18.409: Topics in TCS: Embeddings of Finite Metric Spaces

Lecture 6

Today we look at dimension reduction in ℓ_{2}. Suppose X is a metric space in ℓ_{2} of size n. From previous lectures, we know that X embeds isometrically into ℓ_{2}^{n}. We ask the question: for $k<n$, what is the minimal distortion D needed to embed X in ℓ_{2}^{d} ? We will see that there is a tradeoff between distortion and dimension. To achieve distortion close to 1 , we need only logarithmic many dimensions.
Theorem 1 (Johnson-Lindenstrauss, 1984). For all $\varepsilon>0$, X embeds into $\ell_{2}^{O\left(\frac{1}{\varepsilon^{2}} \log n\right)}$ with distortion $1+\varepsilon$.

We also prove a theorem of Alon which shows that the Johnson-Lindenstrauss Lemma (as Theorem 1 is known) is tight.

Theorem 2 (Alon [1]). If $v_{1}, \ldots, v_{n+1} \in \mathbb{R}^{d}$ are such that $1 \leq\left\|v_{i}-v_{j}\right\| \leq 1+\varepsilon$ for all $i \neq j$, then $d=\Omega\left(\frac{\log n}{\varepsilon^{2} \log \frac{1}{\varepsilon}}\right)$.

We give two proofs of the Johnson-Lindenstrauss Lemma. The idea in both proofs is to project X onto a random k-dimensional subspace of \mathbb{R}^{n} where $k=O\left(\frac{1}{\varepsilon^{2}} \log n\right)$. The proofs differ in the way the projection is randomly chosen.

Measure Concentration and Levy's Lemma

Let $S_{n-1}=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}$ and let μ be the unique rotation-invariant (Haar) measure on S_{n-1} such that $\mu\left(S_{n-1}\right)=1$. For points $x, y \in S_{n-1}, d(x, y)$ denotes the geodesic distance between x and y defined by $d(x, y)=\arccos (\langle x, y\rangle)$. For a point $a \in S_{n-1}$ and $r \geq 0, B_{a}(r)$ denotes the cap of radius r around a defined by $B_{a}(r)=\left\{x \in S_{n-1}: d(a, x) \leq r\right\}$. We will need the following lemma:

Lemma 3 (Levy's Lemma). Let $A \subseteq S_{n-1}$ be a closed set and let $B \subseteq S_{n-1}$ be a cap such that $\mu(A)=\mu(B)$. Then, for all $t \geq 0$,

$$
\mu(\{x: d(A, x) \leq t\}) \geq \mu(\{x: d(B, x) \leq t\}) .
$$

In particular, if $B=B_{a}(r)$ then $\mu(\{x: d(A, x) \leq t\}) \geq \mu\left(B_{a}(r+t)\right)$.
We remark that Levy's Lemma also holds when $d(\cdot, \cdot)$ denotes Euclidean instead of geodesic distance.

Lemma 4. Consider a function $f: S_{n-1} \rightarrow \mathbb{R}$ which is 1-Lipschitz, meaning that $|f(x)-f(y)| \leq$ $d(x, y)$ for all $x, y \in S_{n-1}$. We define $m(f) \in \mathbb{R}$, called the median of f, such that $\mu\left(A^{+}\right) \geq \frac{1}{2}$ and $\mu\left(A^{-}\right) \geq \frac{1}{2}$ where $A^{+}=\{x: f(x) \geq m(f)\}$ and $A^{-}=\{x: f(x) \leq m(f)\}$. Then

$$
\mu(\{x:|f(x)-m(f)|>\varepsilon\}) \leq(1+o(1)) e^{-\frac{\varepsilon^{2} n}{2}} .
$$

This lemma says that 1-Lipschitz functions are highly concentrated around the mean. Before we prove the lemma, we need a bound on $\mu\left(B_{a}\left(\frac{\pi}{2}-s\right)\right.$). One can show (for the derivation see, for example, Barvinok [2, p. 58]) that, for any $0 \leq s \leq \pi / 2, \mu\left(B_{a}\left(\frac{\pi}{2}-s\right)\right) \leq \sqrt{\frac{\pi}{8}} e^{-\frac{s^{2}(n-2)}{2}}$, or since we are interested in large values of n that

$$
\mu\left(B_{a}\left(\frac{\pi}{2}-s\right)\right) \leq\left(\frac{1}{2}+o(1)\right) e^{-\frac{s^{2} n}{2}}
$$

Proof. By Levy's Lemma and the inequality above, we have

$$
\mu\left(\left\{x: d\left(A^{ \pm}, x\right) \geq \varepsilon\right\}\right) \geq \mu\left(B_{a}\left(\frac{\pi}{2}+\varepsilon\right)\right) \geq 1-\left(\frac{1}{2}+o(1)\right) e^{-\frac{\varepsilon^{2} n}{2}}
$$

This implies

$$
\mu\left(\left\{x: d\left(A^{+}, x\right) \leq \varepsilon\right\} \cap\left\{x: d\left(A^{-}, x\right) \leq \varepsilon\right\}\right) \geq 1-(1+o(1)) e^{-\frac{\varepsilon^{2} n}{2}}
$$

Using the fact that f is 1-Lipschitz, it is easy to see that $\{x:|f(x)-m(x)|>\varepsilon\}$ lies inside the complement of $\left\{x: d\left(A^{+}, x\right) \leq \varepsilon\right\} \cap\left\{x: d\left(A^{-}, x\right) \leq \varepsilon\right\}$. Therefore,

$$
\mu(\{x:|f(x)-m(f)|>\varepsilon\}) \leq(1+o(1)) e^{-\frac{\varepsilon^{2} n}{2}}
$$

First Proof of Johnson-Lindenstrauss Lemma

Rather than project onto a random k-dimensional subspace of \mathbb{R}^{n}, we apply a random rotation of \mathbb{R}^{n} and then project onto the first k coordinates. Choose $v \in \mathbb{R}^{n}$ at random where the direction $\frac{v}{\|v\|} \in S_{n-1}$ is distributed with respect to μ, and let $f(v)=\sqrt{\sum_{i=1}^{k} v_{i}^{2}}$. We argue that the value $f(v)$ is close to $\|v\|$ with high probability when $k=\Theta\left(\frac{1}{\varepsilon^{2}} \log n\right)$. Specifically, we show there exists a constant $c>0$ such that

$$
\begin{equation*}
\operatorname{Pr}[c\|v\| \leq f(v) \leq c(1+\varepsilon)\|v\|] \geq 1-\frac{1}{n^{2}} \tag{*}
\end{equation*}
$$

Once we prove $(*)$, the Johnson-Lindenstrauss Lemma follows easily. For points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{n}$, we let $v_{i j}=x_{i}-x_{j}$ for all $i \neq j$. Then $f\left(v_{i j}\right)$ equals the distance between x_{i} and x_{j} after projecting onto a random k-dimensional subspace. Applying a union bound to inequality $(*)$, we get

$$
\operatorname{Pr}\left[\forall i \neq j, c\left\|v_{i j}\right\| \leq f\left(v_{i j}\right) \leq c(1+\varepsilon)\left\|v_{i j}\right\|\right] \geq 1-\frac{\binom{n}{2}}{n^{2}}
$$

Since $1-\frac{\binom{n}{2}}{n^{2}}>0$, there exists a projection $\mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ for which the ℓ_{2}-metric space on points x_{1}, \ldots, x_{n} has distortion $1+\varepsilon$.

To prove the inequality $(*)$, we invoke Lemma 4. We first note that f is 1 -Lipschitz. We then note that $m(f)$ is close to $\sqrt{\frac{k}{n}}$ since $E\left[f(v)^{2}\right]=\frac{k}{n}$; one can argue for example that $m(f)=$ $\sqrt{\frac{k}{n}}+O(1 / \sqrt{n})$ for all k. Lemma 4 now gives us

$$
\begin{aligned}
\operatorname{Pr}[|f(v)-m(f)|>\varepsilon m(f)] & =\mu\left(\left\{x \in S_{n-1}:|f(x)-m(f)|>\varepsilon m(f)\right\}\right)=(1+o(1)) e^{-(\varepsilon m(f))^{2} \frac{n}{2}} \\
& =c_{0}(1+o(1)) e^{-\frac{\varepsilon^{2} k}{2}}
\end{aligned}
$$

for some constant c_{0}. Since $k=\Theta\left(\frac{1}{\varepsilon^{2}} \log n\right)$, we have $\varepsilon^{2} k=\Theta(\log n)$. Therefore, $c_{0} e^{-\frac{\varepsilon^{2} k}{2}} \leq \frac{1}{n^{2}}$ for suitably chosen constant in the expression for k. This proves the inequality ($*$) where $c=m(f) \approx$ $\sqrt{\frac{k}{n}}$.

Second Proof of Johnson-Lindenstrauss Lemma

We now give a different proof of the Johnson-Lindenstrauss Lemma due to Indyk and Motwani (1998). The elementary presentation we follow is due to Dasgupta and Gupta (2003).

Let $x_{1}, \ldots, x_{n} \in \mathbb{R}^{n}$. The idea is to project $X=\left\{x_{1}, \ldots, x_{n}\right\}$ onto k independently generated directions. We define random vectors $r_{1}, \ldots, r_{k} \in \mathbb{R}^{n}$ where $r_{i j} \in N(0,1)$ are independent Gaussian random variables for all $1 \leq i \leq k$ and $1 \leq j \leq n$. Thus, $E\left[r_{i j}\right]=0$ and $E\left[r_{i j} r_{i k}\right]= \begin{cases}0 & \text { if } j \neq k \\ 1 & \text { if } j=k .\end{cases}$

We define a projection $\mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ by

$$
f: x \longmapsto\left(\left\langle x, r_{i}\right\rangle\right)_{i=1, \ldots, k} .
$$

Our goal is to show that the random embedding f of X into ℓ_{2}^{k} has distortion $1+\varepsilon$ with positive probability.

Theorem 5. For $k=O\left(\frac{\log n}{\varepsilon^{2}}\right)$ and $v \in \mathbb{R}^{n}$,

$$
\operatorname{Pr}\left[1-\varepsilon \leq \frac{\|f(v)\|}{\sqrt{k}\|v\|} \leq 1+\varepsilon\right] \geq 1-\frac{1}{n^{2}}
$$

Once we prove Theorem 5, the J-L Lemma follows by the same argument as in the first proof. Proof. We shall assume that $\|v\|=1$, since the fraction $\frac{\|f(v)\|}{\sqrt{k}\|v\|}$ is invariant under scaling of v. For random variables $X_{i}=\left\langle v, r_{i}\right\rangle=\sum_{j=1}^{n} v_{j} r_{i j}$, we have

$$
\begin{aligned}
& E\left[X_{i}\right]=\sum_{j=1}^{n} v_{j} E\left[r_{i j}\right]=0, \\
& E\left[X_{i}^{2}\right]=\left(\sum_{j=1}^{n} v_{j}^{2} E\left[r_{i j}^{2}\right]\right)+\left(\sum_{\substack{j, k \in\{1, \ldots, n\} \\
j \neq k}} v_{j} v_{k} E\left[r_{i j} r_{i k}\right]\right)=\sum_{j=1}^{n} v_{j}^{2}=\|v\|^{2}=1 .
\end{aligned}
$$

Therefore, $E\left[\|f(v)\|^{2}\right]=\sum_{i=1}^{n} E\left[X_{i}^{2}\right]=k$.
We now use Chernoff bounds to prove the inequalities

$$
\operatorname{Pr}\left[\frac{\|f(v)\|}{\sqrt{k}\|v\|} \leq 1+\varepsilon\right] \geq 1-\frac{1}{2 n^{2}} \quad \text { and } \quad \operatorname{Pr}\left[\frac{\|f(v)\|}{\sqrt{k}\|v\|} \geq 1-\varepsilon\right] \geq 1-\frac{1}{2 n^{2}},
$$

which together imply the theorem. We give the argument for the lefthand inequality only (the argument for the righthand inequality is similar). Since $\|v\|=1$, this means we must show $\operatorname{Pr}\left[\|f(v)\|^{2} \geq k(1+\varepsilon)^{2}\right] \leq \frac{1}{2 n^{2}}$.

Let Y be the random variable $\|f(v)\|^{2}$ and let $\alpha=k(1+\varepsilon)^{2}$. For every $s>0$, we have $\operatorname{Pr}[Y>\alpha]=\operatorname{Pr}\left[e^{s Y}>e^{s \alpha}\right]$. Recall Markov's inequality: $E[X \geq \beta] \leq \frac{E[x]}{\beta}$ where X is a nonnegative random variable and $\beta>0$. We apply Markov's inequality to get

$$
\operatorname{Pr}[Y>\alpha]=\operatorname{Pr}\left[e^{s Y}>e^{s \alpha}\right] \leq \frac{E\left[e^{s Y}\right]}{e^{s \alpha}}=e^{-s \alpha} E\left[e^{s \sum_{i=1}^{k} X_{i}^{2}}\right]=e^{-s \alpha} \prod_{i=1}^{k} E\left[e^{s X_{i}^{2}}\right]
$$

where the last equality follows from independence of the random variables X_{1}, \ldots, X_{k}. Each X_{i} is Guassian with mean 0 and variance 1 , so by elementary calculus

$$
E\left[e^{s X_{i}^{2}}\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{s t^{2}} e^{-t^{2} / 2} d t=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{\left(s-\frac{1}{2}\right) t^{2}} d t
$$

We now apply a change of variables, letting $u^{2}=(1-2 s) t^{2}$ so that $d t=\frac{u}{t} \frac{1}{1-2 s} d u=\frac{1}{\sqrt{1-2 s}} d u$. Thus,

$$
E\left[e^{s X_{i}^{2}}\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{\left(s-\frac{1}{2}\right) t^{2}} d t=\frac{1}{\sqrt{1-2 s}} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{-\frac{u^{2}}{2}} d u=\frac{1}{\sqrt{1-2 s}}
$$

Plugging this into (\dagger), we get

$$
\operatorname{Pr}[Y>\alpha]=e^{-s \alpha}(1-2 s)^{-\frac{k}{2}} .
$$

We now choose $s=\frac{1}{2}-\frac{k}{2 \alpha}$, so that $1-2 s=\frac{k}{\alpha}$. This gives

$$
e^{-s \alpha}(1-2 s)^{-\frac{k}{2}}=e^{-\frac{\alpha}{2}\left(1-\frac{k}{\alpha}\right)}\left(\frac{k}{\alpha}\right)^{-\frac{k}{2}}=e^{\frac{k-\alpha}{2}}\left(\frac{k}{\alpha}\right)^{-\frac{k}{2}} .
$$

Recall that $\alpha=k(1+\varepsilon)^{2}$. Thus, we have:

$$
\begin{aligned}
e^{\frac{k-\alpha}{2}}\left(\frac{k}{\alpha}\right)^{-\frac{k}{2}} & =e^{-\varepsilon k-\frac{\varepsilon^{2}}{2} k} e^{-\frac{k}{2} \ln \left(\frac{k}{\alpha}\right)}=e^{-\varepsilon k-\frac{\varepsilon^{2}}{2} k} e^{-\frac{k}{2} \ln \left(\frac{1}{(1+\varepsilon)^{2}}\right)} \\
& =e^{-\varepsilon k-\frac{\varepsilon^{2}}{2} k} e^{k \ln (1+\varepsilon)}=e^{k\left(-\varepsilon-\frac{1}{2} \varepsilon^{2}+\varepsilon-\frac{1}{2} \varepsilon^{2}+O\left(\varepsilon^{3}\right)\right)}=e^{-k \varepsilon^{2}+k O\left(\varepsilon^{3}\right)},
\end{aligned}
$$

using the taylor's expansion $\ln (1+x)=x-\frac{x^{2}}{2}+O\left(x^{3}\right)$.
Taking $k=\Theta\left(\frac{\log n}{\varepsilon^{2}}\right)$, we have

$$
\operatorname{Pr}\left[f(v)^{2} \geq k(1+\varepsilon)^{2}\right]=e^{-k \varepsilon^{2}+O\left(k \varepsilon^{3}\right)}=O\left(\frac{1}{2 n^{2}}\right) .
$$

Alon's Theorem (to be continued)

In the next lecture, we will give a proof of Alon's theorem. For now, we give a sketch of the proof. Let $v_{1}, \ldots, v_{n+1} \in \mathbb{R}^{d}$ be such that $1 \leq\left\|v_{i}-v_{j}\right\| \leq 1+\varepsilon$ for all $i \neq j$. The theorem states that $d=\Omega\left(\frac{\log n}{\varepsilon^{2} \log \frac{1}{\varepsilon}}\right)$.

Clearly, we can assume that $v_{n+1}=(0, \ldots, 0)$ by translating al vectors v_{i}. We then scale vectors v_{i} to obtain new vectors v_{i}^{\prime} such that $\left\|v_{i}^{\prime}\right\|=1$. After scaling, we have $\left|\left\|v_{i}^{\prime}-v_{j}^{\prime}\right\|-1\right|=O(\varepsilon)$. We
now look at the symmetric matrix $B=\left(\left\langle v_{i}^{\prime}, v_{j}^{\prime}\right\rangle\right)_{1 \leq i, j \leq n}$, which has the form

$$
\left(\begin{array}{ccccc}
1 & & & & \\
& 1 & & {\left[\frac{1}{2}-\varepsilon, \frac{1}{2}+\varepsilon\right]} \\
& & 1 & & \\
& & & 1 & \\
\\
{\left[\frac{1}{2}-\varepsilon, \frac{1}{2}+\varepsilon\right]} & \ddots & \\
& & & & 1
\end{array}\right)
$$

i.e., ones along the diagonal and all other entries between $\frac{1}{2}-\varepsilon$ and $\frac{1}{2}+\varepsilon$. This matrix has rank d. Alon's theorem is proved by establishing a lower bound on d in terms of n and ε.

References

[1] N. Alon, Problems and results in extremal combinatorics, I, Discrete Math. 273 (2003), 31-53.
[2] A. Barvinok, Lecture Notes on Measure Concentration, available from http://www.math.lsa.umich.edu/ barvinok/total710.pdf.

