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Abstract

Scaling functions and orthogonal wavelets are created from the coefficients of a
lowpass and highpass filter (in a two-band orthogonal filter bank). For “multifilters”
those coefficients are matrices. This gives a new block structure for the filter bank, and
leads to multiple scaling functions and wavelets. Geronimo, Hardin, and Massopust
constructed two scaling functions that have extra properties not previously achieved.
The functions ®; and ®; are symmetric (linear phase) and they have short support
(two intervals or less), while their translates form an orthogonal family. For any single
function @, apart from Haar’s piecewise constants, those extra properties are known to
be impossible. The novelty is to introduce 2 by 2 matrix coeflicients while retaining
orthogonality.

This note derives the properties of ®; and ®5 from the matrix dilation equation that
they satisfy. Then our main step is to construct associated wavelets: two wavelets for
two scaling functions. The properties were derived in [1] from the iterated interpolation
that led to ®; and ®;. One pair of wavelets was found earlier by direct solution
of the orthogonality conditions (using Mathematica). Our construction is in parallel
with recent progress by Hardin and Geronimo, to develop the underlying algebra from
the matrix coeflicients in the dilation equation — in another language, to build the 4
by 4 paraunitary polyphase matrix in the filter bank. The short support opens new
possibilities for applications of filters and wavelets near boundaries.
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Introduction

This note begins with two functions. They were constructed by Geronimo, Hardin, and
Massopust and they are not wavelets. They are scaling functions ®; and ®, from which
wavelets are created. Our purpose is to carry out that final step of the construction, and
produce wavelets with new properties.

We believe that these properties will be useful in applications. They cannot be achieved
by any ordinary wavelet W. Two wavelets are needed, at least. This is the novelty, and the
source of new possibilities. A “multifilter” may also be a new idea in filter design, and we
start by explaining this connection.

Normally, a filter bank has a single lowpass filter. The incoming signal, a vector x in
discrete time, is filtered and downsampled (decimated) by 2. The output is y; = 3 cpa2j_.
The other filter will execute parallel steps with coefficients dj. This is the two-band analysis
bank. A perfect reconstruction synthesis bank recovers x from the two downsampled outputs.

To reach scaling functions and wavelets, we iterate the lowpass filter. The continuous
limit of y; = Y cxxgj_r 1s the dilation equation for the fixed point — the scaling function

O(t):
(1) => ®(2t — k).

Convergence to this limit is encouraged (but not guaranteed) by a zero of the frequency
response Y. cpz " at z = —1 (or € = 7). A zero of order p also means that every polynomial
of lower degree is a combination of the functions ®(¢t — k). Then the wavelet

W(t) =Y d®(2t — k)

has p vanishing moments [3-4]. The wavelets W (2t — k) are mutually orthogonal if the
original ¢; and dj, came from a nondegenerate orthogonal filter bank. Thus wavelet theory
can be described as the iterated limit of filter bank theory.

Now we introduce a “multifilter”. It has two or more lowpass filters. The purpose of
this multiplicity is to achieve the properties that are described below — linear phase with a
short, orthogonal filter bank. To describe the multifilter, the coefficients ¢; and d; become
matrices. In our case they are 2 by 2, so that four signals come out from the analysis bank
in Figure 1. Fach has been downsampled only by 2. The extra work is acceptable when the
multifilters are short, and the compensation is in the properties of ® and W.
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Figure 1. A bank of multifilters with the lowpass filter iterated once.

Normally the d’s are determined in an automatic way from the c¢’s. The wavelet is con-
structed by reversing the coefficients ¢, shifting by one, and alternating signs: W(t) =
S (—=1)*¢;_,®(2t — k). This procedure succeeds for scalar coefficients but here it fails. The
orthogonality of ® to W no longer follows from identities like ¢oc; — ¢1¢9 = 0, because the
¢ are matrices — and they do not commute. A new construction is needed for two wavelets.
It remains absolutely true that the invention of ®; and ®, is the essential step — the ®’s
lead to everything. The wavelet coefficients dj follow from linear and quadratic equations,
whose solution was first computed by Mathematica. This note and the forthcoming paper
[2] give two approaches to simple explicit formulas for the matrix coefficients that produce
the wavelets.

Underlying the whole construction is a paraunitary matriz. This is a matrix polynomial
H(z), 4 by 4 in our problem, which is unitary on the circle |z] = 1. The scaling functions
come from half of the matrix (containing the ¢’s) and the wavelets come from the other half.

Properties of ®; and ¢,

We begin with the key properties of the scaling functions in Figure 2. First of all, there
are two functions! By some measure this doubles the work (except these functions have so
few coefficients c;). We believe that the new properties are worth the price. These properties
are stated as 1-—4 and then proved.
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Figure 2. Scaling functions ®; and ¢,.

1. Symmetry @, and @, are even functions (after a shift of the origin). In the language
of filters, they have linear phase. A full chapter of Daubechies [3] is devoted to this left-right
symmetry — not achieved by a self-orthogonal wavelet. “It is a property of our visual system
that we are more tolerant to symmetric errors than asymmetric ones.”

2. Short support ®; vanishes outside the interval [0,:]. In problems with boundaries
this is extremely valuable. A boundary condition f(0) = 0 can be satisfied directly — the
coefficient of ®3(¢ —1) is zero in the approximation to f. With longer support we must modify
the functions near boundaries.

For differential equations, finite elements are a success because they are so local. Splines
have longer support. Up to now, wavelets have had the longest support of all (to achieve
orthogonality). For periodic equations this presents no problem. But nonperiodic equations,
and boundaries between images, are inescapable.

3. Second-order accuracy All wavelets can reproduce constant functions. This first-
order accuracy is not good enough in practice. The step to better approximation requires
that we also get linear functions right. In splines and finite elements this comes from the
hat function, which has H(1) = 1 and all other H(n) = 0. (It is linear on intervals between
integers.) Every function at+b is a combination of translates H(t — k), so the approximation
error starts with the quadratic term and the accuracy is second-order.

The scaling functions have this property because they produce the hat function exactly:

1 1
G 50— 1)+ @5(0) = H(). (1)

This will establish two vanishing moments for the new wavelets. They will be perpendicular

Qq(t) +
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to ®; and ®5, and H — and therefore to the functions 1 and ¢.

4. Orthogonality The translates ®;(t — k) and ®3(t — k) are all mutually orthogonal.
It is this property which the hat function lacks and the new functions offer. Notice that the
product H(¢)H(t — 1) involves (®4(¢ — 1))* from equation (1). Its integral is not zero and
H(t) is not orthogonal to its translates. A direct orthogonalization using Gram-Schmidt, or
in frequency using E’(f), would destroy the short support of the hat function. By enlarging
the space to include ®; as well as H we have a shift-invariant space with a local orthogonal
basis.

Recall from Daubechies [3] that no single function ®(¢) can possess these properties 1—
4. For the sake of 3 and 4 we give up 1 and 2. (Symmetry is possible by changing to
biorthogonal wavelets.) The new possibility is to find Wi and W3 to go with ®; and @,
so that the translates of all four are mutually orthogonal. It seems miraculous that there is
also orthogonality to all dilations W;(27¢ — k). This family W;x() is an orthogonal basis for
L*(R), exactly as in the usual case of a single wavelet.

We will connect orthogonality to a unitary block Toeplitz matrix. It is a band matrix so
the ®’s have compact support. The blocks include the coefficients from the dilation equation
— which is fundamental.

5. Matriz dilation equation The coefficients ¢, are 2 by 2 matrices, multiplying vectors

of scaling functions:

d4(1) > (2t — k) .
l @,(1) ] =2 C’f[ D,(2t — k) ] 2)
In the original “fractal function” construction [1], this dilation equation emerged at the end.
It is our starting point in the verification of 1 — 4. The four matrices ¢, are displayed in the
top rows of equation (19) below, with d’s in the bottom rows. The ¢’s multiply powers of z
1

in the polynomial P(z) = £ 3 ¢z2™:

1 l( 6+ 62 8v/2 ]

P(Z):% —14924922 - 2% /2 =34 10z — 322

(3)

Buried in this matrix polynomial are the good properties of the ®’s — the solutions to the
dilation equation (2).



The Dilation Equation Implies 1 — 3

To speed up the verification of the first three properties we introduce the sum

S(t) = %@1@) + %@1@ —1).

The dilation equation for ®; can be read from 6, 6 and 8v/2 in the first row of 20P(z):

By (1) = 11—0[6<I>1(2t) +601(20— 1) + 8v2D,(20)].

To find the dilation equation for S, replace ¢t by t — 1 and add the new equation to this one.
Division by v/2 produces

S(t) = %[65(%) +6S(2 — 2) + 8D5(2) + 8B4 (2 — 2)). (4)

The dilation equation for ®; comes from the second row of P(z). Removing ®; in favor of
S, the equation is

By (1) = %[—S(:Zt) 1 10S(2t — 1) — S(2t — 2) — 305(2t) + 10B,(2t — 1) — 3B,(2t — 2)]. (5)

Before verifying symmetry and short support we point to the matrix polynomial that goes
with the new dilation equations (4) and (5). The original P(z) is replaced by

1 6 + 622 8 + 822
Q) =50 “1410:— 22 —3410--3:2 |

Note in passing that () is related to P by a two-scale similarity transformation. An ordinary
change of basis u = Mv yields a matrix M~ PM that is similar to P. In our case the change
from ®; to S divides the first column of P by (1 + 2)/v/2. A similarity would multiply row
1 by the same quantity. A two-scale similarity multiplies instead by (1 + 2?)/v/2. The result
is M~ (2?)P(z)M(z). This is the (=) that we found directly.

The first three properties are easy from the new dilation equations:

1. Symmetry Replace t by 2 — ¢ in (4) and (5). The equations for the new functions
S(2 —t) and ®2(2 — t) are again (4) and (5). The solutions (known to be unique up to a
scalar multiple) must be the same: S(t) = S(2 —t) and ®3(¢) = ®5(2 —t). This is symmetry
around t = 1.



From the definition of 5, it follows that ®; is symmetric around ¢ = %

2. Short support The dilation equations (4) and (5) have only three coefficients Cy,
C1, Cy. The right sides involve 2t — 2 but not 2t — 3. By a standard argument in [3], the
solutions S and @, are supported on the interval [0, 2]. It follows that ®; is supported on [0, 1].

3. Second-order accuracy The hat function is a sum of three narrower hats:
1 1
H(t) = 5H(ta) + H(2t—1)+ §H(2t —2).

Add (4) and (5) to find exactly the same equation for S + ®;. By uniqueness H must be
identical with S + ®,, because there is agreement at the point ¢ = 1.

We emphasize that the approximation accuracy is decided by these scaling functions —
not the wavelets. ®; and ®, and their translates span a “low frequency space” V5. This
contains the functions 1 and ¢ — to which the wavelets are orthogonal. In the filter matrix,
the dilation coefficients ¢ give the lowpass filter. The wavelet coefficients d; — still to be
discovered, because (—1)¥¢;_; will not work — enter the bandpass filter. The translates of
the wavelets span the higher frequency space W.

The wavelet spaces Wy, Wy, ..., W; do play a part in approximation. They reduce the
mesh size to % and i and eventually 277. The dilation from ¢ to 2t rescales V; to V4 and W,
to Wi. Frequencies are doubled. We are approximating by a more refined space, with more
detail. The great contribution of Mallat’s multiresolution analysis [3, 4] is that V; equals
Vo+Wo+...+W,_1. So the accuracy moves to the scale 2-i by including all those wavelets.
Also the basis becomes “hierarchical”, and the pyramid algorithm yields a fast wavelet trans-
form.

The finite element method [5, p. 56] provides earlier examples of two trial functions per
element — corresponding to two scaling functions per interval. The purpose is the same, to
reduce the support and maintain the accuracy. For finite elements, short support is crucial.
The most familiar example interpolates f and f’ at each meshpoint by a piecewise cubic. The
basis functions are the “Hermite cubics” in Figure 3 and their translates. They are C'* where
the B-spline is C? — but its support is [0,4]. The cubic spline interpolates one number at
each meshpoint, namely f itself — as in critical sampling.

This polynomial example has no orthogonality! But the cubics still satisfy a dilation
equation. Goodman and Lee [7] studied biorthogonal wavelets, which have quite long support
— as is usual when the ®’s are piecewise polynomials. It requires a more fractal construction
to achieve self-orthogonality with short support.



Figure 3. Two finite elements that combine into a cubic spline.

This finite element example involves cubics, where our example begins with the hat func-
tion — we are also requiring orthogonality. Before establishing that final property, we note
a remarkable inhomogeneous dilation equation for the functions in V4. It is the fixed point
equation (2.2) of Geronimo, Hardin, and Massopust, restricted to one interval:

() = { sf(2t) + linear function, 0<t<i (6)
sf(2t — 1) 4 linear function, 1<t<L

This allows direct calculation in [1] and [2] of all the inner product integrals needed in

application. Solving (6) by iteration displays f as a fractal function, created from smaller

images of itself. Changing the inhomogeneous term (the linear function) would give new

possibilities.

Orthogonality: Scaling Functions

In the time domain a filter is represented by an infinite matrix with constant diagonals
(a Toeplitz matrix). A lowpass filter has ¢; on the kth diagonal. The matrix multiplication
is exactly a convolution ¢ * x. A regular lowpass filter exactly passes the constant functions,
c+1 = 1. Exactness for higher-order polynomials means a flatter response at zero frequency,
and more accuracy in approximation by V5. In the scalar case it also means zeros of the
response P(z) at z = €'".

We mention that the word “regular” is overworked. (Regularity may mean smoothness
of the wavelet or it may mean vanishing moments — the two definitions are related but

quite different.) Our forthcoming paper [6] extends the vanishing moment condition to mul-
1

y 55+« of the matrix

tiwavelets — instead of zeros in P(z) it becomes becomes eigenvalues 1
L in equation (7).



When the outputs are decimated, rows of the convolution matrix are thrown away. For
a single filter this downsampling leads to aliasing error — different frequencies give the
same response. But a bank of filters, each downsampled, can cancel all error and give pertect
reconstruction. The convolution matrix — which is now block Toeplitz— can be an orthogonal
matrix: inverse = transpose. This is our goal.

The lowpass part L — convolution followed by decimation — will be the top half of a
doubly infinite orthogonal matrix:

(7)

Notice the shift by two: half the rows are deleted by downsampling. We do not require all the
original rows to be orthogonal; that is too restrictive. There are no interesting FIR allpass
filters (= orthogonal Toeplitz band matrices). We need a bank of filters, each downsampled.
By adjoining a bandpass matrix B we obtain the allpass block Toeplitz matrix T' below.

Orthogonality of the rows of L means that LL? = I. Explicitly, L times L? gives ones
and zeros , on and off the main diagonal:

coct + crel + cyel + eacl =21 (8)

COCQT + clc3T =0 (9)

We have written the coefficients ¢; as matrices — in our case they are. (For scalars this time-
domain description of the filter as a convolution matrix is developed in [9]. The sequence ¢
comes there in reverse order — this change of convention has no effect on the computations.)
Equations (8) and (9) convert in the scalar case to the familiar condition on the polynomial
P(z) — which comes by Fourier transform or z-transform:

1 . 1 i
53 e 45 P e P = 1. (10)

This is the power complementary condition [8]; it is condition O for wavelets [4]; it gives a
quadrature mirror filter (QMF bank); it yields orthogonality. For matrix coefficients ¢ the
only change is to

PEP(€) + P+ )P (E+m) = 1. (11)

Important. The filter matrix acts in discrete time (on vectors). The dilation equation
is in continuous time (for functions). The link between filters and wavelets is iteration with



rescaling. In other words, a cascade of filters yields the ®; (and the rescaling introduces factors
of 2). We may start with the box function By(t) — equal to one on [0, 1] and elsewhere zero
— and iterate:

Buyi(t) =D B (2t — k).

The limit as n — oo (if it exists!) solves the dilation equation. Rioul and Vetterli show how
this cascade can fail; many important filters do not lead to a continuous limit. For filters of
Daubechies type (flat at ¢ = 0, vanishing moments at £ = 7), we do reach a scaling function.
In the frequency domain this cascade is an infinite product of P(£/27). Please see [9] for a
beautiful exposition and [3] for sufficient conditions for convergence. Necessary and sufficient
conditions, directly verifiable from the ¢’s, may not be possible.

Orthogonality of the translates ®;(¢t — k) follows closely from LL?T = [. There is a
technical “Cohen-Lawton condition”, elaborated in [3, p. 182] and not repeated here, which
the particular coefficients ¢, do satisfy. By displaying a (block) row of L and two columns
of LT, we hope to make it possible for the reader to verify orthogonality. The matrices
o, €1, C2, c3 along the row are taken from P(z) in equation (3):

- 1 -
6 -2 0 0
82 -3 0 0
9
6 % 0 0
1/ 6 82 6 0 0 0 0 O0]L| 0 10 0 0 | [20
0|-7 -3 5 0 % =3 —% 0] 0 % 6 —5 | [0 2
0 -3 8/2 -3
1 9
0 -5 6
Lo 0 0 10 ]
(12)

Orthogonal Wavelets: General Method

We turn now to our main goal — the construction of wavelets W; and W,. We look for
the coefficients dj in the bandpass (or highpass) filter. Exactly as in the Daubechies case,
the two filters will make an orthogonal system with perfect reconstruction. The new point is
that we have multifilters with matrix coefficients.

[terating the lowpass filter L yields ®; and ®,. They give half of a “multiresolution
analysis” — the continuous analog of Figure 1. The other half comes from the wavelets W,
and W5. The translates ®;(¢t — k) span a space Vg; the translates W;(t — k) span a space
Wy. Those spaces are orthogonal, because those bases are orthogonal. Just as in Figure 1,

10
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where the second filter bank orthogonally splits the output from the first lowpass filter, so
Vo & Wy = Vi = all combinations of ®;(2t — k).

This means in particular that the ®;(¢) are combinations of ®;(2¢t—k). That is the dilation
equation. It also means that the W;(t) are combinations of ®;(2t — k). This is the wavelet
equation:

Wi(t) Q(2t — k) _
l Walt) ] = de[ 0,(2t — k) ] ' (13)

The filter bank with ¢’s and d’s has perfect reconstruction. The infinite matrix that
contains both filters (with decimation to remove every second row) is to be an orthogonal
matrix:

o €1 ¢ c3
L 1 o € €3 C3
— S ‘ (14)
B V2 do di dy ds
do dy dy ds

We know already that LLT = I. The new coefficients dj, must lead to LBT = 0 and BBT = I.
Then the rows of our matrix are orthonormal.

Remember how this is achieved in the scalar case, for wavelets and QMF filters. The ¢’s
are flipped to give dy = c3, dy = —c, dy = ¢1, and d3 = —c¢g. This automatically makes the
L and B blocks orthogonal — the rows of ¢’s in (14) are orthogonal to the rows of d’s. For
example dycg + dsc; equals ¢1cg — cgey. For scalars this is zero. For our matrix coefficients it
is not zero, and the flip construction fails.

We pose the same problem in the frequency domain. A direct approach is to interlace the
rows of L and B (which has no effect on orthogonality). The result is a block Toeplitz matrix
T

g €1 € C3

1 do dy dy ds
T=— Co (8] Co C3
V2 do dy dy ds

These blocks automatically have “polyphase” form, with even indices in a different column

from odd indices:
Co

h(0) = l 0 2 ] and h(1) = l z fi; ] (15)

11



The blocks are 4 x 4 because each coefficient is 2 x 2. By direct multiplication, the Toeplitz
matrix T is orthogonal when

R(0)R(0)" + A(1)R(1)" = 21 and A(0)R(1)" = 0. (16)
In the z domain, the polyphase (even-odd) matrix H(z) must be paraunitary:
H(z)=h(0)+ Z_lh(l) must satisfy H(z)ﬁ(z) =21. (17)

Here we adopt the notation of Vaidyanathan: E’(Z) is the conjugate transpose of H(1/z).
On the unit circle, where z = 1/Z, the polyphase matrix H(z)/v/2 is to be unitary. H(z) is a
polynomial in 27!, because the underlying FIR filter is causal — 7' is a block triangular band
matrix. The aliasing error, which is unavoidably created by decimation in the first filter L,
is cancelled by the second filter B. Perfect reconstruction will follow from (16) or (17), and
the dj, yield orthogonal wavelets. It is the z-transform that leads from (16) to (17); but one
can verify their equivalence directly.

Notice in passing how the flip construction appears when H is only 2 x 2. We are given
its top half (the scalars ¢;) and we need its bottom half:

H(z) _ l co + c22_1 c + 032_1 ] ‘

When the first row of a unitary matrix is [@ 8], the second row is [b — @] times a factor with
|z| = 1. Thus H(z) is completed on the unit circle to be unitary:

co + c22_1 c + c32_1 co + c22_1 c + 032_1
or better 1 1 |-
c1 + c3z —Ccy — C9Z c3+ 1z —Cy — CpZ

That last row shows the alternating flip to ¢3, —ca, ¢1, —co.

We now propose a general method to complete the lower half of H(z). It is inspired by
Vaidyanathan’s important book [8]. He factors L(z), the top half of the matrix H(z), into
L(1)U(z). The paraunitary matrix U(z) is square — in our case 4 x 4. The constant 2 x 4
matrix L(1) can be completed by B(1) to a constant unitary matrix (times v/2). Then we
read off the desired lower half B(z) from the product B(1)U(z):

aer=[ 50 | =[5 | v | "

Vaidyanathan gives a specific form to U(z). It is a product of Householder-type factors
I —vvT 4 27tvvT. They can be peeled off one at a time from L(z), each with |[v|| = 1 and

12



determinant z~!'. After finitely many steps, making up U(z), we reach the constant matrix
L(1).

In our particular example the 2 x 4 L(z) can be completed to the 4 x 4 H(z) in a single
operation — creating U(z) instead of its factors. This produces the wavelet coefficients dj, in
B(z). There will be two families of possible U(z) and therefore two families of wavelets.

Orthogonal Wavelets: Particular Construction

We now offer one specific set of wavelet coefficients di. They are the four 2 x 2 matrices
in the last rows of the following matrix. The scaling coefficients ¢g, ¢1, ¢2, c3 are still in the
first two rows:

6 8/2 6 0 0 0 0 0
1 P 9 9 . 1
e 2o Mo oy ! (19)
0| -7 -3 5 -0 55 =3 -2 0
1 3v2 -9 0 9 —-3v2 -1 0

It is easily checked that the four rows are orthogonal (all have length v/2). Orthogonality
must also be verified after the rows are shifted. (Equation (12) above already checked the
first two rows.) Imagine that each row is shifted by four places, to produce an 8 x 12 matrix.
Those eight rows are orthogonal!

This is the test that H(z) = h(0)+2z7*h(1) is a paraunitary matrix. The filter bank gives
perfect reconstruction. Equations (8) and (9) hold for the dj, as well as the ¢, and the two
filters give LBT = 0:

codg + C1d{ + Cng + CBdg =0 and Codg + cldg = 0. (20)

The first wavelet comes from row 3 of our matrix. The eight entries multiply ®,(2t),
Qy(2t), D1(2t — 1), ®2(2t — 1),... to give Wi(t). Notice that those eight entries agree with
row 2, which produces ®5(1), except for the coefficient of ®3(2t — 1). We conclude that

Wi(t) = By(t) — 204(2t — 1), (21)

This is symmetric around ¢ = 1 with support [0, 2].

The second wavelet comes from row 4 of our matrix. The signs are now alternating, to
give antisymmetry of W5(¢). The combination ®(2t) — 90 (2t — 1)+ 9P1(2t — 2) — O4(2¢ — 3)
is odd around ¢ = 1. So is the other part 3\/5@2(%) — 3ﬂ@2(2t — 2). The sum W has
support [0,2]. This is an alternative form of linear phase — odd and even filters in the same
filter bank. The wavelets in Figure 4 will be one particular choice in the first of the two
families below. They are orthogonal to all translates and dilates W;(2/¢ — k).

13
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Figure 4. Symmetric-antisymmetric pair of wavelets.
Orthogonal Wavelets: Two Families

The procedure described earlier was based on degree-one paraunitary factors I — vol +

2z~ tvovT. We propose to combine two or three factors into a single matrix:

Ulz) = I—P+:'P
Here P is a symmetric projection matrix: P? = P. (The rank-one case has P? = voTvvT =

voT from the requirement vTv = 1.) We choose P so that
L(z) = L(1)U(2). (22)
Recall that L(z) = h(0) + 27 k(1) is the polyphase matrix for the low-pass filter. Thus

1 6 8v2 6 0
L(Z) = Co + C22_1 C1 + C3Z_1 = — [ _ L1 ) o -1 . (23)
| | 10| HZE—= -3-37 =~ 10

In one family the matrix P will have rank one. The pair of wavelets computed by Donovan,
Hardin, Geronimo, and Massopust lies in this family. So does the symmetric-antisymmetric
pair described above — which those authors also found. In the second family P has rank 2
and the filter bank has one extra delay. The option of two families exists because the 2 x 4
matrix h(1) = [c; ¢3] only has rank one. Substituting for L(z) and U(z) in (22) yields

[co+caz™ itz =[cotecy ertes][I—P+2tP]. (24)

14



The possibilities for the 4 x 4 projection matrix are P; with rank 1 and # with rank 2:
49 =2 =3 V2

81 —27\/5 -9 0 @_ 1 @_ 30
1 i : Q. /e —/2 3 -3/2 1
po L TEVZOIs sV 0 | T W T 5| (25)
100 -9 32 1 0 = —goﬁ u —foﬁ
0 0 0 0 V2 1 —3v/2 1
30 5 20 3

The other step in the construction is to extend the 2 x 4 matrix L(1) to a 4 x 4 matrix H(1)
with HH? = 21. One extension is

6 V2 6 0
H(1) = l é((ll)) ] _ l cot+c ctez | 1 1IV2 =6 4/2 10 ‘ (26)

do+dy dy+ds | 10| —10 0 10 0
—4/2 6 —4v/2 10

There is freedom to rotate the plane of those last two rows. They can be premultiplied by

the matrix l ], with ¢ = cos ¢ and s = sin ¢ and no change in orthogonality.

Finally we multiply those two rows by U(z) to find B(z) = [do + d2z™' dy + daz™].
Using the projection Py in U = I — P, + 271 P}, we read off the wavelet coefficients

c 3]1[—1 -3v2 9 0 -9 32 1 0

-s c|10| %5 3 —>% 10 -5 3 Lo]' (27)

[do di dy d3]=l 9
V2 V2 V2 V2

This is the first family, with rotation angle ¢. The choice ¢ = 7/2 yields our symmetric-
antisymmetric pair.
Using the projection P, in the same way yields the second family

c s _1 V2 3 V2 _29 V2 7 _V2
ORI | I e B e /A S Pl IS
60 10 20 3 60 10 20 3

Choosing s = sin ¢ = \/g, each family contains a wavelet with support length reduced from

2 to % The other wavelet in each pair still has support [0,2]. We have gone through both
families to search for shorter support; it is not possible. Nor can both wavelets have support
length 2. This is proved in [2].

The simple expression for the odd-even pair on [0, 2] may make that the preferred choice.
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Conclusion

This paper takes a further step in the construction of “double wavelets”. The extra
freedom allows orthogonality (perfect reconstruction) with short support and symmetry-
antisymmetry. We anticipate that this new direction in the design of wavelets and filters can
be extended toward higher accuracy (more vanishing moments) and improved performance .
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