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APPROXIMATE EDGE SPLITTING*
MICHEL X. GOEMANST

Abstract. We show that, in any undirected graph, splitting-off can be performed while pre-
serving all cuts of value at most 4/3 times the minimum value, and this is the best possible. This
generalizes a classical splitting-off result of Lovész.
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1. Introduction. In an undirected graph, splitting off two edges incident to
a vertex s, say (s,u) and (s,v), means deleting them and adding the edge (u,v).
Classical splitting-off theorems, such as those of Lovész [5] (exercise 6.53) and Mader
[6], show that splitting off can be performed while preserving certain connectivity
properties of the graph. Edge splitting is an important operation for connectivity
problems. For example, suppose we would like to make a graph G = (V, E) k-edge-
connected by adding the minimum number of edges. A beautiful result of Frank [2]
shows that it is sufficient to add a vertex s to the graph, add the minimum even
number of edges between s and V' to make it k-edge-connected (and this is an easy
task), and finally perform splitting off while preserving k-edge-connectivity between
the vertices in V' (using Lovdsz’s splitting-off result). For extensions of this result,
see [2] and the survey [3]. As another (less algorithmic) illustration of the use of
edge splitting, Nagamochi, Nishimura, and Ibaraki [7] have shown inductively using
edge splitting that there are at most (g) cuts of value strictly less than 4/3 times the
minimum cut value in any undirected graph on n vertices. (See [4] for a sketch of a
more direct proof.)

To describe the result, we need the following notation. Let G = (V, E) be an
undirected graph, possibly with multiple edges. For any set S C V, let 6(5) be the
set of edges with exactly one endpoint in S, and let d(S) = |6(S)| be the value of the
corresponding cut. For simplicity, we write d(s) for d({s}) for any vertex s. Also, we
let d(s, A) denote |{(s,u) € E : u € A}| (with repetitions counted if there are multiple
edges).

When splitting off two edges (s,u) and (s,v), observe that the value of any cut
6(S) does not increase, and decreases precisely if u,v € S and s ¢ S (or similarly
with S replaced by its complement S). Let A’ denote the minimum edge-connectivity
between any two vertices distinct from s, i.e., X' = ming_.gcy d(S), where V! =V —s,
and let N be the neighbor set of s, i.e., N ={ue€V’': (s,u) € E}.

The classical splitting-off result of Lovész [5] (exercise 6.53) shows that if X' > 2
and d(s) is even, then for any u € N, there exists an edge (s,v) such that splitting
off (s,u) and (s,v) does not reduce A’'. Since splitting off changes the value of cuts
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by an even number, Lovasz’s result can be interpreted as saying that the cuts of
minimum value and minimum value plus one can all be preserved while performing
splitting off. By repeated applications of Lovész’s result, one can isolate any vertex
while maintaining the connectivity between the other vertices.

Recently, Benczir [1] introduced the notion of approximate splitting off in which
the goal is to preserve all cuts of value less than o times the minimum, for some
value of a.. Since the values of the cuts 6(5) and §(V’ — S) become identical once s is
completely isolated in the graph, we should not always be able to preserve both d(.S)
and d(V' — S). As a result, we say that (s,u) and (s,v) are admissible for k-splitting
off if min(d(S),d(V' — S)) (for § # S # V') is preserved whenever this quantity is
less than k. Using the polygon representation of cuts of value less than g/\l , Benczuar
has shown the existence of an admissible pair of edges for SX-splitting off when d(s)
is even.

In this short note, we show that if s is even, then for any edge (s, u), there exists
an edge (s,v) such that this pair of edges is admissible for 4)‘/T"’Q-Splitting off. By
repeated applications of this result, one can isolate s while maintaining all cuts of
value less than 4)\’%2' Observe that for A’ > 2, the values of cuts of value \' and
X + 1 are maintained by (4\" + 2)/3-splitting off since X +1 < ‘WT”. Thus, our
result generalizes Lovasz’s result.

THEOREM 1.1. For any verter s with d(s) even and for any edge (s,u), there
exists an edge (s,v) such that the pair (s,u) and (s,v) is admissible for (4\ + 2)/3-
splitting off.

Observe that, for A’ = 0, the statement is vacuous. Similarly, for A’ = 1, the only
cuts we need to preserve are of value 1 and this is done by any choice of v (since the
cut values do not change or decrease by 2). Thus the only interesting cases are when
A > 2.

This approximate splitting-off theorem is the best possible. Consider indeed Kj
in which the edges nonadjacent to a specific vertex s are duplicated M times. Then
XN = 3M + 1, but if we split off (s,u) and (s,v), then d({u,v}) decreases while
d({u,v}) =4M +2 = %. This shows that there is no admissible pair of edges.

By repeatedly using Theorem 1.1, we derive that vertex s can be isolated in the
graph, as follows.

COROLLARY 1.2. If vertex s has even degree, then the edges incident to s can be
partitioned into d(s)/2 admissible pairs for (4N + 2)/3-splitting off.

2. The proof. In order to prove Theorem 1.1, we first need the following simple
lemma [1].

LEMMA 2.1. Let d(s) > 0 be even. Then (s,u) and (s,v) is not an admissible
pair for k-splitting off if and only if there exists a set S C V' with u,v € S such that
(i) d(S) < k and (i) d(s, S) < 3d(s).

Proof. After splitting off, only sets containing both u and v see their d(.) value
change (by 2 units). Thus, for min(d(S),d(V’'—.S)) not to be preserved, we need either
u,v € S or u,v €V — 5. By complementing S (in V') if needed, we can restrict our
attention to sets S with u,v € S. As a result, min(d(S),d(V’' — 5)) will decrease if
and only if d(S) — 2 < d(V' — S). Since d(S) —d(s,S) = d(V' = S5) —d(s,V' = 5)
and d(s,S) + d(s,V' — S) = d(s), the condition d(S) — 2 < d(V’ — 5) is equivalent
to 2d(s,S) — 2 < d(s). Since d(s) is even, this is equivalent to d(s,S) < d(s)/2. This
can also be written as d(S) < d(V’ — 5), and the condition min(d(S),d(V' —9)) <k
is therefore equivalent to d(S) < k. This proves the lemma. ad

Theorem 1.1 follows from Lemma 2.1 and the following result.
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LEMMA 2.2. Let d(s) > 0 be even and let w € N. There exists v € N such that
there is no set S C V' with (i) u,v € S, (i) d(s, S) < 3d(s), and (iii) d(S) < %.

For the proof of this lemma, we need 3-set submodularity (see [5, exercise 6.48(c)]).

LEMMA 2.3 (3-set submodularity; see [5, ex. 6.48(c)]). For any 3 sets A, B, C,
we have

d(A) +d(B) +d(C) > d(A— B—C)+d(B—C — A)+d(C — A B)
+d(ANBNC)+2d(V —A—B—C,AnBNC).

3-set submodularity simply follows from evaluating the contribution of any edge
to both the left-hand side and the right-hand side.

Proof of Lemma 2.2. We can assume that \' > 2 and d(s) > 4 since otherwise
the statement is trivial (just take for v the endpoint of an edge (s,v) distinct from
(s,u)).

Assume that for every v € N, there exists S, such that (i) u,v € S,, (ii) d(s, Sy) <
1d(s), and (iii) d(S,) < ‘WT"’Q. For a given v € N, we can furthermore assume that
Sy is chosen to maximize d(s, S,) among the sets satisfying (i)—(iii).

First choose ¢,j € N such that d(s, S;US;) is maximum. Because of (ii), we have
that

d(S, S; U S]) = d(S, Sl) + d(S7 S]) - d(S, S; N S]) < d(S) + %d(s) — d(S, S; N S])

N | =

Since u € S; N S, we have that d(s,S; NS;) > 0, implying that d(s,S; U S;) < d(s).
Thus, there exists k € N — (S; U S;).

Since k was not chosen instead of ¢ or j, we have that (S; —S; —S) VN # 0 and
(Sj—Si—Sk)ﬂN;é(Z).

By 3-set submodularity, we have that

AN +2 > d(S;) +d(S;) + d(Sk)
> d(Sz — Sj - Sk) + d(57 -5, - Sk) + d(Sk -5, — S]>
+d(S; NS; N Sk) + 2,

where we have used the fact that the edge (s, u) contributes 1 unit to d(V — S, —S; —
Sk, S: N'S; N Sk). Hence,

d(S; — S; — Sp) +d(S; — Si — Sk) +d(Sk — S; — ;) +d(S; N S; N Sg) < 4N,

which is a contradiction since all these sets contain an element of N (k € S, — S, —5;
and v € S; NS; NSk) . O

Although the proof of Theorem 1.1 is essentially existential, one can find pairs
of edges incident to v which are admissible for kX -splitting in polynomial time (for
k fixed). Indeed, using [7], one can enumerate all cuts of value less than k) in time
O(nm? 4 n?*m), where n is the number of vertices and m is the number of edges,
and then check which pairs are admissible. For k& = 4/3, Nagamochi, Nishimura,
and Ibaraki [7] show that all these cuts can in fact be enumerated in time O(m?n +
mn?logn).
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