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only allowing perturbations that are upper k-Hessenberg, meaning a matrix containing exactlyk subdiagonals below and including the diagonal. The result we will show is that generically,the eigenvalue perturbations follow the greediest possible pattern consistent with forming norings bigger than k. We then generalize and examine some multiple Jordan block cases.Our interest in this problem came from a perturbation study of Ruhe's matrix [5] usingthe qualitative approach proposed by Chatelin and Frayss�e [4]. We found that non-genericbehaviors occurred some small percentage of the time. Chatelin and Frayss�e themselves pointout in one example [4, page 192] that only 97% of their examples follow the expected behavior.We also became interested in this problem because we wanted to understand how eigenvaluesperturb if we move in some, but not all normal directions to the orbit of a matrix with aparticular Jordan form such as in Arnold's versal deformation [1, 6]. Such information maybe of value in identifying the nearest matrix with a given Jordan structure. Finally, we pointout, that the �-pseudo-spectra of a matrix can depend very much on the sparsity structureof the allowed perturbations. Following an example from Trefethen [10], if we take a Jordanblock J and then compute in the presence of roundo� error, A = QTJQ, where Q is a bandedorthogonal matrix, then the behavior of kAkk, is quite di�erent from what would happen if Qwere dense.It is generally known [2, page 109],[7] that if a matrix A is perturbed by any matrix �B,then the eigenvalues split into clusters of rings, and their expansion in � is a Puisseaux series.Unfortunately, the classical references give little information as to how the eigenvalues splitinto clusters as a function of the sparsity structure of the perturbation matrix. It is obviousgenerically, that for each Jordan block of size k, the multiple eigenvalue breaks into rings ofsize k. Explicit determination of the coe�cients of the �rst order term may be found in [8]. Aresurrection of both this result and a Newton diagram approach originally found in [11] maybe found in [9].In this paper, we explore the case when B is upper k-Hesseberg employing some techniquesby Burke and Overton [9]. For example, suppose that we perturb a 7� 7 Jordan block J witha matrix �B, where B has the form: 2



Bn nk kFigure 1: B = upper k-Hessenberg matrixWe assume that k denotes the number of subdiagonals (including the main diagonal itself)that is not set to zero. If B were dense, the eigenvalues would split uniformly onto a ring ofradius O(� 17 ). However, if k = 4, we obtain one ring of size 4 with radius O(� 14 ) and one ring ofsize 3 with radius O(� 13 ) as illustrated in Figure 2. Figure 3 contains a table of possible ring
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Figure 2: Example rings for n = 7 and k = 4. We collected eigenvalues of 50 di�erent randomJn(0) + �B, � = 10�12. The �gure represents 50 di�erent copies of one 4-ring and 50 copies ofone 3-ring. The two circles have radii 10�3 and 10�4. If B were a random dense matrix, therewould be only one 7-ring with radius O(10� 127 ).sizes when n = 7 for k = 1; : : : ; 7. 3



ring sizek 1 2 3 4 5 6 71 72 1 33 1 24 1 15 1 16 1 17 1Figure 3: Table for one Jordan block of size 7. The entries in each row are the number of ringsof a given size when the perturbation is upper k-Hessenberg.Our main result is that if a Jordan block of size n is perturbed by an upper k-Hessenbergmatrix, then the eigenvalues split into dnk e rings, where p � bnk c of them are k-rings with radiusO(� 1k ), and if k does not divide n, there is one remaining r-ring with radius O(� 1r ), wherer � n mod k. Moreover, the �rst order perturbation of the pk eigenvalues in the k-rings onlydepends on the kth diagonal of B.In Section 3, we extend these results to the case of t equally sized Jordan blocks. LetA = Diag[J1; J2; :::Jt], where the Ji's are n � n Jordan blocks, and we conformally partitionB = 26666664B11 B12 : : : B1tB21 B22 : : : B2t: : : : : : : : : : : :Bt1 Bt2 : : : Btt37777775 :Suppose every Bij is an upper k-Hessenberg matrix. We will show in Theorem 3 thatgenerically, the eigenvalues break into tdnk e rings, tp of them are k-rings and the remaining tare r-rings if k does not divide n. Here, p and r has the same meaning as before. Again, the�rst order perturbation of the �rst tpk eigenvalues only depends on the kth diagonal of everyBij . 4



For example, if A = J7(�1)� J7(�2);so that n = 7 and t = 2, our block upper k-Hessenberg matrices have the form
B =

266666666666666666666666666666666666664
� � � � � � �� � � � � � �� � � � � � �0 � � � � � �0 0 � � � � �0 0 0 � � � �0 0 0 0 � � �

� � � � � � �� � � � � � �� � � � � � �0 � � � � � �0 0 � � � � �0 0 0 � � � �0 0 0 0 � � �� � � � � � �� � � � � � �� � � � � � �0 � � � � � �0 0 � � � � �0 0 0 � � � �0 0 0 0 � � �
� � � � � � �� � � � � � �� � � � � � �0 � � � � � �0 0 � � � � �0 0 0 � � � �0 0 0 0 � � �

377777777777777777777777777777777777775 ;i.e. k = 3, hence r = 1.In this case, the eigenvalues of A+ �B will split into two 3-rings centered at �1 with radiiO(� 13 ), two 3-rings centered at �2 with radii O(� 13 ), one 1-ring centered at �1 with radius O(�),and one 1-ring centered at �2 with radius O(�). See Figure 4 for a list of possible rings whenk = 1; : : : ; 7 and n = 7. 5



ring sizek 1 2 3 4 5 6 71 142 2 63 2 44 2 25 2 26 2 27 2Figure 4: Table for two blocks, column index represents size of rings and row index value of k.Entries are number of rings.2 One Block CaseSuppose that the Jordan form of A is simply one Jordan block. We assume that A = Jn(0),which we will perturb with �B, where B has the sparsity structureB = k 8>>>>>>>>><>>>>>>>>>:n� k8>>>>>>>>><>>>>>>>>>:
266666666666666666666666664
� � : : : : : : : �: :: :: :� :0 � :0 0 : :: : : :: : : :0 : : : 0 � : : : �

377777777777777777777777775 :6



De�nition 1 Suppose a matrix has k subdiagonals that are closest to the main diagonal (in-cluding the main diagonal), not zero, then we call the matrix an upper k-Hessenberg matrix.De�nition 2 Suppose for � su�ciently small,�j = �+ c� 1k!j + o(� 1k );for j = 0; 1; : : : ; k � 1. We then refer to the set f�1(�); : : : ; �k(�)g as a k-ring. Here ! = e 2�ikand we refer to c 6= 0 as the ring constant.Lemma 1 [7, page 65] Let � be a multiple eigenvalue of A with multiplicity s, then there willbe s eigenvalues of A+ �B grouped in the manner f�11(�), : : : , �1s1(�)g, f�21(�), : : : , �2s2(�)g,: : : , and in each group i, the eigenvalues admit the Puiseux series�ih(�) = �+ �i1!hi � 1si + �i2!2hi � 2si + : : :for h = 1; : : : ; si. Here !i = e 2�isi .Our Theorem 1 shows how the eigenvalues split into rings, and in Theorem 2 we analyzethe ring constant c.Theorem 1 Let A, B, n� k and n be given as above. Let r be the remainder of n divided byk, i.e. n = pk + r, 0 � r < k. The eigenvalues of A + �B will then generically split into a) pk-rings and b) one r-ring if r 6= 0.Proof :In part a) of our proof, we show that the eigenvalues split into p k-rings. In part b), we provethe statement about the possible existence of one r-ring.Part a:First, we study the p k-rings. In this case, we proceed to show by a change of variables that infact, only the lowest subdiagonal plays a role in the �rst order perturbation theory.Let � = �� 1k and z = � 1k . Let L1 = diag[z�1; z�2; : : : ; z�n] (1)7



and R1 = diag[1; z1; : : : ; zn�1] (2)be scaling matrices. Consider M(z) � L1(�I�J � �B)R1 = (L1(�zI �J � zkB)R1). At z = 0,it has the form M(0) = 26666666666666664 � �1� �1: :� : :� : :� � �1� �
37777777777777775 : (3)M(0) has only three diagonals, and the kth subdiagonal has the original entries of B on it.We claim that f(�) � det(M(0)) has the form �rq(�k), where q(�) is a polynomial of orderp and its constant term does not vanish generically. Let! = e2i�=k: (4)Let L01 be L1 with z replaced by !, i.e.L01 = diag[!�1; !�2; : : : ; !�n];and let R01 be R1 with z replaced by !, i.e.R01 = diag[1; !1; : : : ; !n�1];then !�nf(!�) = !�1�2�����nf(!�)!0+1+���+(n�1)8



= det0BBBBBBBBBBBBBBB@L01 26666666666666664 !� �1!� �1: :� : :� : :� !� �1� !�
37777777777777775R011CCCCCCCCCCCCCCCA = det26666666666666664 � �1� �1: :� : :� : :� � �1� �

37777777777777775 = f(�):Therefore f(�) = !�nf(!�) = !�rf(!�), from which we can see f(�) must be of the form�rq(�k).
Figure 5: M after it is dividedWe now check that the extreme terms of f(�), of degree n and r, do not vanish. The product ofthe diagonal entries gives the highest order term �n in f(�). Now consider the �r term. Dividethe matrix M into p k � k diagonal blocks and one r � r block as in Figure 5. We show thatthe �r term generically does not vanish by considering the coe�cient of �r term of f(�) as apolynomial in the �'s entries. In the �rst p blocks, we take all the �1's and the one element atthe left bottom corner of every block, in the last block, we take all the �'s, generically, we willget one nonzero coe�cient term, hence generically, the coe�cient polynomial will not vanish.This proves the claim. 9



Since the polynomial q(�) has p nonzero roots, which we denote c1, c2, : : : , cp , then thepolynomial f(�) = �rq(�k) has pk non-zero roots distributed evenly on p circles. From theimplicit function theorem, there are pk roots of the determinant of the original matrix nearz = 0 that have the form kpci + o(z), for i = 1; 2 : : : ; p. Note that kpci yields k di�erent values!0; : : : ; !k�1 for every i. This shows the pk eigenvalues form p k-rings, this completes the �rsthalf of the proof.Part b:We now investigate the remaining r eigenvalues when r > 0. Consider the determinant ofJ + �B, which equals the product of all the eigenvalues. By partitioning J + �B as in Figure 5,and picking the entries similarly in the �rst p blocks too, while in the last block, still pickingall the �1's and the left bottom corner element, we get an O(�p+1) term generically. Thereforegenerically, det(J + �B) � O(�p+1). Since the product of the �rst pk eigenvalues = O(�p), theproduct of the remaining r eigenvalues = O(�). From Lemma 1, they form an r-ring. Thiscompletes the proof of Theorem 1.The analysis of the last r eigenvalues, while straightforward in the one block case, is moredi�cult when we proceed to the next section. We therefore provide an alternative proof whichgeneralizes.Alternative proof of Theorem 1 Part b:Let L2 = diag[DL; z�rIk�r ; z�rDL; z�2rIk�r ; : : : ; z�prDL]; (5)where DL = diag[z�1; : : : ; z�r]:Let R2 = diag[DR; zrIk�r ; zrDR; z2rIk�r; : : : ; zprDR]; (6)10



where DR = diag[z0; : : : ; zr�1]:Also as with our original proof, we make a change of variables by setting � = �z and z = � 1r .Let N(z) = L2(�I � J � �B)R2 = L2(�zI � J � zrB)R2:Figure 6 illustrates N(0).* * * * *
�Jk�r �Jk�r

�Jk�r
-1 -1 -1 -1 -1 -1 -1 -1Figure 6: Shaded triangles and thick lines contain the original entries of B. Squares markedwith �'s are �I � Jr blocks.Again we claim that g(�) � det(N(0)) is a polynomial of �r. Let! = e 2�ir (7)11



and let L20=L2 with z replaced by ! and R20=R2 with z replaced by !. Replace � in g(�) by!�, then we get g(!�) = !�r(p+1)g(!�) = det(L20N!�(0)R20) = g(�):Here N!�(0) represents the matrix N(0) with !� instead of � on the main diagonal. Therefore,g is a polynomial of �r, say g(�) = h(�r). By taking all the �1's and the left bottom elementof every block, we can see the constant term is generically not zero. By taking the same entriesof the �rst p blocks and all the �'s of the last block, we obtain a nonzero �r term generically.Hence there are at least r roots of h(�r), and they are the rth root of some constant c. By theimplicit function theorem there are at least r eigenvalues having the expression rpc!j� 1r +o(� 1r ),with j = 0; : : : ; r � 1. They form an r-ring. This is as many as we can get since we alreadyhave pk of the eigenvalues from Part a).Theorem 2 The kth power of the ring constants for the k-rings are the roots of q(z), whereq(z) = zp + �1zp�1 + � � �+ �izp�i + � � �+ �p; (8)and �i = Xlj+1�lj�k �l1�l2 : : :�li (9)for i = 1; : : : ; p, where �1; : : : ; �n�k+1 denote the elements on the kth diagonal of B. So longas �p 6= 0, we obtain the generic behavior described in Theorem 1.This can be proved by a combinatorial argument as follows:Proof :Consider the matrix M(0) as in Equation (3) and the �n�jk term in its determinant f(�),where j = 0; : : : ; p. We write out the indices of the columns of M in a column on the leftand the indices of the rows of M in a column on the right, and connect the indices i� thereis a structurally nonzero entry in the position of M(0) as in Figure 7. Then, every perfect12



column row1 �2 �3 �4 ��t� k + 1 ������t ��n� k+1 �����n �
1� 2� 3� 4��� k� k + 1���� t������ n� 1� n�Figure 7: Bipartite graph of M . Only important lines for the argument are shown.matching obtained from a subset of this graph will give us a term in the determinant of M .The horizontal lines correspond to the diagonal entries �, so we are interested in matchingswith n � jk horizontal lines. The downward sloping lines correspond to the kth subdiagonal,the upperward sloping lines are the superdiagonal consisting of �1's. Assume that the �rstdownward sloping line (there must be one in the perfect matching except when j = 0) that wepick connects column t � k + 1 to row t, then all the numbers before t in the second columnwill be paired with the same number or just one step larger in the �rst column, which meansall the �rst t numbers in the second column will be paired with the �rst t numbers in the �rstcolumn. We proceed to show that every downward sloping line is matched with k � 1 upwardsloping lines and that the set together takes the place of k horizontal lines. To be precise, the�rst t � k lines must be horizontal lines, and the remaining k � 1 are upward sloping. Thisleaves us with the numbers from t + 1 to n in both columns and the situation returns exactly13



to what we began with, we may proceed by induction. Also, since the downward sloping linesmust be at least k apart, we have lj+1 � lj � k as in Equation (9). Also, we �nd that everydownward sloping line is associated with k � 1 upperward sloping lines which means a loss ofk horizontal lines from a total of n. Once we succeed in �nding j downward sloping lines, wewill lose a total of jk horizontal lines and we get the term �n�jk . This completes the proof.When k > n2 , Equation (9) simpli�es to: the sum of the elements on the kth subdiagonalis not zero. In such cases, J. Burke and M. Overton([3, Theorem 4]) gave a general result onthe characteristic polynomial of A + �B: the coe�cient of every term ��i is the sum of theelements on the (n� i)th subdiagonal for i = 0; 1; : : : ; n� 1. From this theorem, if we assumethat the last subdiagonal that does not sum up to zero is the kth subdiagonal, for k > n2 , usinga Newton diagram (see Figure 8 for an example of a Newton diagram), it can be easily seenthat the eigenvalues split into one k-ring and one (n� k)-ring.
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Figure 8: Newton diagram14



Actually, we can argue similarly for the k < n2 case. When the sum �p is zero, the constantterm of q(�) in Equation (8) is zero. Generically, this results in the loss of one k-ring. Considerthe Newton diagram: the (pk; k) point moves up and the whole diagram generically breaks intothree segments, one with slope 1k , of length (p�1)k and one with slope 1k�1 , of length k�1 andone with slope 1r+1 , of length r+1. This means it has (p�1)k eigenvalues forming p�1 k-ringsand k � 1 eigenvalues forming one (k � 1)-ring and r + 1 eigenvalues forming an (r + 1)-ring.There are two special cases when this does not happen. One is when k�1 = r+1, then the lasttwo segments combine into one segment. The other is when k � 1 < r + 1 which can happenwhen k = r + 1, and the whole diagram breaks into only two segments, the �rst one remainsuntouched, and the second one has slope 2k+r , length k + r.3 t Block Case (All Bij's are upper k-Hessenberg matrices)We now study the case when the Jordan form of A has t blocks all with the same size n. Here,we only consider the admittedly special case where the perturbation matrix B has the blockupper k-Hessenberg form: if we divide B into n�n blocks, every Bij is an upper k-Hessenbergmatrix. In this special case, we haveTheorem 3 Let A, B, n � k and n be given as above and let r be the remainder of n dividedby k, i.e. n = pk + r, 0 � r < k. The eigenvalues of A+ �B will then split into tp k-rings andt r-rings if r 6= 0.Proof : The proof follows closely that of the proof of Theorem 1.Part a:Let L1 be a block diagonal matrix with t blocks and every block has the form as in Equation(1). Let R1 be a block diagonal matrix with t blocks and every block has the form in Equation(2). Let M(z) = L1(�I � J � �B)R1:15



Then M(0) breaks into t2 n � n blocks. All of the diagonal blocks have the same form as inEquation (3) and the form of the o� diagonal blocks results from replacing the �'s and �1'swith 0's in the diagonal blocks. Call the resulting matrix M(0). We can reach the same claimthat f(�) � det(M(0)) = �r0q(�k);where r0 � nt mod k. By considering the diagonal blocks we can see that generically the terms�nt and �rt appear. This can be shown simply by using the same ! as in Equation (4) andconstructing L01 and R01 by replacing the z's in L1 and R1 with !'s, and going through exactlythe same procedure. Thus, we will have at least nt � rt = tpk eigenvalues yielding the formkpci� 1k + o(� 1k ), i = 1; :::tp. Note that every kpci gives k values. They form pt k-rings.Part b:Let L2 be a block diagonal matrix with t blocks and every block has the form as in Equation (5).Let R2 be a block diagonal matrix with t blocks and every block has the form as in Equation(6). Let N(z) = L2(�I � J � �B)R2:Then N(0) breaks into t2 n� n blocks. All of the diagonal blocks have the same form as N(0)in Figure 6 and the form of the o� diagonal blocks results from replacing the �'s and �1's with0's in the diagonal blocks. We can reach the same claim thatg(�) � det(N(0)) = h(�r)and by considering the diagonal blocks we can see generically the term �0 and �rt appear. Thiscan be shown simply by using the same ! as in Equation (7) and construct L02 and R02 byreplacing the z's in L2 and R2 with !'s, and going through exactly the same procedure. Thus,we will have at least rt eigenvalues yielding the form rpcl� 1r + o(� 1r ), here l = 1; :::t. Note thatevery rpcl gives r values. They form t r-rings.Since the matrix J + �B has only nt eigenvalues, it must have exactly tpk and tr of each.This completes the proof of the theorem. 16



4 t block case (Every Bij is an upper Kij-Hessenberg matrix)When the number of subdiagonals in each Bij di�ers, the situation becomes much more compli-cated, the general problem remains open. We have some observations in four special cases. LetKij = the number of subdiagonals of Bij , for 1 � i; j � n, i.e., Bij is an upper Kij-Hessenbergmatrix.Theorem 4Case 1:Let Kmax = max(Kij), i = 1; : : : ; n, j = 1; : : : ; n. If K11 = K22 = ::: = Ktt = Kmax thenTheorem 3 holds by replacing k with Kmax.Case 2:Let Kmax = max(Kij). If we can �nd t Kij's equal to Kmax s.t. no two of them are in the samerow or column, then the result from Theorem 3 holds for Kmax.Case 3:When Kii � Kij, Kii � Kji for all i and j, and Kii � n2 , then the resulting eigenvalue behaviorlooks like putting the t diagonal blocks together, i.e, J + �B has Kii eigenvalues that form oneKii-ring for i = 1; : : : ; t . It also has n � Kii eigenvalues that form one (n � Kii)-ring fori = 1; : : : ; t.Case 4:If we can �nd t numbersKi1j1 ; Ki2j2 ; : : : ; Kitjt , all � n2 , such that Kisjs � Kisl andKisjs � Kmjsfor any l and m, s = 1; : : : ; t, and is 6= is0 , js 6= js0 , when s 6= s0, then the results in Case 3 hold.Proof of Case 1:This can be checked simply by replacing all of the Kij 's with Kmax and noticing that the proof17



of Theorem 3 is still valid, in that the genericity condition is the same even if some of the o�diagonal entries are zero.Proof of Case 2:We also replace all the Kij 's with Kmax. The proof of Theorem 3 remains valid with a minormodi�cation. While some terms in p(�) may be 0 in one block, one can always obtain non-zeroterms in each block row and column in the block with Kij = Kmax. This will guarantee thesame nonzero terms generically.The following is an example where t = 2:266666666666666666666666666666666666666666664
� �1� �1| � �1| � �1| � �1| � �1| � �1| � ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~

� �1� �1| � �1| � �1| � �1| � �1| � �1| �

377777777777777777777777777777777777777777775This is an example in which instead of taking |'s which may be all zeros, we take ~'s whichare nonzero generically. 18



Proof of Case 3:For any Kii, let L1i be a diagonal matrix formed by t blocks of size n � n. For block j, ifKjj � Kii, then the block will be diag[z�1; z�2; :::z�n];if Kjj � Kii, then the block will bediag[Dli; z�n+KiiIKii�n+Kjj ; z�n+KiiDlj ]; (10)where Dli = diag[z�1; : : : ; z�n+Kii ] (11)and Dlj = diag[z�1; : : : ; z�n+Kjj ]:Let R1i be a diagonal matrix formed by t blocks of size n� n. For block j, if Kjj � Kii, thenthe block will be diag[z0; z1; :::zn�1];if Kjj � Kii, then the block will bediag[Dri; zKiiIKii+Kjj�n; zKiiDrij ]; (12)where Dri = diag[z0; : : : ; zKii�1]; (13)and Drij = diag[z0; : : : ; z2n�Kii�Kjj�1]:19



Let � = �z, z = � 1Kii and Mi(z) = L1i(�I � J � �B)R1i . Then Mi(0) is a t � t block matrixwhere the jth diagonal block looks like either the M(0) in Equation (3) for k = Kii or the blockhas the form 266666666666666666666666666666664
� �1: :� �1� 0 �1� 0 �1: : :: : :� 0 1� � �1: : :: : :� �

377777777777777777777777777777775Here, the �'s on the �rst column appear from the Kiith row to Kjjth row. The o� diagonalblock M(0)ilm looks the same as in Equation (3) with k = max(l;m). Replacing z in L1i andR1i with !, which is e 1Kii , to get L01i and R01i, we get the same conclusion that det(Mi(0)) isof the form �n�Kiip(�Kii) and by extracting the constant terms from the diagonal blocks withthe new form above and the �n�Kii terms and the �n terms from all the other diagonal blocks,we get the result that there are at least tiKii eigenvalues forming ti Kii-rings. Here, ti is thenumber of times Kii appears on the diagonal.For any Kii, let L2i be a diagonal matrix formed by t blocks of size n � n. For block j, ifKjj � Kii, then the block will bediag[Dli; z�n+KiiI2Kii�n; z�n+KiiDli];20



where Dli is given by Equation (11), ifKjj � Kii, then the block will be the same as in Equation(10). Let R2i be a diagonal matrix formed by t blocks of size n � n. LetDni = diag[z0; : : : ; zn�Kii�1]: (14)For block j, if Kjj � Kii, then the block will bediag[Dni; zn�KiiI2Kii�n; zn�KiiDni];if Kjj � Kii, then the block will bediag[Dni; zn�KiiIKjj+Kii�n; zn�KiiDnj ];where Dnj and Dni follows the de�nition in Equation (14). Let � = �z and z = � 1n�Kii . Itcan be checked that L2i(�I � J � �B)R2i at z = 0 is a t � t block matrix N(0)i while the jthdiagonal block looks like266666666666666666666666666666664
� �1: :: :� � �1� 0 �1: : :: : :� 0 �1� � �1: : :: : :� �

377777777777777777777777777777775 :For Kjj � Kii, the � in the �rst column goes from the (n � Kii)'th row to the Kiith row,while for Kjj � Kii, the � in �rst column goes from the (n � Kii)th row to the Kjjth row.For the o� diagonal blocks, if l < m, then N(0)lm has exactly the same form as N(0)ll with �21



and �1 replaced by 0. If l > m, then it has the form M(0)mm with only the �'s on the �rstcolumn remaining. Taking L02i and R02i as L2i and R2i with z replaced by ! = e 2�in�Kii , we �ndthat det(Ni(0)) is f(�n�Kii) and the constant term and �(n�Kii)ti term appear generically byinspecting the diagonal blocks only. So J + �B has at least (n �Kii)ti eigenvalues forming ti(n�Kii)-rings. Comparing the total number of eigenvalues of J + �B, we reach the conclusion.Proof of Case 4:This can be proved by treating the Ki1j1 ; Ki2j2 ; :::Kitjt as K11; K22; :::Ktt's as in Case 3 andgoing through the same proof, applying the same permutation as in Case 2.References[1] V. I. Arnold. On Matrices Depending on Parameters. Russian Math. Surveys, pages 29{43,1971.[2] H. Baumg�artel. Analytic Perturbation Theory for Matrices and Operators. Birkh�auser,Basel, 1985.[3] James V. Burke and Michael L. Overton. Stable Perturbations of Nonsymmetric Matrices.Linear Algebra Appl., pages 249{273, 1992.[4] F. Chaitin-Chatelin and V. Frayss�e. Lectures on Finite Precision Computations. SIAM,Philadelphia, 1996.[5] A. Edelman, E. Elmroth, and B. K�agstr�om. A Geometric Approach to Perturbation Theoryof Matrices and Pencils: Part 2: Strati�cations. Submitted to SIAM J. Mat. Anal Appl.[6] A. Edelman, E. Elmroth, and B. K�agstr�om. A Versal Deformation Approach To Pertur-bation Theory of Matrices and Pencils: Part 1: Versal Deformations. SIAM J. Mat. AnalAppl., to appear. 22
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