19 400. Topics in TCS. Embeddings of

Lecturer: Michel X. Goemans

18.409: Topics in TCS: Embeddings of Finite Metric Spaces
September 27, 2006
Scribe: Benjamin Rossman

Lecture 6

Today we look at dimension reduction in ℓ_2 . Suppose X is a metric space in ℓ_2 of size n. From previous lectures, we know that X embeds isometrically into ℓ_2^n . We ask the question: for k < n, what is the minimal distortion D needed to embed X in ℓ_2^d ? We will see that there is a tradeoff between distortion and dimension. To achieve distortion close to 1, we need only logarithmic many dimensions.

Theorem 1 (Johnson-Lindenstrauss, 1984). For all $\varepsilon > 0$, X embeds into $\ell_2^{O(\frac{1}{\varepsilon^2}\log n)}$ with distortion $1 + \varepsilon$.

We also prove a theorem of Alon which shows that the Johnson-Lindenstrauss Lemma (as Theorem 1 is known) is tight.

Theorem 2 (Alon [1]). If $v_1, \ldots, v_{n+1} \in \mathbb{R}^d$ are such that $1 \leq ||v_i - v_j|| \leq 1 + \varepsilon$ for all $i \neq j$, then $d = \Omega(\frac{\log n}{\varepsilon^2 \log \frac{1}{\varepsilon}})$.

We give two proofs of the Johnson-Lindenstrauss Lemma. The idea in both proofs is to project X onto a random k-dimensional subspace of \mathbb{R}^n where $k = O(\frac{1}{\varepsilon^2} \log n)$. The proofs differ in the way the projection is randomly chosen.

Measure Concentration and Levy's Lemma

Let $S_{n-1} = \{x \in \mathbb{R}^n : ||x|| = 1\}$ and let μ be the unique rotation-invariant (Haar) measure on S_{n-1} such that $\mu(S_{n-1}) = 1$. For points $x, y \in S_{n-1}$, d(x, y) denotes the geodesic distance between x and y defined by $d(x, y) = \arccos(\langle x, y \rangle)$. For a point $a \in S_{n-1}$ and $r \ge 0$, $B_a(r)$ denotes the cap of radius r around a defined by $B_a(r) = \{x \in S_{n-1} : d(a, x) \le r\}$. We will need the following lemma:

Lemma 3 (Levy's Lemma). Let $A \subseteq S_{n-1}$ be a closed set and let $B \subseteq S_{n-1}$ be a cap such that $\mu(A) = \mu(B)$. Then, for all $t \ge 0$,

$$\mu(\{x : d(A, x) \le t\}) \ge \mu(\{x : d(B, x) \le t\}).$$

In particular, if $B = B_a(r)$ then $\mu(\lbrace x : d(A, x) \leq t \rbrace) \geq \mu(B_a(r+t))$.

We remark that Levy's Lemma also holds when $d(\cdot, \cdot)$ denotes Euclidean instead of geodesic distance.

Lemma 4. Consider a function $f: S_{n-1} \to \mathbb{R}$ which is 1-Lipschitz, meaning that $|f(x) - f(y)| \le d(x,y)$ for all $x,y \in S_{n-1}$. We define $m(f) \in \mathbb{R}$, called the median of f, such that $\mu(A^+) \ge \frac{1}{2}$ and $\mu(A^-) \ge \frac{1}{2}$ where $A^+ = \{x : f(x) \ge m(f)\}$ and $A^- = \{x : f(x) \le m(f)\}$. Then

$$\mu(\{x: |f(x) - m(f)| > \varepsilon\}) \le (1 + o(1))e^{-\frac{\varepsilon^2 n}{2}}.$$

This lemma says that 1-Lipschitz functions are highly concentrated around the mean. Before we prove the lemma, we need a bound on $\mu(B_a(\frac{\pi}{2}-s))$. One can show (for the derivation see, for example, Barvinok [2, p. 58]) that, for any $0 \le s \le \pi/2$, $\mu(B_a(\frac{\pi}{2}-s)) \le \sqrt{\frac{\pi}{8}}e^{-\frac{s^2(n-2)}{2}}$, or since we are interested in large values of n that

$$\mu\left(B_a\left(\frac{\pi}{2} - s\right)\right) \le \left(\frac{1}{2} + o(1)\right)e^{-\frac{s^2n}{2}}.$$

Proof. By Levy's Lemma and the inequality above, we have

$$\mu(\{x: d(A^{\pm}, x) \ge \varepsilon\}) \ge \mu(B_a(\frac{\pi}{2} + \varepsilon)) \ge 1 - (\frac{1}{2} + o(1))e^{-\frac{\varepsilon^2 n}{2}}$$

This implies

$$\mu(\{x: d(A^+, x) \le \varepsilon\} \cap \{x: d(A^-, x) \le \varepsilon\}) \ge 1 - (1 + o(1))e^{-\frac{\varepsilon^2 n}{2}}.$$

Using the fact that f is 1-Lipschitz, it is easy to see that $\{x:|f(x)-m(x)|>\varepsilon\}$ lies inside the complement of $\{x:d(A^+,x)\leq\varepsilon\}\cap\{x:d(A^-,x)\leq\varepsilon\}$. Therefore,

$$\mu(\{x: |f(x) - m(f)| > \varepsilon\}) \le (1 + o(1))e^{-\frac{\varepsilon^2 n}{2}}$$

First Proof of Johnson-Lindenstrauss Lemma

Rather than project onto a random k-dimensional subspace of \mathbb{R}^n , we apply a random rotation of \mathbb{R}^n and then project onto the first k coordinates. Choose $v \in \mathbb{R}^n$ at random where the direction $\frac{v}{\|v\|} \in S_{n-1}$ is distributed with respect to μ , and let $f(v) = \sqrt{\sum_{i=1}^k v_i^2}$. We argue that the value f(v) is close to $\|v\|$ with high probability when $k = \Theta(\frac{1}{\varepsilon^2} \log n)$. Specifically, we show there exists a constant c > 0 such that

$$\Pr[c||v|| \le f(v) \le c(1+\varepsilon)||v||] \ge 1 - \frac{1}{n^2}.$$
 (*)

Once we prove (*), the Johnson-Lindenstrauss Lemma follows easily. For points $x_1, \ldots, x_n \in \mathbb{R}^n$, we let $v_{ij} = x_i - x_j$ for all $i \neq j$. Then $f(v_{ij})$ equals the distance between x_i and x_j after projecting onto a random k-dimensional subspace. Applying a union bound to inequality (*), we get

$$\Pr[\forall i \neq j, \ c ||v_{ij}|| \leq f(v_{ij}) \leq c(1+\varepsilon)||v_{ij}||] \geq 1 - \frac{\binom{n}{2}}{n^2}.$$

Since $1 - \frac{\binom{n}{2}}{n^2} > 0$, there exists a projection $\mathbb{R}^n \to \mathbb{R}^k$ for which the ℓ_2 -metric space on points x_1, \ldots, x_n has distortion $1 + \varepsilon$.

To prove the inequality (*), we invoke Lemma 4. We first note that f is 1-Lipschitz. We then note that m(f) is close to $\sqrt{\frac{k}{n}}$ since $E[f(v)^2] = \frac{k}{n}$; one can argue for example that $m(f) = \sqrt{\frac{k}{n}} + O(1/\sqrt{n})$ for all k. Lemma 4 now gives us

$$\Pr[|f(v) - m(f)| > \varepsilon m(f)] = \mu(\{x \in S_{n-1} : |f(x) - m(f)| > \varepsilon m(f)\}) = (1 + o(1))e^{-(\varepsilon m(f))^2 \frac{n}{2}}$$
$$= c_0(1 + o(1))e^{-\frac{\varepsilon^2 k}{2}}$$

for some constant c_0 . Since $k = \Theta(\frac{1}{\varepsilon^2} \log n)$, we have $\varepsilon^2 k = \Theta(\log n)$. Therefore, $c_0 e^{-\frac{\varepsilon^2 k}{2}} \le \frac{1}{n^2}$ for suitably chosen constant in the expression for k. This proves the inequality (*) where $c = m(f) \approx \sqrt{\frac{k}{n}}$.

Second Proof of Johnson-Lindenstrauss Lemma

We now give a different proof of the Johnson-Lindenstrauss Lemma due to Indyk and Motwani (1998). The elementary presentation we follow is due to Dasgupta and Gupta (2003).

Let $x_1, \ldots, x_n \in \mathbb{R}^n$. The idea is to project $X = \{x_1, \ldots, x_n\}$ onto k independently generated directions. We define random vectors $r_1, \ldots, r_k \in \mathbb{R}^n$ where $r_{ij} \in N(0,1)$ are independent Gaussian

random variables for all
$$1 \le i \le k$$
 and $1 \le j \le n$. Thus, $E[r_{ij}] = 0$ and $E[r_{ij}r_{ik}] = \begin{cases} 0 & \text{if } j \ne k \\ 1 & \text{if } j = k. \end{cases}$

We define a projection $\mathbb{R}^n \to \mathbb{R}^k$ by

$$f: x \longmapsto (\langle x, r_i \rangle)_{i=1,\dots,k}.$$

Our goal is to show that the random embedding f of X into ℓ_2^k has distortion $1 + \varepsilon$ with positive probability.

Theorem 5. For $k = O(\frac{\log n}{\varepsilon^2})$ and $v \in \mathbb{R}^n$,

$$\Pr\left[1 - \varepsilon \le \frac{\|f(v)\|}{\sqrt{k}\|v\|} \le 1 + \varepsilon\right] \ge 1 - \frac{1}{n^2}.$$

Once we prove Theorem 5, the J-L Lemma follows by the same argument as in the first proof.

Proof. We shall assume that ||v|| = 1, since the fraction $\frac{||f(v)||}{\sqrt{k}||v||}$ is invariant under scaling of v. For random variables $X_i = \langle v, r_i \rangle = \sum_{j=1}^n v_j r_{ij}$, we have

$$E[X_i] = \sum_{j=1}^n v_j E[r_{ij}] = 0,$$

$$E[X_i^2] = \left(\sum_{j=1}^n v_j^2 E[r_{ij}^2]\right) + \left(\sum_{\substack{j,k \in \{1,\dots,n\}\\j \neq k}} v_j v_k E[r_{ij}r_{ik}]\right) = \sum_{j=1}^n v_j^2 = ||v||^2 = 1.$$

Therefore, $E[\|f(v)\|^2] = \sum_{i=1}^n E[X_i^2] = k$.

We now use Chernoff bounds to prove the inequalities

$$\Pr\left[\frac{\|f(v)\|}{\sqrt{k}\|v\|} \leq 1 + \varepsilon\right] \geq 1 - \frac{1}{2n^2} \quad \text{and} \quad \Pr\left[\frac{\|f(v)\|}{\sqrt{k}\|v\|} \geq 1 - \varepsilon\right] \geq 1 - \frac{1}{2n^2},$$

which together imply the theorem. We give the argument for the lefthand inequality only (the argument for the righthand inequality is similar). Since ||v|| = 1, this means we must show $\Pr[||f(v)||^2 \ge k(1+\varepsilon)^2] \le \frac{1}{2n^2}$.

Let Y be the random variable $||f(v)||^2$ and let $\alpha = k(1+\varepsilon)^2$. For every s>0, we have $\Pr[Y>\alpha]=\Pr[e^{sY}>e^{s\alpha}]$. Recall Markov's inequality: $E[X\geq\beta]\leq \frac{E[x]}{\beta}$ where X is a nonnegative random variable and $\beta>0$. We apply Markov's inequality to get

$$\Pr[Y > \alpha] = \Pr[e^{sY} > e^{s\alpha}] \le \frac{E[e^{sY}]}{e^{s\alpha}} = e^{-s\alpha} E[e^{s\sum_{i=1}^{k} X_i^2}] = e^{-s\alpha} \prod_{i=1}^{k} E[e^{sX_i^2}] \tag{\dagger}$$

where the last equality follows from independence of the random variables X_1, \ldots, X_k . Each X_i is Guassian with mean 0 and variance 1, so by elementary calculus

$$E[e^{sX_i^2}] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{st^2} e^{-t^2/2} dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{(s-\frac{1}{2})t^2} dt.$$

We now apply a change of variables, letting $u^2 = (1 - 2s)t^2$ so that $dt = \frac{u}{t} \frac{1}{1 - 2s} du = \frac{1}{\sqrt{1 - 2s}} du$. Thus,

$$E[e^{sX_i^2}] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{(s-\frac{1}{2})t^2} dt = \frac{1}{\sqrt{1-2s}} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{u^2}{2}} du = \frac{1}{\sqrt{1-2s}}.$$

Plugging this into (†), we get

$$\Pr[Y > \alpha] = e^{-s\alpha} (1 - 2s)^{-\frac{k}{2}}.$$

We now choose $s = \frac{1}{2} - \frac{k}{2\alpha}$, so that $1 - 2s = \frac{k}{\alpha}$. This gives

$$e^{-s\alpha}(1-2s)^{-\frac{k}{2}} = e^{-\frac{\alpha}{2}(1-\frac{k}{\alpha})} \left(\frac{k}{\alpha}\right)^{-\frac{k}{2}} = e^{\frac{k-\alpha}{2}} \left(\frac{k}{\alpha}\right)^{-\frac{k}{2}}.$$

Recall that $\alpha = k(1+\varepsilon)^2$. Thus, we have:

$$e^{\frac{k-\alpha}{2}} \left(\frac{k}{\alpha}\right)^{-\frac{k}{2}} = e^{-\varepsilon k - \frac{\varepsilon^2}{2}k} e^{-\frac{k}{2}\ln(\frac{k}{\alpha})} = e^{-\varepsilon k - \frac{\varepsilon^2}{2}k} e^{-\frac{k}{2}\ln(\frac{1}{(1+\varepsilon)^2})}$$
$$= e^{-\varepsilon k - \frac{\varepsilon^2}{2}k} e^{k\ln(1+\varepsilon)} = e^{k(-\varepsilon - \frac{1}{2}\varepsilon^2 + \varepsilon - \frac{1}{2}\varepsilon^2 + O(\varepsilon^3))} = e^{-k\varepsilon^2 + kO(\varepsilon^3)}$$

using the taylor's expansion $\ln(1+x) = x - \frac{x^2}{2} + O(x^3)$.

Taking $k = \Theta(\frac{\log n}{\varepsilon^2})$, we have

$$\Pr[f(v)^2 \ge k(1+\varepsilon)^2] = e^{-k\varepsilon^2 + O(k\varepsilon^3)} = O(\frac{1}{2n^2}).$$

Alon's Theorem (to be continued)

In the next lecture, we will give a proof of Alon's theorem. For now, we give a sketch of the proof. Let $v_1, \ldots, v_{n+1} \in \mathbb{R}^d$ be such that $1 \leq \|v_i - v_j\| \leq 1 + \varepsilon$ for all $i \neq j$. The theorem states that $d = \Omega(\frac{\log n}{\varepsilon^2 \log \frac{1}{\varepsilon}})$.

Clearly, we can assume that $v_{n+1} = (0, ..., 0)$ by translating al vectors v_i . We then scale vectors v_i to obtain new vectors v_i' such that $||v_i'|| = 1$. After scaling, we have $|||v_i' - v_j'|| - 1| = O(\varepsilon)$. We

now look at the symmetric matrix $B = \left(\langle v_i', v_j' \rangle\right)_{1 \leq i,j \leq n}$, which has the form

$$\begin{pmatrix} 1 & & & \\ & 1 & & \left[\frac{1}{2} - \varepsilon, \frac{1}{2} + \varepsilon\right] \\ & & 1 & \\ & & 1 & \\ \left[\frac{1}{2} - \varepsilon, \frac{1}{2} + \varepsilon\right] & \ddots & \\ & & & 1 \end{pmatrix}$$

i.e., ones along the diagonal and all other entries between $\frac{1}{2} - \varepsilon$ and $\frac{1}{2} + \varepsilon$. This matrix has rank d. Alon's theorem is proved by establishing a lower bound on d in terms of n and ε .

References

- [1] N. Alon, Problems and results in extremal combinatorics, I, Discrete Math. 273 (2003), 31-53.
- [2] A. Barvinok, Lecture Notes on Measure Concentration, available from http://www.math.lsa.umich.edu/barvinok/total710.pdf.