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Lecture 6

Today we look at dimension reduction in `2. Suppose X is a metric space in `2 of size n. From
previous lectures, we know that X embeds isometrically into `n

2 . We ask the question: for k < n,
what is the minimal distortion D needed to embed X in `d

2? We will see that there is a tradeoff
between distortion and dimension. To achieve distortion close to 1, we need only logarithmic many
dimensions.

Theorem 1 (Johnson-Lindenstrauss, 1984). For all ε > 0, X embeds into `
O( 1

ε2
log n)

2 with distortion

1 + ε.

We also prove a theorem of Alon which shows that the Johnson-Lindenstrauss Lemma (as
Theorem 1 is known) is tight.

Theorem 2 (Alon [1]). If v1, . . . , vn+1 ∈ R
d are such that 1 ≤ ‖vi − vj‖ ≤ 1 + ε for all i 6= j, then

d = Ω( log n
ε2 log 1

ε

).

We give two proofs of the Johnson-Lindenstrauss Lemma. The idea in both proofs is to project
X onto a random k-dimensional subspace of R

n where k = O( 1
ε2 log n). The proofs differ in the

way the projection is randomly chosen.

Measure Concentration and Levy’s Lemma

Let Sn−1 = {x ∈ R
n : ‖x‖ = 1} and let µ be the unique rotation-invariant (Haar) measure on Sn−1

such that µ(Sn−1) = 1. For points x, y ∈ Sn−1, d(x, y) denotes the geodesic distance between x
and y defined by d(x, y) = arccos(〈x, y〉). For a point a ∈ Sn−1 and r ≥ 0, Ba(r) denotes the cap of
radius r around a defined by Ba(r) = {x ∈ Sn−1 : d(a, x) ≤ r}. We will need the following lemma:

Lemma 3 (Levy’s Lemma). Let A ⊆ Sn−1 be a closed set and let B ⊆ Sn−1 be a cap such that

µ(A) = µ(B). Then, for all t ≥ 0,

µ({x : d(A, x) ≤ t}) ≥ µ({x : d(B, x) ≤ t}).

In particular, if B = Ba(r) then µ({x : d(A, x) ≤ t}) ≥ µ(Ba(r + t)).

We remark that Levy’s Lemma also holds when d(·, ·) denotes Euclidean instead of geodesic
distance.

Lemma 4. Consider a function f : Sn−1 → R which is 1-Lipschitz, meaning that |f(x) − f(y)| ≤
d(x, y) for all x, y ∈ Sn−1. We define m(f) ∈ R, called the median of f , such that µ(A+) ≥ 1

2 and

µ(A−) ≥ 1
2 where A+ = {x : f(x) ≥ m(f)} and A− = {x : f(x) ≤ m(f)}. Then

µ({x : |f(x) − m(f)| > ε}) ≤ (1 + o(1))e−
ε
2

n

2 .
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This lemma says that 1-Lipschitz functions are highly concentrated around the mean. Before
we prove the lemma, we need a bound on µ(Ba(

π
2 − s)). One can show (for the derivation see, for

example, Barvinok [2, p. 58]) that, for any 0 ≤ s ≤ π/2, µ(Ba(
π
2 − s)) ≤

√

π
8 e−

s
2(n−2)

2 , or since we

are interested in large values of n that

µ
(

Ba

(π

2
− s
))

≤
(

1

2
+ o(1)

)

e−
s
2

n

2 .

Proof. By Levy’s Lemma and the inequality above, we have

µ({x : d(A±, x) ≥ ε}) ≥ µ(Ba(
π
2 + ε)) ≥ 1 − ( 1

2 + o(1))e−
ε
2

n

2 .

This implies

µ({x : d(A+, x) ≤ ε} ∩ {x : d(A−, x) ≤ ε}) ≥ 1 − (1 + o(1))e−
ε
2

n

2 .

Using the fact that f is 1-Lipschitz, it is easy to see that {x : |f(x) − m(x)| > ε} lies inside the
complement of {x : d(A+, x) ≤ ε} ∩ {x : d(A−, x) ≤ ε}. Therefore,

µ({x : |f(x) − m(f)| > ε}) ≤ (1 + o(1))e−
ε
2

n

2 .

First Proof of Johnson-Lindenstrauss Lemma

Rather than project onto a random k-dimensional subspace of R
n, we apply a random rotation of

R
n and then project onto the first k coordinates. Choose v ∈ R

n at random where the direction
v

‖v‖ ∈ Sn−1 is distributed with respect to µ, and let f(v) =
√

∑k
i=1 v2

i . We argue that the value

f(v) is close to ‖v‖ with high probability when k = Θ( 1
ε2 log n). Specifically, we show there exists

a constant c > 0 such that

Pr[c‖v‖ ≤ f(v) ≤ c(1 + ε)‖v‖] ≥ 1 − 1

n2
. (∗)

Once we prove (∗), the Johnson-Lindenstrauss Lemma follows easily. For points x1, . . . , xn ∈ R
n,

we let vij = xi−xj for all i 6= j. Then f(vij) equals the distance between xi and xj after projecting
onto a random k-dimensional subspace. Applying a union bound to inequality (∗), we get

Pr[∀i 6= j, c‖vij‖ ≤ f(vij) ≤ c(1 + ε)‖vij‖] ≥ 1 −
(

n
2

)

n2
.

Since 1 − (n

2)
n2 > 0, there exists a projection R

n → R
k for which the `2-metric space on points

x1, . . . , xn has distortion 1 + ε.
To prove the inequality (∗), we invoke Lemma 4. We first note that f is 1-Lipschitz. We

then note that m(f) is close to
√

k
n since E[f(v)2] = k

n ; one can argue for example that m(f) =
√

k
n + O(1/

√
n) for all k. Lemma 4 now gives us

Pr[|f(v) − m(f)| > εm(f)] = µ({x ∈ Sn−1 : |f(x) − m(f)| > εm(f)}) = (1 + o(1))e−(εm(f))2 n

2

= c0(1 + o(1))e−
ε
2

k

2
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for some constant c0. Since k = Θ( 1
ε2 log n), we have ε2k = Θ(log n). Therefore, c0e

− ε
2

k

2 ≤ 1
n2 for

suitably chosen constant in the expression for k. This proves the inequality (∗) where c = m(f) ≈
√

k
n .

Second Proof of Johnson-Lindenstrauss Lemma

We now give a different proof of the Johnson-Lindenstrauss Lemma due to Indyk and Motwani
(1998). The elementary presentation we follow is due to Dasgupta and Gupta (2003).

Let x1, . . . , xn ∈ R
n. The idea is to project X = {x1, . . . , xn} onto k independently generated

directions. We define random vectors r1, . . . , rk ∈ R
n where rij ∈ N(0, 1) are independent Gaussian

random variables for all 1 ≤ i ≤ k and 1 ≤ j ≤ n. Thus, E[rij ] = 0 and E[rijrik] =

{

0 if j 6= k

1 if j = k.

We define a projection R
n → R

k by

f : x 7−→ (〈x, ri〉)i=1,...,k.

Our goal is to show that the random embedding f of X into `k
2 has distortion 1 + ε with positive

probability.

Theorem 5. For k = O( log n
ε2 ) and v ∈ R

n,

Pr

[

1 − ε ≤ ‖f(v)‖√
k‖v‖

≤ 1 + ε

]

≥ 1 − 1

n2
.

Once we prove Theorem 5, the J-L Lemma follows by the same argument as in the first proof.

Proof. We shall assume that ‖v‖ = 1, since the fraction ‖f(v)‖√
k‖v‖ is invariant under scaling of v. For

random variables Xi = 〈v, ri〉 =
∑n

j=1 vjrij, we have

E[Xi] =

n
∑

j=1

vjE[rij ] = 0,

E[X2
i ] =

(

n
∑

j=1

v2
j E[r2

ij ]

)

+

(

∑

j,k∈{1,...,n}
j 6=k

vjvkE[rijrik]

)

=
n
∑

j=1

v2
j = ‖v‖2 = 1.

Therefore, E[‖f(v)‖2] =
∑n

i=1 E[X2
i ] = k.

We now use Chernoff bounds to prove the inequalities

Pr

[‖f(v)‖√
k‖v‖

≤ 1 + ε

]

≥ 1 − 1

2n2
and Pr

[‖f(v)‖√
k‖v‖

≥ 1 − ε

]

≥ 1 − 1

2n2
,

which together imply the theorem. We give the argument for the lefthand inequality only (the
argument for the righthand inequality is similar). Since ‖v‖ = 1, this means we must show
Pr[‖f(v)‖2 ≥ k(1 + ε)2] ≤ 1

2n2 .
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Let Y be the random variable ‖f(v)‖2 and let α = k(1 + ε)2. For every s > 0, we have

Pr[Y > α] = Pr[esY > esα]. Recall Markov’s inequality: E[X ≥ β] ≤ E[x]
β where X is a nonnegative

random variable and β > 0. We apply Markov’s inequality to get

Pr[Y > α] = Pr[esY > esα] ≤ E[esY ]

esα
= e−sαE[es

P

k

i=1 X2
i ] = e−sα

k
∏

i=1

E[esX2
i ] (†)

where the last equality follows from independence of the random variables X1, . . . , Xk. Each Xi is
Guassian with mean 0 and variance 1, so by elementary calculus

E[esX2
i ] =

1√
2π

∫ +∞

−∞
est2e−t2/2dt =

1√
2π

∫ +∞

−∞
e(s− 1

2
)t2dt.

We now apply a change of variables, letting u2 = (1 − 2s)t2 so that dt = u
t

1
1−2sdu = 1√

1−2s
du.

Thus,

E[esX2
i ] =

1√
2π

∫ +∞

−∞
e(s− 1

2
)t2dt =

1√
1 − 2s

1√
2π

∫ +∞

−∞
e−

u
2

2 du =
1√

1 − 2s
.

Plugging this into (†), we get

Pr[Y > α] = e−sα(1 − 2s)−
k

2 .

We now choose s = 1
2 − k

2α , so that 1 − 2s = k
α . This gives

e−sα(1 − 2s)−
k

2 = e−
α

2
(1− k

α
)
(

k
α

)− k

2 = e
k−α

2

(

k
α

)− k

2 .

Recall that α = k(1 + ε)2. Thus, we have:

e
k−α

2

(

k

α

)− k

2

= e−εk− ε
2

2
ke−

k

2
ln( k

α
) = e−εk− ε

2

2
ke

− k

2
ln( 1

(1+ε)2
)

= e−εk− ε
2

2
kek ln(1+ε) = ek(−ε− 1

2
ε2+ε− 1

2
ε2+O(ε3)) = e−kε2+kO(ε3),

using the taylor’s expansion ln(1 + x) = x − x2

2 + O(x3).

Taking k = Θ( log n
ε2 ), we have

Pr[f(v)2 ≥ k(1 + ε)2] = e−kε2+O(kε3) = O( 1
2n2 ).

Alon’s Theorem (to be continued)

In the next lecture, we will give a proof of Alon’s theorem. For now, we give a sketch of the proof.
Let v1, . . . , vn+1 ∈ R

d be such that 1 ≤ ‖vi − vj‖ ≤ 1 + ε for all i 6= j. The theorem states that

d = Ω( log n
ε2 log 1

ε

).

Clearly, we can assume that vn+1 = (0, . . . , 0) by translating al vectors vi. We then scale vectors
vi to obtain new vectors v′i such that ‖v′i‖ = 1. After scaling, we have

∣

∣‖v′i − v′j‖ − 1
∣

∣ = O(ε). We
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now look at the symmetric matrix B =
(

〈v′i, v′j〉
)

1≤i,j≤n
, which has the form



















1
1 [12−ε, 1

2+ε]
1

1

[12−ε, 1
2+ε]

. . .

1



















i.e., ones along the diagonal and all other entries between 1
2 − ε and 1

2 + ε. This matrix has rank d.
Alon’s theorem is proved by establishing a lower bound on d in terms of n and ε.
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