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SUMMARY. The squares ¢°(x) and 1”(x) of orthonormal scaling functions and wavelets are interesting probability
densities. Their moments can be computed in terms of the filter coefficients h, and g, in the dilation equation and
wavelet equation. One particular case gives a remarkable result that is independent of the values of those coefficients.
The first moment f z®(2)dz equals the midpoint of the support of 1(z).
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1. INTRODUCTION

In this note we consider random variables whose densities are squares of wavelet basis functions.
Such densities can be viewed as a special case of random densities described in Vidakovic (1996)[6].

Let ¢ and 1 be the scaling function and wavelet (father and mother wavelets) generated by
an orthonormal multiresolution analysis. The functions ¢?(x) and 1?(z) are probability densities,
nonnegative with integral one. The scaling equations that recursively connect ¢(z) and ¥ (z) with
¢(2z) give an algorithm for finding moments. Shann and Yan(1994)[4] derived a recursive relation
described below. Closely related results can be found in Dahmen and Micchelli (1993)[1]. For
some probabilistic applications and extensions of Shann-Yan’s recursive relation also see Vidakovic
(1997)[7]. Here, we find an ezact expression for the first moment [ z?(x)dx .

2. MOMENTS OF WAVELET DENSITIES

We first give the result of Shann and Yan as well as several important definitions. The main
result of the note states that the first moment (the mean) of 4?(x) is the center of its support. The
proof uses only elementary properties of wavelet bases. However, the properties of the associated
halfband polynomial are used in a novel way.

The scaling equations are

$(z) =3 hn V26(22 —n) (1)
P(z) =Y gn V2¢(22 — ).

The “generalized moments” of ¢(x) are defined by

s = [ 2 9(@)d(e — t)de. (2)
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Table 1: Expectations and variances for Daubechies’ family ¢?(x)

mean 1,0 | variance
DAUBI1 0.5 0.083333
DAUB2 | 0.770948 | 0.097718
DAUB3 | 1.022422 | 0.132056
DAUB4 | 1.266408 | 0.172921
DAUBS5 | 1.506244 | 0.219200
DAUB6 | 1.743334 | 0.270688
DAUB7 | 1.978412 | 0.327253
DAUBS8 | 2.211921 | 0.388751
DAUBY | 2.444157 | 0.455041
DAUBI10 | 2.675332 | 0.525993

The low-pass filter coefficients (hg,...,han_1) are associated with ¢(z) via (1). The length of h is
always even for an orthogonal filter bank. Let T = 2N — 2.

Theorem 1. (Shann and Yan, 1994) [4] The vector py = (tky), [t| < T, is a solution of the
system

1
(I — g A = bi 3)
where
Aj= Y hphnyioj, —T<i,j<T (4)
n

is the transition matriz (or Lawton matriz). The vector by has components

k

1 k .
bt = ok Z Z hnhy Z (j>nj,uk—j,l—n+2t , T <t<T. (5)
nol

=1

From the definition of yu; given by (2) and orthogonality of the ¢(t — k), we have pi; = p1,—¢

The recursion starts with po; = 6(¢) . The values p o represent the moments of a random vari-

able with the density ¢?(z). As an illustration we give means and variances of random variables
having the Daubechies ¢? distribution. The numbers in Table 1 are obtained by solving equation
(3) recursively. Once these py; are known, it is straightforward to show that the corresponding
generalized moments &, for the wavelet (z) come from (1) :

bo = [ SV —t)ds

1 k k
= 9k Z Z angi Z nk=r <T> Mr2t4+1—n - (6)
no1 r=0

Though the general relation (6) provides an effective way to calculate any moment &, it
requires pre-calculation of many generalized moments (14 ;. A surprisingly simple result holds for the
mean of any compactly supported wavelet associated with an orthogonal multiresolution analysis.
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Theorem 2. The mean & ¢ = [ z1)?(z)dx is at the center of support of 9 ().

Proof. We will place the support of ¢(z) and 9(z) on [0,2N —1]. This comes with the construction
gr = (—1)Fhgn_1_g. Shifting the gi to (—1)*hi_; moves the support of 4 to [l — N, N]. Then the
mean of 1> moves to the new center point §10= %

Let Hy(z) = Z?ivo_l h;%', where h; are the low-pass filter coefficients from (1). The polynomial
P(z) = H(2)H(z ') is called “halfband” because of the requirements for orthogonality(see Strang
and Nguyen, 1996[5]):

The coefficients

Pn = Z hihi-l-n
2

satisfy

por = 0(k) and pp =p_p . (7)

We first prove that p1 = %E, Dil1,i + %ZZ ih? . Indeed by using (1) and changing integration
and summation variables we obtain:

/x¢2(x)dx = /:E 2 Z Z hiphsd(2x — k)p(2z — s)dx
k s
- % S°5 hyh, /ch)(m — k)p(z — s)dz (8)
kS
= % SO hihy— /(m +E)p(z)p(z +i)de (s =k —1)
k 2

1 1 . .
= 3 Zpiﬂl,i + 2 Z ih? . (by orthogonality)
i i

Let g, = (—1)khon_1_1 be the coefficients of the high-pass filter corresponding to the low-pass
filter {ho, ceey h,QN_l}. Then

pi= hihiri = (=)' D grgri - 9)
k k

The relation of 3°,ig? to 3, ih? is straightforward:

Zigzz = Zih%N—1—z‘ = (2N -1 Z h%N—l—i - Z(2N —1- i)h%N—l—z‘ =2N —1- Z@h? - (10)

2 (1
By imitating the steps in (8) we obtain

1 . 1 .
§10 = 2 > (1) pipr + 3 > igy (11)
5

2

From (8) we express 5 >;4h? as p1,0 — 5 >; pitt1i- Then (7), (9), and (10) imply that the first
moment falls halfway along the support:

1 . 2N —1 1 .
10 = 3 D (=1)'pipr + 7 "3 > ih? by(10)
G G
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1 . 2N —1 1
= 3 D (—1)'pipr + 5~ (1,0 — 3 > pipg)  by(8)
5 5

2N -1

= Z Pilt1,i + 5 T H10
% even
2N -1
= pot 5 ~H0 because Py, = (k)
2N -1
= TR
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