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Lecture 6

Today we look at dimension reduction in 5. Suppose X is a metric space in £9 of size n. From
previous lectures, we know that X embeds isometrically into 3. We ask the question: for k£ < n,
what is the minimal distortion D needed to embed X in Eg? We will see that there is a tradeoff
between distortion and dimension. To achieve distortion close to 1, we need only logarithmic many
dimensions.
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o
Theorem 1 (Johnson-Lindenstrauss, 1984). For alle > 0, X embeds into £, with distortion

1+4+e.

We also prove a theorem of Alon which shows that the Johnson-Lindenstrauss Lemma (as
Theorem 1 is known) is tight.

Theorem 2 (Alon [1]). Ifvi,...,v541 € R are such that 1 < |jv; — v;|| < 1+¢ for all i # j, then
d=Q(2282).
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We give two proofs of the Johnson-Lindenstrauss Lemma. The idea in both proofs is to project
X onto a random k-dimensional subspace of R" where k = O(ei2 logn). The proofs differ in the
way the projection is randomly chosen.

Measure Concentration and Levy’s Lemma

Let S;,—1 = {x € R" : ||z|| = 1} and let u be the unique rotation-invariant (Haar) measure on S;,,_1
such that u(S,—1) = 1. For points x,y € S,_1, d(z,y) denotes the geodesic distance between x
and y defined by d(x,y) = arccos({x,y)). For a point a € S,,_1 and r > 0, B,(r) denotes the cap of
radius r around a defined by B, (r) = {z € S,_1 : d(a,z) < r}. We will need the following lemma:

Lemma 3 (Levy’s Lemma). Let A C S,,_1 be a closed set and let B C S,,_1 be a cap such that
w(A) = u(B). Then, for allt >0,

p(fz - d(A,z) <t}) > p({e - d(B, x) < t}).
In particular, if B = By(r) then p({z : d(A,z) < t}) > w(Ba(r +1)). O

We remark that Levy’s Lemma also holds when d(-,-) denotes Euclidean instead of geodesic
distance.

Lemma 4. Consider a function f :S,—1 — R which is 1-Lipschitz, meaning that |f(x) — f(y)| <
d(z,y) for all z,y € S,—1. We define m(f) € R, called the median of f, such that u(A%) > % and
w(A™) > % where AT ={z: f(x) >m(f)} and A~ ={x: f(x) <m(f)}. Then

E2n

u({z s |f (@) —m(f)] > €}) < (1+o(1))e™ 7"



This lemma says that 1-Lipschitz functions are highly concentrated around the mean. Before

we prove the lemma, we need a bound on p(B.(5 — s)). One can show (for the derivation see, for

52 (n—2)

example, Barvinok [2, p. 58]) that, for any 0 < s < 7/2, u(Ba(5 —s)) < /e~ 2 , or since we
are interested in large values of n that

n(Ba(5-5)) = (5+om) %,

Proof. By Levy’s Lemma and the inequality above, we have

u({e : d(A%,2) > £) > p(Bu(F +2)) 2 1 - (5 + o(1))e™ .
This implies

E2n

p{z d(AT ) <efn{z:d(A ,z) <e})>1—(1+o(l))e = .

Using the fact that f is 1-Lipschitz, it is easy to see that {x : |f(z) — m(z)| > €} lies inside the
complement of {z : d(A",z) <e}N{x:d(A™,z) <e}. Therefore,
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p({z: |f(2) —m(f)] > e}) < (1 +o(1))e” 2"

First Proof of Johnson-Lindenstrauss Lemma

Rather than project onto a random k-dimensional subspace of R™, we apply a random rotation of

R™ and then project onto the first k coordinates. Choose v € R™ at random where the direction

2 € Sy is distributed with respect to p, and let f(v) = Zk v2. We argue that the value

llvll i=1Y5 -
f(v) is close to ||v|| with high probability when k = G)(ei2 logn). Specifically, we show there exists
a constant ¢ > 0 such that
1
Prlcfjvll < f(v) < (1 +e)lvf] 21~ =5 (%)
Once we prove (), the Johnson-Lindenstrauss Lemma follows easily. For points z1, ..., z, € R",
we let v;; = x; —x; for all ¢ # j. Then f(v;;) equals the distance between xz; and x; after projecting

onto a random k-dimensional subspace. Applying a union bound to inequality (x), we get
o (3)
Prlvi # j, cllvigll < f(vig) < e+ el =2 1= 5

Since 1 — % > 0, there exists a projection R® — RF for which the ¢y-metric space on points
z1,...,T, has distortion 1+ €.

To prove the inequality (*), we invoke Lemma 4. We first note that f is 1-Lipschitz. We

then note that m(f) is close to \/E since E[f(v)?] = %; one can argue for example that m(f) =
\/% + O(1/+/n) for all k. Lemma 4 now gives us
Pr(|f(v) —m(f)] > em(f)] = p({z € Suor:[f(2) = m(f)] > em(f)}) = (1 + o(1)e” M5

£

= co(l+o(l))e 2



2
for some constant cg. Since k = @(Ei2 logn), we have €2k = ©(logn). Therefore, cye %' < ni for

2
suitably chosen constant in the expression for k. This proves the inequality (%) where ¢ = m(f) ~
k
=, O

n

Second Proof of Johnson-Lindenstrauss Lemma

We now give a different proof of the Johnson-Lindenstrauss Lemma due to Indyk and Motwani
(1998). The elementary presentation we follow is due to Dasgupta and Gupta (2003).
Let x1,...,z, € R™. The idea is to project X = {z1,...,2,} onto k independently generated

directions. We define random vectors 71, ..., € R" where r;; € N(0, 1) are independent Gaussian
0 ifj#k
random variables for all 1 <¢ <k and 1 < j <n. Thus, E[r;;] =0 and E[r;jr;] = {1 lf] 7 L
if j =k.

We define a projection R™ — R¥ by

frax— ((z,75))i=1,. k-

Our goal is to show that the random embedding f of X into ¢4 has distortion 1 + ¢ with positive
probability.

Theorem 5. For k = O(l%%ﬁ) and v € R",

Pr|il—e< MOl <l+4e 21—%.
VE|v|| n

Once we prove Theorem 5, the J-L Lemma follows by the same argument as in the first proof.

Proof. We shall assume that |[v|| = 1, since the fraction U/fE(ﬁZH is invariant under scaling of v. For

random variables X; = (v,7;) = >, vjry;, we have

n

z] = Z'UjE[Tij] =0
j=1
— <ZUJ2E[7’Z23]> + < Z vjoR Elrijrik > Z H”H2 =
j=1

j,ke{l,...n}
J#k
Therefore, [ £(v)[2] = S, BIX?) = k.
We now use Chernoff bounds to prove the inequalities
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which together imply the theorem. We give the argument for the lefthand inequality only (the
argument for the righthand inequality is similar). Since ||v|| = 1, this means we must show

Pr([|f(v)[? = k(1 +¢)%] < 3.



Let Y be the random variable ||f(v)||? and let a = k(1 + ¢)2. For every s > 0, we have
Pr[Y > a] = Pr[e®¥ > e*¥]. Recall Markov’s inequality: E[X > (] < % where X is a nonnegative

random variable and § > 0. We apply Markov’s inequality to get

k
E [GSY] SX2

Pr[Y > a] = Prle’Y > %] < — =¢ K¢’ ZleXf] = e 52 HE[e i (1)
e
i=1
where the last equality follows from independence of the random variables X1,..., X;. Each Xj is

Guassian with mean 0 and variance 1, so by elementary calculus

1 T o o 1 oo 1y,2
E[eSXiQ] = — e ™2t = — e gt
V2T J o V2T J o

We now apply a change of variables, letting u? = (1 — 2s)t? so that dt = %1_125du = 11_2Sdu.
Thus,

u? 1
_Tdu =

2 1 oo 1. 1 1 oo
[esxl] = — =g =~ e _—
V2T J oo V1—2sV21 J_ v1—2s

Plugging this into (1), we get

E

PrlY > o] = e (1 — 23)_%
We now choose s = % — %, so that 1 — 2s = g This gives
- ko k) p\—%5 ke g%
esa(l—Qs) 2 =€ 2( a(a) 2 —e 2 (_) 2

Recall that o = k(1 +¢)2. Thus, we have:

[NIEy

2 X 2k 1
o—ck—Sko—5n(E) _ —ek—Sk,m2 ()

e

2 .
e—sk—%kekln(l—i-e) k(—s—%€2+e—%€2+0(€3)) — e—k€2+k0(63)

=€

)

using the taylor’s expansion In(1 + z) =z — mz—z + O(z3).
Taking k = ©(1%5™), we have

2

Prlf(0)* 2 k(1 +)*] = e 100 = O(5ly).

Alon’s Theorem (to be continued)

In the next lecture, we will give a proof of Alon’s theorem. For now, we give a sketch of the proof.
Let v1,...,vp41 € R? be such that 1 < [jv; — vj|| < 1+¢ for all i # j. The theorem states that

1
d= Q(EQ‘iig"% ).
Clearly, we can assume that v,4+1 = (0,...,0) by translating al vectors v;. We then scale vectors
v; to obtain new vectors v} such that [[vf|| = 1. After scaling, we have |[|v} — vl — 1| =O(e). We



now look at the symmetric matrix B = ((v}, v’ which has the form

b UD) 1<ij<n

1
1 [3—¢, 3+€]

i.e., ones along the diagonal and all other entries between % —¢ and % + ¢. This matrix has rank d.
Alon’s theorem is proved by establishing a lower bound on d in terms of n and e.
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