

function in L2(IR) satisfies a refinement equation of the form

φ̂(2ξ) = ã(ξ)φ̂(ξ). (4.1)

First, we show that the 2π-periodic symbol of the mask ã(ξ) is sometimes not unique.

Theorem 7. Let φ(x) be a nonzero refinable function in L2(IR) and K0(φ) be defined by

(1.6). Then the refinement mask ã(ξ) satisfying (4.1) is unique (up to a null set) if and

only if meas(K0(φ)) = 2π, i.e., for almost every ξ ∈ [−π, π), there is some kξ ∈ ZZ such

that φ̂(ξ + 2kξπ) 6= 0.

Proof. The sufficiency is clear, since ã(ξ) is determined for ξ ∈ K0(φ) by

ã(ξ) = φ̂(2(ξ + 2kξπ))/φ̂(ξ + 2kξπ),

which defines ã(ξ) uniquely up to a null set.

For the necessity, suppose to the contrary that meas(K0(φ)) < 2π, then meas([−π, π)\
M∞(φ)) > 0 by Theorem 3.

Let ã(ξ) be the symbol of a refinement mask satisfying (4.1). Choose b̃(ξ) to be a

2π-periodic function satisfying

b̃(ξ) = ã(ξ), ∀ξ ∈ K0(φ).

Then we can see that for almost every ξ ∈ [−π, π),

φ̂(2(ξ + 2kπ)) = b̃(ξ)φ̂(ξ + 2kπ), ∀k ∈ ZZ.

In fact, for ξ ∈ [−π, π) \M∞(φ),

φ̂(2(ξ + 2kπ)) = φ̂(ξ + 2kπ) = 0, ∀k ∈ ZZ,

while b̃(ξ) = ã(ξ) for ξ ∈ K0(φ). Hence the refinement relation is reduced to (4.1). Note

that meas(([−π, π) \M∞(φ)) ∪K0(φ)) = 2π by Theorem 3. The function b̃(ξ) is also the

symbol of a refinement mask for φ(x). Therefore the mask is not unique.
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Second, we show that the refinable function is never unique, given a refinement mask.

The classical approach begins with a sequence {a(k)} satisfying

∑

k∈ZZ

|a(k)||k|δ <∞ for some δ > 0.

Then the refinement equation (1.1) has at most one integrable solution up to a constant

multiplication, see Daubechies and Lagarias [4].

However, when we consider solutions in L2(IR), this uniqueness never holds. For the

more general refinement equation (4.1), we have the following result whose proof is easy

and omitted here.

Theorem 8. Let φ(x) ∈ L2(IR) satisfy the refinement equation (4.1) for some 2π-periodic

function ã(ξ). If τ (ξ) is an arbitrary measurable bounded function on [−2π, 2π], then the

function ψ(x) defined by its Fourier transform as

ψ̂(ξ) = τ (2jξ)φ̂(ξ), ξ ∈ [2−jπ, 21−jπ) ∪ (−21−jπ,−2−jπ], j ∈ ZZ

satisfies the refinement equation (4.1).

However, if we require that φ̂(ξ) is continuous at the origin, which is the case when

φ(x) ∈ L1(IR) and φ̂(0) 6= 0, then the solution is unique up to a constant multiplication.

Theorem 9. If φ(x) ∈ L2(IR) satisfies (4.1) and limξ→0 φ̂(ξ) = φ̂(0) 6= 0, then any solution

ψ(x) ∈ L2(IR) of (4.1) with limξ→0 ψ̂(ξ) = ψ̂(0) can be written as

ψ(x) =
ψ̂(0)

φ̂(0)
φ(x).

Proof. By our assumption, for almost every ξ,

lim
n→∞

ã(ξ/2) · · · ã(ξ/2n) =
φ̂(ξ)

φ̂(0)
.

Therefore, for almost every ξ,

ψ̂(ξ) = lim
n→∞

ã(ξ/2) · · · ã(ξ/2n) lim
n→∞

ψ̂(ξ/2n) =
ψ̂(0)

φ̂(0)
φ̂(ξ).

The proof of Theorem 9 is complete.

As a consequence, if there is a solution φ(x) ∈ L1(IR)∩L2(IR) to (4.1) with φ̂(0) 6= 0,

then all the other solutions in L1(IR) ∩ L2(IR) are cφ(x). This extends the result of

Daubechies and Lagarias [4].
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§5. Inhomogeneous Refinement Equations

In this section we study inhomogeneous refinement equations and characterize those

solutions which are (homogeneously) refinable.

The inhomogeneous refinement equation was introduced in [15] as

φ(x) =
∑

k∈ZZ

a(k)φ(2x − k) + F (x), (5.1)

where {a(k)} is a finitely supported sequence and F is a compactly supported distribution.

Here we are interested in compactly supported L2 solutions of (5.1), so we assume that

F (x) is a nonzero function in L2(IR). Denote

ã(ξ) =
1

2

∑

k∈ZZ

a(k)e−ikξ , ξ ∈ IR.

Let φ(x) be a compactly supported square-integrable solution of (5.1), which is guar-

anteed by the convergence of the cascade algorithm in L2(IR), see [15]. Our purpose here

is to find out when φ(x) can be refinable (and thus solve a homogeneous equation).

Recall the description (2.1) of shift-invariant subspace S2(φ). Note that if g(x) ∈ S2(φ)

and ĝ(ξ) 6= 0 (hence τ (ξ) 6= 0 in (2.1)) almost everywhere, then φ̂(ξ) = ĝ(ξ)/τ (ξ). This

implies that φ(x) ∈ S2(g) and S2(φ) = S2(g). In particular, this is the case if g(x) is

compactly supported.

Suppose that a is supported on [0,N ], F is supported on [0,N/2], and φ(x) is a

compactly supported L2 solution of (5.1). Then by [15], φ(x) is supported in [0,N ].

According to the analysis of Jia [8], for the function F (x/2) there exists a unique

function ψ(x) ∈ L2(IR) (up to a constant multiplication) compactly supported in [0,N ]

but not in [1,N ] such that its integer translates are linearly independent and for some

sequence {c(k)},

F (x/2) =
N−1
∑

k=0

c(k)ψ(x − k). (5.2)

By what we just mentioned, S2(F (x/2)) = S2(ψ).

If φ(x) is refinable, then (5.1) implies

F (x/2) = φ(x/2) −
N

∑

k=0

a(k)φ(x − k) ∈ S2(φ).
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Once again,

S2(F (x/2)) = S2(φ) and thus S2(φ) = S2(ψ).

In particular, from the linear independence of ψ and the supports, there are sequences

{b(k)} and {d(k)} such that

φ(x) =
N−1
∑

k=0

b(k)ψ(x − k),

ψ(x) =

N
∑

k=0

d(k)ψ(2x − k).

Taking Fourier transforms and using (5.1), (5.2), we have

2b̃(2ξ)d̃(ξ)ψ̂(ξ) = 2ã(ξ)b̃(ξ)ψ̂(ξ) + c̃(ξ)ψ̂(ξ),

which implies

b̃(2ξ)d̃(ξ) = ã(ξ)b̃(ξ) + c̃(ξ)/2, ∀ξ ∈ IR. (5.3)

Moreover, since ψ(x) ∈ L2(IR) is compactly supported and refinable, we know (as in [7,

Theorem 2.4]) that

ψ̂(2kπ) = 0, ∀k ∈ ZZ \ {0}.

But the integer translates of ψ are linearly independent, hence

ψ̂(0) 6= 0, d̃(0) = 1, and d̃(π) = 0.

Conversely, we have

Theorem 10. Assume that the sequence {a(k)} is supported in [0,N ] and F (x) ∈ L2(IR)

is supported in [0,N/2]. Let ψ(x) ∈ L2(IR) be a function compactly supported in [0,N ]

but not in [1,N ] such that its integer translates are linearly independent, and (5.2) holds.

Then (5.1) has a refinable solution φ(x) ∈ L2(IR) if and only if ψ(x) is refinable, ψ̂(0) 6= 0

and the equation (5.3) is solvable for some sequence {b(k)} supported in [0,N − 1], where

d̃(ξ) is the symbol of the refinement mask of the function ψ(x), d̃(0) = 1 and d̃(π) = 0.

Observe that (5.3) is a system of linear equations whose solvability can be easily

checked.
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§6. Applications to Multiple Refinable Functions

In this section we apply Theorem 10 to a study of some examples of multiple refin-

able functions. For the general theory and more examples of multiple refinable functions,

we refer the reader to [5, 6, 9, 10, 11, 14, 17].

The first example was introduced by Geronimo, Hardin and Massopust [5]. Consider

the matrix refinement equation

Φ(x) =
∑

k∈ZZ

akΦ(2x − k). (6.1)

Here Φ(x) = (φ1(x), φ2(x))
T and {ak} is supported in [0, 3] with

a0 =

[

h1 1
h2 h3

]

, a1 =

[

h1 0
h4 1

]

,

a2 =

[

0 0
h4 h3

]

, a3 =

[

0 0
h2 0

]

.

The matrix entries involve a parameter s:

h1 = −s
2 − 4s − 3

2(s+ 2)
, h2 = −3(s2 − 1)(s2 − 3s − 1)

4(s + 2)2
,

h3 =
3s2 + s − 1

2(s+ 2)
, h4 = −3(s2 − 1)(s2 − s + 3)

4(s+ 2)2
.

When |s| < 1, the matrix refinement equation (6.1) has a continuous solution Φ with

φ̂1(0) = 1 and φ̂2(0) = (s− 1)2/(s+ 2). Moreover, suppφ1 = [0, 1] and suppφ2 = [0, 2].

Applying Theorem 10, we conclude that neither φ1(x) nor φ2(x) is refinable.

Example 2. Let |s| < 1 and Φ(x) = (φ1(x), φ2(x))
T be the continuous solution of (6.1)

with φ̂1(0) = 1 and φ̂2(0) = (s − 1)2/(s + 2). Then neither φ1(x) nor φ2(x) is refinable.

Proof. We first show that φ1(x) is not refinable. The first component of (6.1) is an

inhomogeneous refinement equation:

φ1(x) = h1φ1(2x) + h1φ1(2x − 1) + φ2(2x). (6.2)

It is proved in [11] that the integer translates of φ1 are linearly independent. Hence we

can take N = 2, F (x) = φ2(2x) and ψ(x) = φ2(x).
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If φ1(x) were refinable, then Theorem 10 would provide a nonzero b̃(ξ) = (b(0) +

b(1)e−iξ)/2 such that (5.3) is true for some d̃(ξ) = (d(0) + d(1)e−iξ + d(2)e−i2ξ)/2 with

d̃(0) = 1 and d̃(π) = 0. Analyzing the degrees of b̃ and d̃, we see that d(2) = 0. (If b(1) = 0

this implies d(2) = 0 again.) This in turn implies that d(0) = d(1) = 1. Then the equation

(5.3) becomes

(b̃(2ξ) − h1b̃(ξ))(1 + e−iξ)/2 = 1/2, ∀ξ ∈ IR,

which can not hold. Therefore, φ1(x) is not refinable.

The proof for φ2(x) is easier. The second component of (6.1) is an inhomogeneous

refinement equation

φ2(x) = h3φ2(2x) + φ2(2x− 1) + h3φ2(2x − 2) + F (x),

where

F (x/2) = h2φ1(x) + h4φ1(x − 1) + h4φ1(x − 2) + h2φ1(x − 3).

Take N = 4 and ψ(x) = φ1(x), since the integer translates of φ1 are linearly indepen-

dent [11]. If φ2(x) is refinable, then Theorem 10 shows that φ1(x) = ψ(x) is also refinable,

which is a contradiction.

Thus, φ2(x) is not refinable, either.

Our second example is taken from [9, 10, 11]. Let {ak} be supported in [0, 2] with

a0 =

[

1
2

s
2

t λ

]

, a1 =

[

1 0
0 µ

]

, and a2 =

[

1
2 − s

2
−t λ

]

. (6.3)

Here s, t, λ, µ are real parameters. We assume that |2λ+µ| < 2. Then there exists a unique

distributional solution Φ(x) = (φ1(x), φ2(x))
T of (6.1) with Φ̂(0) = (1, 0)T supported in

[0, 2]. The distribution φ1(x) is symmetric about 1, and φ2(x) is anti-symmetric about

1. It was proved in [9, Example 4.3] that the shifts of φ1 and φ2 reproduce all quadratic

polynomials if and only if

t 6= 0, µ = 1/2, and λ = 1/4 + 2st. (6.4)

In this case, the condition |2λ + µ| < 2 reduces to −3/4 < st < 1/4, and it is verified in

[10, 11] that the solution is continuous.
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Example 3. Let {ak} be the mask given in (6.3) and (6.4) with −3/4 < st < 1/4. Let

Φ(x) = (φ1(x), φ2(x))
T be the continuous solution of (6.1) with Φ̂(0) = (1, 0)T . Then

φ1(x) is refinable if and only if s = 0, while φ2(x) is never refinable.

Proof. First, we consider the case s 6= 0. In this case, it is proved in [11] that the integer

translates of φ1 and φ2 are linearly independent.

For φ1(x), the first component of (6.1) is an inhomogeneous refinement equation

φ1(x) = φ1(2x)/2 + φ1(2x− 1) + φ1(2x − 2)/2 + F (x),

where F (x/2) = sφ2(x)/2 − sφ2(x − 2)/2.

Let N = 4 and ψ(x) = φ2(x). If φ1(x) is refinable, then Theorem 10 shows that

φ̂2(0) = ψ̂(0) 6= 0, which is a contradiction.

The function φ2(x) is trivially not refinable, since otherwise φ̂2(0) 6= 0 by [7, Theorem

2.4].

Second, we investigate the case s = 0. Then φ1(x) is refinable, since the first com-

ponent of (6.1) reduces to a homogeneous equation for φ1(x). In fact, φ1(x) is the hat

function on [0, 2].

To consider φ2(x), the second component of (6.1) is

φ2(x) = φ2(2x)/4 + φ2(2x− 1)/2 + φ2(2x − 2)/4 + F (x),

where F (x/2) = tφ1(x) − tφ1(x − 2). By Theorem 1 in [15], the solution to this equation

is unique.

Let N = 4 and ψ(x) = φ1(x). Then d̃(ξ) = (1 + e−iξ)2/4 and c̃(ξ) = t(1 − e−i2ξ)/2.

Theorem 10 shows that φ2(x) is refinable if and only if there exists a trigonometric poly-

nomial of degree 3 such that (5.3) holds. If this is the case, analyzing the degrees of the

trigonometric polynomials, we can see that b̃(ξ) ≡ b(0)/2 and the equation (5.3) implies

b(0) = t = 0, which is a contradiction.

Therefore, φ2(x) is never refinable.

The explicit formula for the solution Φ(x) in the special case s = 3/2, t = −1/8,

λ = −1/8, and µ = 1/2 was given by Heil, Strang, and Strela [6]. In this case, Φ(x) is
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supported on [0, 2]:

φ1(x) =

{

x2(−2x + 3) for 0 ≤ x ≤ 1,
(2 − x)2(2x− 1) for 1 < x ≤ 2,

and

φ2(x) =

{

x2(x − 1) for 0 ≤ x ≤ 1,
(2 − x)2(x − 1) for 1 < x ≤ 2.

§7. Fully Refinable Functions

A function φ(x) ∈ L2(IR) is fully refinable if for every t ∈ IR, the shifted function

φt(x) := φ(x− t) is refinable. It is shown in [16] that Meyer’s well-known scaling function

[12] is fully refinable.

Let φ(x) be a refinable function in L2(IR) and t ∈ IR. Then Kj(φt) = Kj(φ) for

j ∈ IN ∪ {0}. Theorem 3 tells us that φt(x) is refinable if and only if φt(x) ∈ S. By

Theorem 1, this is equivalent to

φ̂(2j(ξ + 2kπ))φ̂(ξ)(e−it(2j−1)2kπ − 1) = 0

for any j, k ∈ IN, almost everywhere in ξ.

Thus, a translate φt(x) of a compactly supported refinable function φ(x) ∈ L2(IR) is

not refinable unless t is an integer.

Moreover, if φ(x) is fully refinable, then up to a null set φ̂(ξ) 6= 0 implies φ̂(ξ/2) 6= 0

and hence

φ̂(ξ + 4kπ) = φ̂(2(ξ/2 + 2kπ)) = 0, ∀k ∈ ZZ \ {0}.

This shows that the measure of the support of φ̂ is not greater than 4π.

However, Theorem 4 tells that every refinable function in X 4

3
π is fully refinable.
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