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Abstract

We show that if an n x n Jordan block is perturbed by an O(e) upper k-Hessenberg
matrix (k subdiagonals including the main diagonal), then generically the eigenvalues split
into p rings of size k and one of size r (if » # 0), where n = pk + r. This generalizes the
familiar result (k = n,p = 1,7 = 0) that generically the eigenvalues split into a ring of size
n. We compute the radii of the rings to first order and the result is generalized in a number

of directions involving multiple Jordan blocks of the same size.

Keywords: Eigenvalue, Perturbation, Jordan form

AMS Classfication: 65F15

1 Introduction

Perturb an n X n Jordan block by order ¢ mathematically or through rounding errors on a
computer, and typically the eigenvalues split up into a ring of radius O(el/”). This paper

studies the non-typical behavior. We stifle the matrix’s ability to form large eigenvalue rings by
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only allowing perturbations that are upper k-Hessenberg, meaning a matrix containing exactly
k subdiagonals below and including the diagonal. The result we will show is that generically,
the eigenvalue perturbations follow the greediest possible pattern consistent with forming no
rings bigger than k. We then generalize and examine some multiple Jordan block cases.

Our interest in this problem came from a perturbation study of Ruhe’s matrix [5] using
the qualitative approach proposed by Chatelin and Frayssé [4]. We found that non-generic
behaviors occurred some small percentage of the time. Chatelin and Frayssé themselves point
out in one example [4, page 192] that only 97% of their examples follow the expected behavior.
We also became interested in this problem because we wanted to understand how eigenvalues
perturb if we move in some, but not all normal directions to the orbit of a matrix with a
particular Jordan form such as in Arnold’s versal deformation [1, 6]. Such information may
be of value in identifying the nearest matrix with a given Jordan structure. Finally, we point
out, that the e-pseudo-spectra of a matrix can depend very much on the sparsity structure
of the allowed perturbations. Following an example from Trefethen [10], if we take a Jordan
block J and then compute in the presence of roundoff error, A = QTJQ, where @ is a banded
orthogonal matrix, then the behavior of ||A*||, is quite different from what would happen if Q
were dense.

It is generally known [2, page 109],[7] that if a matrix A is perturbed by any matrix €B,
then the eigenvalues split into clusters of rings, and their expansion in ¢ is a Puisseaux series.
Unfortunately, the classical references give little information as to how the eigenvalues split
into clusters as a function of the sparsity structure of the perturbation matrix. It is obvious
generically, that for each Jordan block of size k, the multiple eigenvalue breaks into rings of
size k. Explicit determination of the coefficients of the first order term may be found in [8]. A
resurrection of both this result and a Newton diagram approach originally found in [11] may
be found in [9].

In this paper, we explore the case when B is upper k-Hesseberg employing some techniques
by Burke and Overton [9]. For example, suppose that we perturb a 7 x 7 Jordan block J with

a matrix €¢B, where B has the form:



Figure 1: B = upper k-Hessenberg matrix

We assume that k& denotes the number of subdiagonals (including the main diagonal itself)
that is not set to zero. If B were dense, the eigenvalues would split uniformly onto a ring of
radius O(e%). However, if k = 4, we obtain one ring of size 4 with radius O(e%) and one ring of

size 3 with radius O(e%) as illustrated in Figure 2. Figure 3 contains a table of possible ring
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Figure 2: Example rings for n = 7 and &k = 4. We collected eigenvalues of 50 different random
J,(0) + €B, € = 107!2. The figure represents 50 different copies of one 4-ring and 50 copies of
one 3-ring. The two circles have radii 107> and 10~*. If B were a random dense matrix, there

would be only one 7-ring with radius 0(10_17_2).

sizes when n =7 for k=1,...,7.



ring size

1 2 3 4 5 6 7
17
211 3
301 2
k
4 1 1
5 1 1
61 1
7 1

Figure 3: Table for one Jordan block of size 7. The entries in each row are the number of rings

of a given size when the perturbation is upper k-Hessenberg.

Our main result is that if a Jordan block of size n is perturbed by an upper k-Hessenberg
matrix, then the eigenvalues split into [ 7] rings, where p = | %] of them are k-rings with radius
O(e%)7 and if k& does not divide n, there is one remaining r-ring with radius O(e%), where
r =n mod k. Moreover, the first order perturbation of the pk eigenvalues in the k-rings only
depends on the kth diagonal of B.

In Section 3, we extend these results to the case of ¢ equally sized Jordan blocks. Let

A = Diag[Jy, Jo, ...J¢], where the J;’s are n x n Jordan blocks, and we conformally partition

Bi1 Bz Biy
B By Ba By
| Bu Be By |

Suppose every B;; is an upper k-Hessenberg matrix. We will show in Theorem 3 that
generically, the eigenvalues break into ¢[7] rings, tp of them are k-rings and the remaining ¢
are r-rings if k does not divide n. Here, p and r has the same meaning as before. Again, the
first order perturbation of the first {pk eigenvalues only depends on the kth diagonal of every
B;;.



For example, if

so that n = 7 and t = 2, our block upper k-Hessenberg matrices have the form

A= Jr (M) @& Jr(A2),

i.e. k=3, hence r = 1.

In this case, the eigenvalues of A + ¢B will split into two 3-rings centered at Ay with radii
O(e%), two 3-rings centered at Ay with radii O(e%)7 one l-ring centered at A; with radius O(e),

and one 1-ring centered at Ay with radius O(e€). See Figure 4 for a list of possible rings when

k=1,...,7and n =7T.
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ring size

1 2 3 4 5 6 7
1114
212 6
31 2 4
k
4 2 2
5 2 2
6| 2 2
7 2

Figure 4: Table for two blocks, column index represents size of rings and row index value of k.

Entries are number of rings.
2  One Block Case

Suppose that the Jordan form of A is simply one Jordan block. We assume that A = .J,,(0),

which we will perturb with ¢B, where B has the sparsity structure

* % *
k
*
B =
0 =
00
n—k
0 0 *



Definition 1 Suppose a matriz has k subdiagonals that are closest to the main diagonal (in-

cluding the main diagonal), not zero, then we call the matriz an upper k-Hessenberg matriz.

Definition 2 Suppose for ¢ sufficiently small,

Aj=A+ ce%wj + 0(6%)7

27

forj=0,1,....k — 1. We then refer to the set {\1(€),..., A\x(€)} as a k-ring. Here w = e &

and we refer to ¢ # 0 as the ring constant.

Lemma 1 [7, page 65] Let X be a multiple eigenvalue of A with multiplicity s, then there will
be s eigenvalues of A+ eB grouped in the manner {\11(¢€), ..., A5, (6)}, {A21(€), ..., Azs,(6) ],

., and in each group 1, the eigenvalues admit the Puiseux series

1 2
h, = 2h o
Ain(€) = A+ apwi'es + ajppw; e + ..

27

forh=1,...,s;. Herew; = e * .

Our Theorem 1 shows how the eigenvalues split into rings, and in Theorem 2 we analyze

the ring constant c.

Theorem 1 Let A, B, n — k and n be given as above. Let r be the remainder of n divided by
k, i.e. n=pk+r, 0 <r <k. The eigenvalues of A+ eB will then generically split into a) p

k-rings and b) one r-ring if r # 0.

Proof:

In part a) of our proof, we show that the eigenvalues split into p k-rings. In part b), we prove
the statement about the possible existence of one r-ring.

Part a:

First, we study the p k-rings. In this case, we proceed to show by a change of variables that in
fact, only the lowest subdiagonal plays a role in the first order perturbation theory.

Let A = ,ue% and z = e¥. Let

Ly =diag[z™", 272,...,27"] (1)



and

Ry =diag[l, 2, ..., 2"

(2)

be scaling matrices. Consider M (2) = Ly(M —J —eB)Ry = (Ly(pzl —J — 2*B)Ry). At 2 =0,

it has the form

M (0) has only three diagonals, and the kth subdiagonal has the original entries of B on it.

We claim that f(u) = det(M(0)) has the form u"q(u*), where ¢(-) is a polynomial of order

p and its constant term does not vanish generically. Let

W= e?wr/k‘

Let L} be Ly with z replaced by w, i.e.

L) =diaglw™ w2, .. 0™,

and let R| be R; with z replaced by w, i.e.

R = diag[l,w', ..., 0" ]

9

then

w_nf(w,u) — w—1—2_...—nf(wu)w0+1+...+(n_1)

(4)



wp —1 wo —1
wp —1 woo =1

=det | I} * L. Ry | =det | « L. = f(p).

* wp —1 * wo —1

* Wit * u

Therefore f(p) = w™"f(wp) = w™" f(wp), from which we can see f(u) must be of the form

Wg(pt).

Figure 5: M after it is divided

We now check that the extreme terms of f(-), of degree n and r, do not vanish. The product of
the diagonal entries gives the highest order term p” in f(r). Now consider the p” term. Divide
the matrix M into p k x k diagonal blocks and one r x r block as in Figure 5. We show that
the p” term generically does not vanish by considering the coefficient of p” term of f(u) as a
polynomial in the *’s entries. In the first p blocks, we take all the —1’s and the one element at
the left bottom corner of every block, in the last block, we take all the u’s, generically, we will
get one nonzero coefficient term, hence generically, the coeflicient polynomial will not vanish.

This proves the claim.



Since the polynomial ¢(-) has p nonzero roots, which we denote ¢y, ¢3, ..., ¢, , then the
polynomial f(u) = u"q(i*) has pk non-zero roots distributed evenly on p circles. From the
implicit function theorem, there are pk roots of the determinant of the original matrix near
z = 0 that have the form {/c; + o(z), for i = 1,2...,p. Note that {/c; yields k different values
W0, ..., w1t for every i. This shows the pk eigenvalues form p k-rings, this completes the first
half of the proof.

Part b:

We now investigate the remaining r eigenvalues when r > 0. Consider the determinant of
J 4 €B, which equals the product of all the eigenvalues. By partitioning J + ¢B as in Figure 5,
and picking the entries similarly in the first p blocks too, while in the last block, still picking
all the —1’s and the left bottom corner element, we get an O(e’*1) term generically. Therefore
generically, det(J + ¢B) > O(ePT!). Since the product of the first pk eigenvalues = O(e?), the

product of the remaining r eigenvalues = O(¢). From Lemma 1, they form an r-ring. This

completes the proof of Theorem 1. L]

The analysis of the last r eigenvalues, while straightforward in the one block case, is more
difficult when we proceed to the next section. We therefore provide an alternative proof which

generalizes.

Alternative proof of Theorem 1 Part b:

Let
Ly =diag[Dy, 2 "Ity 2 "Dp, 27" I1_.,...,2 " Dy}, (5)
where
Dy, = diag[z™!, ..., 27"]
Let

Ry = diag[Dg, 2" Ij_,, 2" DR, 2*" I1_,, ..., 2""Dg], (6)

10



where

Dpr = diag[2°,...,2 1.

1
T

Also as with our original proof, we make a change of variables by setting A = pz and z = €r.

Let
N(z)=Lay(AM —J —eB)Ry = La(puzl — J — 2" B)Rs.

Figure 6 illustrates N (0).

1

_Jk—r

AN < 11
\ —Jk—r

Figure 6: Shaded triangles and thick lines contain the original entries of B. Squares marked

with *’s are Al — .J,. blocks.

Again we claim that ¢g(p) = det(N(0)) is a polynomial of p”. Let

27

w=er (7)

11



and let Ly'=Ly with z replaced by w and Ry'=R5 with z replaced by w. Replace p in ¢g(u) by

wit, then we get
glwpn) = w7 P g(wp) = det(Ly' Ny (0)Ry') = g(n).

Here N,,,(0) represents the matrix N (0) with wp instead of g on the main diagonal. Therefore,
¢ is a polynomial of p", say g(u) = h(p"). By taking all the —1’s and the left bottom element
of every block, we can see the constant term is generically not zero. By taking the same entries
of the first p blocks and all the u’s of the last block, we obtain a nonzero u” term generically.
Hence there are at least r roots of h(p"), and they are the rth root of some constant c¢. By the
implicit function theorem there are at least r eigenvalues having the expression {/ije% —I—O(é%)7
with j = 0,...,r — 1. They form an r-ring. This is as many as we can get since we already

have pk of the eigenvalues from Part a). U

Theorem 2 The kth power of the ring constants for the k-rings are the roots of q(z), where
q(2) = 2P+ a2 b P T (8)
and
=Y. Buby...B, (9)
lig1—1;>k

fori=1,...,p, where B1,...,B,_k+1 denote the elements on the kth diagonal of B. So long

as o, # 0, we obtain the generic behavior described in Theorem 1.

This can be proved by a combinatorial argument as follows:

Proof:

Consider the matrix M(0) as in Equation (3) and the p"~7% term in its determinant f(u),
where 7 = 0,...,p. We write out the indices of the columns of M in a column on the left
and the indices of the rows of M in a column on the right, and connect the indices iff there

is a structurally nonzero entry in the position of M(0) as in Figure 7. Then, every perfect

12



column row

Figure 7: Bipartite graph of M. Only important lines for the argument are shown.

matching obtained from a subset of this graph will give us a term in the determinant of M.
The horizontal lines correspond to the diagonal entries u, so we are interested in matchings
with n — 7k horizontal lines. The downward sloping lines correspond to the kth subdiagonal,
the upperward sloping lines are the superdiagonal consisting of —1’s. Assume that the first
downward sloping line (there must be one in the perfect matching except when j = 0) that we
pick connects column t — k + 1 to row ¢, then all the numbers before ¢ in the second column
will be paired with the same number or just one step larger in the first column, which means
all the first t numbers in the second column will be paired with the first ¢ numbers in the first
column. We proceed to show that every downward sloping line is matched with £ — 1 upward
sloping lines and that the set together takes the place of k horizontal lines. To be precise, the
first t — k lines must be horizontal lines, and the remaining & — 1 are upward sloping. This

leaves us with the numbers from ¢ 4+ 1 to n in both columns and the situation returns exactly

13



to what we began with, we may proceed by induction. Also, since the downward sloping lines
must be at least k apart, we have [;41 — [; > k as in Equation (9). Also, we find that every
downward sloping line is associated with k& — 1 upperward sloping lines which means a loss of
k horizontal lines from a total of n. Once we succeed in finding 7 downward sloping lines, we

will lose a total of jk horizontal lines and we get the term p”~7%. This completes the proof. []

When k£ > %, Equation (9) simplifies to: the sum of the elements on the kth subdiagonal
is not zero. In such cases, J. Burke and M. Overton([3, Theorem 4]) gave a general result on
the characteristic polynomial of A + €B: the coefficient of every term e\’ is the sum of the
elements on the (n — 7)th subdiagonal for : = 0,1,...,n — 1. From this theorem, if we assume
that the last subdiagonal that does not sum up to zero is the kth subdiagonal, for & > 5, using
a Newton diagram (see Figure 8 for an example of a Newton diagram), it can be easily seen

that the eigenvalues split into one k-ring and one (n — k)-ring.

Newton Diagram in the case n=10, k=4
3 T T T T T

25F B
2l 4
1.5F b
1k 4
0.5F B
O(J L L L L L L L L L

0 1 2 3 4 5 6 7 8 9 10
pk n

Figure 8: Newton diagram

14



Actually, we can argue similarly for the & < & case. When the sum «, is zero, the constant
term of ¢(-) in Equation (8) is zero. Generically, this results in the loss of one k-ring. Consider
the Newton diagram: the (pk, k) point moves up and the whole diagram generically breaks into

three segments, one with slope %, of length (p— 1)k and one with slope klj, of length &k —1 and

1

one with slope g

of length »+1. This means it has (p— 1)k eigenvalues forming p— 1 k-rings
and k — 1 eigenvalues forming one (k — 1)-ring and r + 1 eigenvalues forming an (r + 1)-ring.
There are two special cases when this does not happen. One is when kK —1 = r41, then the last
two segments combine into one segment. The other is when k& — 1 < r + 1 which can happen
when k = r 4+ 1, and the whole diagram breaks into only two segments, the first one remains
2

untouched, and the second one has slope =, length & 4 r.

3 t Block Case (All B;;’s are upper k-Hessenberg matrices)

We now study the case when the Jordan form of A has t blocks all with the same size n. Here,
we only consider the admittedly special case where the perturbation matrix B has the block
upper k-Hessenberg form: if we divide B into n x n blocks, every B;; is an upper k-Hessenberg

matrix. In this special case, we have

Theorem 3 Let A, B, n — k and n be given as above and let r be the remainder of n divided
by k, i.e. n=pk+r, 0 <r < k. The eigenvalues of A+ e¢B will then split into tp k-rings and
t r-rings if r # 0.

Proof: The proof follows closely that of the proof of Theorem 1.

Part a:

Let Ly be a block diagonal matrix with ¢ blocks and every block has the form as in Equation
(1). Let Ry be a block diagonal matrix with ¢ blocks and every block has the form in Equation
(2). Let

M(z) = Ly(M — J — eB)R,.

15



Then M (0) breaks into t* n X n blocks. All of the diagonal blocks have the same form as in
Equation (3) and the form of the off diagonal blocks results from replacing the p’s and —17s
with 0’s in the diagonal blocks. Call the resulting matrix M (0). We can reach the same claim
that

F(p) = det(M(0)) = p"q(1"),

where rg = nt mod k. By considering the diagonal blocks we can see that generically the terms
p™ and p"t appear. This can be shown simply by using the same w as in Equation (4) and
constructing L} and R} by replacing the z’s in L; and Ry with w’s, and going through exactly
the same procedure. Thus, we will have at least nt — rt = tpk eigenvalues yielding the form
\k/c_ie% + 0(6%)7 i = 1,...tp. Note that every {/c; gives k values. They form pt k-rings.

Part b:

Let Ly be a block diagonal matrix with ¢ blocks and every block has the form as in Equation (5).
Let Ry be a block diagonal matrix with ¢ blocks and every block has the form as in Equation
(6). Let

N(z) = Ly(M — J — B)R,.

Then N (0) breaks into t* n x n blocks. All of the diagonal blocks have the same form as N (0)
in Figure 6 and the form of the off diagonal blocks results from replacing the p’s and —1’s with

0’s in the diagonal blocks. We can reach the same claim that

9(n) = det (N (0)) = h(u")

and by considering the diagonal blocks we can see generically the term u® and p"* appear. This
can be shown simply by using the same w as in Equation (7) and construct L}, and R) by
replacing the z’s in Ly and R, with w’s, and going through exactly the same procedure. Thus,
we will have at least rt eigenvalues yielding the form cle% + 0(6%)7 here [ = 1,...t. Note that
every y/c; gives r values. They form ¢ r-rings.

Since the matrix J + ¢B has only nt eigenvalues, it must have exactly tpk and ¢r of each.

This completes the proof of the theorem. L]

16



4 t block case (Every B;; is an upper K;;-Hessenberg matrix)

When the number of subdiagonals in each B;; differs, the situation becomes much more compli-
cated, the general problem remains open. We have some observations in four special cases. Let
K;; = the number of subdiagonals of B;;, for 1 <4,7 < n,i.e., B;; is an upper K;;-Hessenberg

matrix.

Theorem 4
Case 1:
Let Koy = max(K5), i = 1,...,n, j = 1,...,n. If K13 = Koy = ... = Kyt = Kpax then

Theorem 3 holds by replacing k with Kyax.

Case 2:
Let Kiyax = max(K;;). If we can find t K;;'s equal to Kpayx s.t. no two of them are in the same

row or column, then the result from Theorem 3 holds for K ax.

Case 3:
When Ki; > Kij, Ky > Kj; for all i and j, and K;; > %, then the resulting eigenvalue behavior

looks like putting the t diagonal blocks together, i.e, J + ¢B has K;; eigenvalues that form one

Kii-ring for ¢ = 1,...,t . It also has n — K;; eigenvalues that form one (n — K;;)-ring for
r=1,...,t.
Case 4:

If we can findt numbers K; ;,, K

12429 "

. I(it]‘” all > %, such that I(isjs > I(isl and I(isjs > I(mjs

Joranylandm, s=1,...,t, and iy # ig, js # jo, when s # s, then the results in Case 3 hold.

Proof of Case 1:

This can be checked simply by replacing all of the K;;’s with Ky,ax and noticing that the proof

17



of Theorem 3 is still valid, in that the genericity condition is the same even if some of the off

diagonal entries are zero.

Proof of Case 2:

O

We also replace all the K;;’s with Kpax. The proof of Theorem 3 remains valid with a minor

modification. While some terms in p(u) may be 0 in one block, one can always obtain non-zero

terms in each block row and column in the block with K;; = Kyax. This will guarantee the

same nonzero terms generically.

The following is an example where ¢t = 2:

po -1
po -1
& poo -1 ©
& poo -1 ©
& poo -1 ©
& po -1
& I ©
& Q
~1
po -1
v poo—1
v & poo—1
v & poo—1
v & poo—1
v & poo—1
I © s /]

O

This is an example in which instead of taking &’s which may be all zeros, we take O’s which

are nonzero generically.

18



Proof of Case 3:

For any K;;, let L;, be a diagonal matrix formed by t blocks of size n x n. For block j, if

K;; < Ky, then the block will be
diag[>71, 272, ...27"],
if K;; > K;;, then the block will be
diag[Dy,, 2" I, _ngr,, 27T Dy,
where
Dy, = diag[z7!, ..., 27

and

Dy, = diag[z"", .. 2R

(11)

Let Ry, be a diagonal matrix formed by ¢ blocks of size n x n. For block j, if K;; < Ky, then

the block will be

if K;; > K;;, then the block will be
diag[Dy,, 2 I,y 1), —ns 27 Dy ],
where
D,, = diag[°, .. . 2]
and

D

— Jiagls0 2n—Kii—K ;-1
r, = diag[z”, ... 2 A A

19
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Let A = pz, 2 = %5 and M;(z) = L1;(AM — J — e¢B)Ry,. Then M;(0) is a t X t block matrix
where the jth diagonal block looks like either the M (0) in Equation (3) for k = K;; or the block

has the form

wo —1
wo —1
* 0 -1
* 0 -1
* 0 1
* wo —1
* o

Here, the *’s on the first column appear from the K;th row to K;;th row. The off diagonal
block M (0);, looks the same as in Equation (3) with & = max(/, m). Replacing z in Ly, and
Ry, with w, which is e%u‘, to get L], and R, we get the same conclusion that det(M;(0)) is
of the form p™ i p(u®+) and by extracting the constant terms from the diagonal blocks with
the new form above and the x5 terms and the p” terms from all the other diagonal blocks,
we get the result that there are at least ¢; K;; eigenvalues forming ¢; K;;-rings. Here, t; is the
number of times K;; appears on the diagonal.

For any K;;, let Ly, be a diagonal matrix formed by t blocks of size n x n. For block j, if

K;; < Ky, then the block will be

. —n+K;; —n+Ki;
dlag[Dlm = mt IZIX"ii—n7 z "t Dli]7

20



where Dy, is given by Equation (11), if K;; > Kj;, then the block will be the same as in Equation

(10). Let Ry, be a diagonal matrix formed by ¢ blocks of size n X n. Let
D, = diag[2°, ..., 2" Ha—1], (14)
For block j,if K;; < Ky, then the block will be
diag[Dyi, 2" g, 2R D,
if K;; > K;;, then the block will be
diag[Di, 2" M I 4 Kymn, 2" Dy,

1
where D,,; and D,; follows the definition in Equation (14). Let A = pz and z = ¢ K. It
can be checked that Lo, (A —J — €B)Ry, at z = 0 is a ¢t x ¢ block matrix N(0); while the jth

diagonal block looks like

wo —1
* wo —1
* 0 -1
* 0 -1
* wo -1
* ®

For K;; < K, the x in the first column goes from the (n — Kj;)’th row to the K;ith row,
while for K;; > Kj;, the % in first column goes from the (n — K;;)th row to the K;;th row.

For the off diagonal blocks, if I < m, then N(0);, has exactly the same form as N(0)y with p

21



and —1 replaced by 0. If [ > m, then it has the form M(0),,,, with only the %’s on the first
column remaining. Taking L) and R as Ly, and Ry, with 2 replaced by w = e"i—%ii, we find
that det(N;(0)) is f(u" %) and the constant term and p(*=Ki)% term appear generically by
inspecting the diagonal blocks only. So J + €B has at least (n — K;;)t; eigenvalues forming ¢;

(n — K;;)-rings. Comparing the total number of eigenvalues of .J + B, we reach the conclusion.

O

Proof of Case 4:

This can be proved by treating the K ; , K K5, as Ky, Kag, ... Ky's as in Case 3 and

12429 °*

going through the same proof, applying the same permutation as in Case 2. L]
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