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Abstract

In order to have a better understanding of finite random matrices
with non-Gaussian entries, we study the 1/N expansion of local eigenvalue
statistics in both the bulk and at the hard edge of the spectrum of random
matrices. This gives valuable information about the smallest singular
value not seen in universality laws. In particular, we show the dependence
on the fourth moment (or the kurtosis) of the entries. This work makes
use of the so-called complex deformed GUE and Laguerre ensembles.

1 Beyond Universality

The desire to assess the applicability of universality results in random matrix
theory has pressed the need to go beyond universality, in particular the need
to understand the influence of finite n and what happens if the matrix deviates
from Gaussian normality. In this note, we provide exact asymptotic correction
formulas for the smallest singular value of complex matrices and bulk statistics
for complex Wigner matrices.

“Universality,” a term found in statistical mechanics, is widely found in
the field of random matrix theory. The universality principle loosely states
that eigenvalue statistics of interest will behave asymptotically as if the matrix
elements were Gaussian. The spirit of the term is that the eigenvalue statistics
will not care about the details of the matrix elements.

It is important to extend our knowledge of random matrices beyond univer-
sality. In particular, we should understand the role played by

• finite n and

• non Gaussian random variables.

From an applications viewpoint, it is very valuable to have an estimate for the
departure from universality. Real problems require that n be finite, not infinite,
and it has long been observed computationally that ∞ comes very fast in ran-
dom matrix theory. The applications beg to know how fast. From a theoretical
viewpoint, there is much to be gained in searching for proofs that closely follow
the underlying mechanisms of the mathematics. We might distinguish “mech-
anism oblivious” proofs whose bounds require n to be well outside imaginably
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useful ranges, with “mechanism aware” proofs that hold close to the underlying
workings of random matrices. We encourage such “mechanism aware” proofs.

In this article, we study the influence of the fourth cumulant on the local
statistics of the eigenvalues of random matrices of Wigner and Wishart type.

On one hand, we study the asymptotic expansion of the smallest eigenvalue
density of large random sample covariance matrices. The behavior of smallest
eigenvalues of sample covariance matrices when p/n is close to one (and more
generally) is somewhat well understood now. We refer the reader to [11], [29],
[13], [4], [5]. The impact of the fourth cumulant of the entries is of interest here;
we show its contribution to the distribution function of the smallest eigenvalue
density of large random sample covariance matrices as an additional error term
of order of the inverse of the dimension.

On the other hand, we consider the influence of the fourth moment in the
local fluctuations in the bulk. Here, we consider Wigner matrices and prove a
conjecture of Tao and Vu [27] that the fourth moment brings a correction to
the fluctuation of the expectation of the eigenvalues in the bulk of order of the
inverse of the dimension.

In both cases, we consider the simplest random matrix ensembles that are
called Gaussian divisible, that is whose entries can be describe as the convo-
lution of a distribution by the Gaussian law. To be more precise, we consider
the so-called Gaussian-divisible ensembles, also known as Johansson-Laguerre
and Johansson-Wigner ensembles. This ensemble, defined hereafter, has been
first considered in [19] and has the remarkable property that the induced joint
eigenvalue density can be computed. It is given in terms of the Itzykson-Zuber-
Harich-Chandra integral. From such a formula, saddle point analysis allows to
study the local statistics of the eigenvalues. It turns out that in both cases
under study, the contribution of the fourth moment to the local statistics can
be inferred from a central limit theorem for the linear statistics of Wigner and
Wishart random matrices. The covariance of the latter is well known to depend
on the fourth moments, from which our results follow.

2 Discussion and Simulations

2.1 Preliminaries: Real Kurtosis

Definition 1. The kurtosis of a distribution is

γ =
κ<4
σ4
<

=
µ4

σ4
<
− 3,

where κ<4 is the fourth cumulant of the real part, σ2
< is the variance of the real

part, and µ4 is the fourth moment about the mean.

note: From a software viewpoint, commands such as randn make it natural
to take the real and the imaginary parts to separately have mean 0, variance 1,
and also to consider the real kurtosis.

Example of Kurtoses γ for distributions with mean 0, and σ2 = 1:
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Distribution γ Univariate Code

normal 0 randn

Uniform [−
√

3,
√

3] -1.2 (rand -.5)*sqrt(12)

Bernoulli -2 sign(randn)

Gamma 6 rand(Gamma()) - 1

For the matrices themselves, we compute the smallest eigenvalues of the
Gram matrix constructed from (n+ν)×n complex random matrices with Julia
[6] code provided for the reader’s convenience:

RM Complex Matrix Code

normal randn(n+ν,n)+im*randn(n+ν,n)
Uniform ((rand(n+ν,n)-.5)+im*rand(n+ν,n) -.5))*sqrt(12)

Bernoulli sign(randn(n+ν, n))+im*sign(randn(n+ν,n))
Gamma (rand(Gamma(),n+ν,n)-1) + im*(rand(Gamma(),n+ν,n)-1)

2.2 Smallest Singular Value Experiments

Let A be a random n+ν by n complex matrix with iid real and complex entries
all with mean 0, variance 1 and kurtosis γ. In the next several subsections
we display special cases of our results, with experiment vs. theory curves for
ν = 0, 1, and 2.

We consider the distribution

F (x) = P
(
x ≤ nλmin(ATA)

)
= P

(
x ≤ n (σmin(A))

2
)
,

where σmin(A) is the smallest singular value of A. We also consider the density

f(x) =
d

dx
F (x).

In the plots to follow we took a number of cases when n = 20, 40 and
sometimes n = 80. We computed 2, 000, 000 random samples on each of 60
processors using Julia [6], for a total of 120, 000, 000 samples of each experiment.
The runs used 75% of the processors on a machine equipped with 8 Intel Xeon
E7-8850-2.0 GHz-24M-10 Core Xeon MP Processors. This scale experiment,
which is made easy by the Julia system, allows us to obtain visibility on the
higher order terms that would be hard to see otherwise. Typical runs took
about an hour for n = 20, three hours for n = 40, and twelve hours for n = 80.

We remark that we are only aware of two or three instances where parallel
computing has been used in random matrix experiments. Working with Julia
is pioneering in showing just how easy this can be, giving the random matrix
experimenter a new tool for honing in on phenomena that would have been
nearly impossible to detect using conventional methods.
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2.3 Example: Square Complex Matrices (ν = 0)

Consider taking, a 20 by 20 random matrix with independent real and imaginary
entries that are uniformly distributed on [−

√
3,
√

3].

((rand(20,20)-.5) + im*(randn(20,20)-.5))*sqrt(12).

This matrix has real and complex entries that have mean 0, variance 1, and
kurtosis γ = −1.2.

An experimenter wants to understand how the smallest singular value com-
pares with that of the complex Gaussian matrix

randn(20,20) + im*randn(20,20).

The law for complex matrices [10, 11] in this case valid for all finite sized
matrices, is that nλmin = nσ2

min is exactly exponentially distributed: f(x) =
1
2e
−x/2. Universality theorems say that the uniform curve will match the Gaus-

sian in the limit as matrix sizes go to ∞. The experimenter obtains the curves
in Figure 1 (taking both n = 20 and n = 40).

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5
Universality Law vs Experiment

Empirical PDF: N=20

Empirical PDF: N=40

Universality Law exp(−x/2)/2

Figure 1: Universality Law vs Experiment: n = 20 and n = 40 already resemble
n =∞

Impressed that n = 20 and n = 40 are so close, he or she might look at
the proof of the universality theorem only to find that no useful bounds are
available at n = 20, 40.
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The results in this paper gives the following correction in terms of the kur-
tosis (when ν = 0):

f(x) = e−x/2
(

1

2
+
γ

n
(
1

4
− x

8
)

)
+O

(
1

n2

)
.
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Figure 2: Correction for square matrices Uniform, Bernoulli, (ν = 0). Monte
carlo simulations are histogrammed, 0th order term subtracted, and result mul-
tiplied by nex/2/γ. Bottom curve shows convergence for n = 20, 40, 80 for a
distribution with positive kurtosis.
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On the bottom of Figure 1, with the benefit of 60 computational processors,
we can magnify the departure from universality with Monte Carlo experiments,
showing that the departure truly fits γ

n ( 1
4 −

x
8 )e−x/2. This experiment can be

run and rerun many times, with many distributions, kurtoses that are positive
and negative, small values of n, and the correction term works very well.

2.4 Example: n+ 1 by n complex matrices (ν = 1)

The correction to the density can be written as

f(x) = e−x/2
(

1

2
I2(s) +

1 + γ

8n
(sI1(s)− xI2(s))

)
+O(

1

n2
),

where I1(x) and I2(x) are Bessel functions and s =
√

2x.
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Figure 3: Correction for ν = 1. Uniform, Bernoulli, normal, and Gamma;
Monte carlo simulations are histogrammed, 0th order term subtracted, and re-
sult multiplied by nex/2/(1 + γ). Bottom right curve shows convergence for
n = 20, 40, 80 for a distribution with positive kurtosis.

2.5 Example: n+ 2 by n complex matrices (ν = 2)

The correction to the density for ν = 2 can be written
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f(x) =
1

2
e−x/2

(
[I2

2 (s)− I1(s)I3(s)] +
2 + γ

2n

[
(x+ 4)I2

1 (s)− 2sI0 (s) I1 (s)− (x− 2)I2
2 (s)

])
,

where I0, I1, I2, and I3 are Bessel functions, and s =
√

2x.
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Figure 4: Correction for ν = 2. Uniform, Bernoulli, normal, and Gamma;
Monte carlo simulations are histogrammed, 0th order term subtracted, and re-
sult multiplied by nex/2/(2 + γ). Bottom right curve shows convergence for
n = 20, 40, 80 for a distribution with positive kurtosis.

3 Models and Results

In this section, we define the models we will study and state the results. Let
some real parameter a > 0 be given. Consider a matrix M of size p× n:

M = W + aV

where

• V = (Vij)1≤i≤p;1≤j≤n has i.i.d. entries with complexNC(0, 1) distribution,
which means that both <Vij and =Vij are real i.i.d. N (0, 1/2) random
variables,
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• W = (Wij)1≤i≤p;1≤j≤n is a random matrix with entries being mutually in-
dependent random variables with distribution Pij , 1 ≤ j ≤ n independent
of n and p, with uniformly bounded fourth moment,

• W is independent of V ,

• ν := p− n ≥ 0 is a fixed integer independent of n.

We then form the Johansson-Laguerre matrix:

1

n
M∗M =

(
1√
n

(W + aV )

)∗(
1√
n

(W + aV )

)
. (1)

When W is fixed, the above ensemble is known as the Deformed Laguerre
Ensemble.

We assume that the probability distributions Pj,k satisfies∫
zdPj,k(z) = 0,

∫
|zz∗|dPj,k(z) = σ2

1 =
1

4
. (2)

Hypothesis (2) ensures the convergence of the spectral measure of H∗H to the
Marchenko-Pastur distribution with density

ρ(x) =
2

π

√
1− x√
x

. (3)

Condition (2) implies also that the limiting spectral measure of 1
nM

∗M is then
given by Marchenko-Pastur’s law with parameter 1/4 + a2; we denote ρ = ρa
the density of this probability measure.

For technical reasons, we assume that the entries of W have sub-exponential
tails: There exist C, c, θ > 0 so that for all i, j ∈ N2, all t ≥ 0

Pj,l(|z| ≥ t) ≤ Ce−ct
θ

. (4)

This hypothesis could be weakened to requiring enough finite moments.
Finally we assume that the fourth moments do not depend on j, k and let

κ4 be the difference between the fourth moment of Pj,k and the Gaussian case,
namely in the case where β = 2

κ4 =

∫
|zz∗|2dPj,k − 8−1

(Thus, with the notation of Definition 1, κ4 = 2γσ4
< = 2κ<4 .)

Then our main result is the following. Let σ :=
√

4−1 + a2.

Theorem 3.1. Let gn be the density of the hard edge in the Gaussian case with
entries of constant complex variance σ2 = 2σ2

<:

gn(s) = P
(
λmin ≥

s

n

)
8



Then, for all s > 0, if our distribution has complex fourth cumulant κ4 = 2κ<4 ,
then

P
(
λmin ≥

s

n

)
= gn(s) +

sg′n(s)

σ4n
κ4 + o(

1

n
).

We note that this formula is scale invariant.

As a consequence, we obtain:

Corollary 3.2. For the ν for which Conjectures 1 and 2 are true (see section
4.2),

P
(
λmin ≥

s

n

)
= g∞(s) + (ν +

κ4

σ4
)
sg′∞(s)

n
+ o(

1

n
).

Note: Conjectures 1 and 2 were verified for ν = 0, . . . , 25 thanks to mathe-
matica and maple.

Note: The gn formulation involves Laguerre polynomials and exponentials.
The g∞ formulation involves Bessel functions and exponentials.

For the Wigner ensemble we consider the matrix

Mn =
1√
n

(W + aV )

where W a Wigner matrix with complex independent entries above the diagonal
with law µ which has sub exponential moments: there exists C, c > 0, and α > 0
such that for all t ≥ 0

µ(|x| ≥ t) ≤ C exp{−ctα} ,

and satisfies ∫
xdµ(x) = 0,

∫
|x|2dµ(x) = 1/4,

∫
x3dµ(x) = 0.

The same assumptions are also assumed to hold true for µ′. V is a GUE random
matrix with i.i.d. NC(0, 1) entries. We denote by λ1 ≤ λ2 ≤ · · · ≤ λn the
ordered eigenvalues of Mn. By Wigner’s theorem, it is known that the spectral
measure of Mn

µn =
1

n

n∑
i=1

δλi

converges weakly to the semi-circle distribution with density

σsc(x) =
1

2πσ2

√
4σ2 − x21|x|≤2σ;σ2 = 1/4 + a2. (5)

This is the Gaussian-divisible ensemble studied by Johansson [19]. We study
the dependency of the one point correlation function ρn of this ensemble, given
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as the probability measure on R so that for any bounded measurable function
f

E[
1

n

n∑
i=1

f(λi)] =

∫
f(x)ρn(x)dx

as well as the localization of the quantiles of ρn with respect to the quantiles of
the limiting semi-circle distribution. In particular, we study the 1/n expansion
of this localization, showing that it depends on the fourth moment of µ. Define
Nn(x) := 1

n ]{i, λi ≤ x}, with λ1 ≤ λ2 ≤ · · · ≤ λn and Nsc(x) =
∫ x
−∞ dσsc(u),

with σsc defined in 27. Let us define the quantiles γ̂i (resp. γi) by

γ̂i := inf

{
y,ENn(y) =

i

n

}
resp. σsc((−∞, γi]) = i/n.

We shall prove that

Theorem 3.3. Let ε > 0. There exists functions C,D on [−2 + ε, 2 − ε],
independent of the distributions µ, µ′, such that for all x ∈ [−2 + ε, 2− ε]

ρn(x) = σsc(x) +
1

n
C(x) +

1

n
κ4D(x) + o(

1

n
) .

For all i ∈ [nε, n(1− ε)] for some ε > 0, there exists a constant Ci independent
of κ4 so that

γ̂i − γi =
Ci
n

+
κ4

2n
(2γ3

i − γi) + o(
1

n
). (6)

This is a version of the rescaled Tao-Vu conjecture 1.7 in [27] (using the fact
that the variance of the entries of W is 1/4 instead of 1) where E[λi] is replaced
by γ̂i. A similar result could be derived for Johansson-Laguerre ensembles. We
do not present the detail of the computation here, which would ressemble the
Wigner case.

4 Smallest Singular Values of n+ν by n complex
Gaussian matrices

Theorem 3.1 depends on the partition function for Gaussian matrices, which
itself depends on ν and n. In this section, we investigate these dependencies.

4.1 Known exact results

It is worthwhile to review what exact representations are known for the smallest
singular values of complex Gaussians.

We consider the finite n density fνn(x), the finite n distribution F νn (x) (which
was denoted gn in the previous section when the variance could vary), and their
asymptotic values fν∞(x) and F ν∞(x). We have found the first form in the list
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below useful for symbolic and numerical computation. In the formulas to follow,
we assume σ2

< = 1 so that a command such as randn() can be used without mod-
ification for the real and imaginary parts. All formulas concern nλmin = nσ2

min

and its asymptotics. We present in the array below eight different formulations
of the exact distribution F νn .

1. Determinant: ν by ν [14, 15]
2. Painléve III [14, Eq. (8.93)]
3. Determinant: n by n [8]
4. Fredholm Determinant [7, 28]
5. Multivariate Integral Recurrence [11,15]
6. Finite sum of Schur Polynomials (evaluated at I) [9]
7. Hypergeometric Function of Matrix Argument [9]
8. Confluent Hypergeometric Function of Matrix Argument [24]

Table 1: Exact Results for smallest singular values of complex Gaussians (small-
est eigenvalues of complex Wishart or Laguerre Ensembles)

Some of these formulations allow one or both of ν or n to extend beyond
integers to real positive values. Assuming ν and n are integers [11, Theorem
5.4], the probability density fνn(x) takes the form xνe−x/2 times a polynomial
of degree (n− 1)ν and 1− F νn (x) is e−x/2 times a polynomial of degree nν.

Remark: A helpful trick to compare normalizations used by different authors
is to inspect the exponential term. The 2 in e−x/2 denotes total complex variance
2 (twice the real variance of 1). In general the total complex variance σ2 = 2σ2

<
will appear in the denominator.

In the next paragraphs, we discuss the eight formulations introduced above.

4.1.1 Determinant: ν by ν determinant

The quantities of primary use are the beautiful ν by ν determinant formulas
for the distributions by Forrester and Hughes [15] in terms of Bessel functions
and Laguerre polynomials. The infinite formulas also appear in [14, Equation
(8.98)].

F ν∞(x) = 1− e−x/2 det[Ii−j(
√

2x)]i,j=1,...,ν .

fν∞(x) = 1
2e
−x/2 det[I2+i−j(

√
2x)]i,j=1,...,ν .

F νn (x) = 1− e−x/2 det
[
L

(j−i)
n+i−j(−x/2n)

]
i,j=1,...,ν

.

fνn(x) =
(
x
2n

)ν (n−1)!
2(n+ν−1)!e

−x/2 det
[
L

(j−i+2)
n−1+i−j(−x/2n)

]
i,j=1,...,ν

.

Recall that Ij(x) = I−j(x). To facilitate reading of the relevant ν by ν
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determinants we provide expanded views:

det[Ii−j(
√

2x)]i,j=1,...,ν =

∣∣∣∣∣∣∣∣∣∣∣

I0 I1 I2 · · · Iν−1

I1 I0 I1 · · · Iν−2

I2 I1 I0 · · · Iν−3

...
...

...
. . .

...
Iν−1 Iν−2 Iν−3 · · · I0

∣∣∣∣∣∣∣∣∣∣∣
Bessel functions evaluated at

√
2x

det[I2+i−j(
√

2x)]i,j=1,...,ν =

∣∣∣∣∣∣∣∣∣∣∣

I2 I1 I0 · · · Iν−3

I3 I2 I1 · · · Iν−4

I4 I1 I2 · · · Iν−5

...
...

...
. . .

...
Iν+1 Iν Iν−1 · · · I2

∣∣∣∣∣∣∣∣∣∣∣
Bessel functions evaluated at

√
2x

det
[
L

(j−i)
n+i−j(−

x

2n
)
]
i,j=1,...,ν

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

Ln L
(1)
n−1 L

(2)
n−2 · · · L

(ν−1)
n−ν+1

L
(−1)
n+1 Ln L

(1)
n−1 · · · L

(ν−2)
n−ν+2

L
(−2)
n+2 L

(−1)
n+1 Ln · · · L

(ν−3)
n−ν+3

...
...

...
. . .

...

L
(1−ν)
n+ν−1 L

(2−ν)
n+ν−2 L

(3−ν)
n+ν−3· · · Ln

∣∣∣∣∣∣∣∣∣∣∣∣∣
evaluated at −x/2n

det
[
L

(j−i+2)
n−1+i−j(−

x

2n
)
]
i,j=1,...,ν

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

L
(2)
n−1 L

(3)
n−2 L

(4)
n−3 · · · L

(ν+1)
n−ν

L
(1)
n L

(2)
n−1 L

(3)
n−2 · · · L

(ν)
n−ν+1

Ln+1 L
(1)
n L

(2)
n−1 · · · L

(ν−1)
n−ν+2

...
...

...
. . .

...

L
(3−ν)
n+ν−2 L

(4−ν)
n+ν−3 L

(5−ν)
n+ν−4· · · L

(2)
n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
evaluated at −x/2n

The following Mathematica code symbolically computes these distributions

M[x_, v_] := Table[ BesselI[Abs[i - j], x], {i,v}, {j,v}];

m[x_, v_] := Table[ BesselI[Abs[2 + i - j], x], {i,v}, {j,v}]

M[x_, n_, v_] := Table[ LaguerreL[n+i-j, j - i, -x/(2*n)], {i,v}, {j,v}];

m[x_, n_, v_] := Table[ LaguerreL[n-1+i-j,j-i+2, -x/(2*n)], {i,v}, {j,v}];

F[x_, v_ ] := 1 - Exp[-x/2]*Det [M[Sqrt[2 x], v]]

f[x_, v_] := (1/2)*Exp[-x/2]*Det[m[Sqrt[2 x], v]]

F[x_, n_, v_] := 1 - Exp[-x/2]*Det [M[x,n,v]]

f[x_, n_, v_] := (x/(2 n))^v*((n - 1)!/(2 (n+v-1)!))*Exp[-x/2]*Det[m[x,n,v]]

12



4.1.2 Painléve III

According to [14, Eq. (8.93)], [7, p. 814-815], [28,29] we have the formula valid
for all ν > 0

F ν∞(x) = exp

(
−
∫ 2t

0

σ(s)
ds

s

)
,

where σ(s) is the solution to a Painléve III differential equation. Please consult
the references taking care to match the normalization.

4.1.3 n by n determinant:

Following standard techniques to set up the multivariate integral and applying
a continuous version of the Cauchy-Binet theorem (Gram’s Formula) [22, e.g.,
Appendix A.12] or [30, e.g. Eqs. (1.3) and (5.2) ] one can work out an n × n
determinant valid for any ν, so long as n is an integer [8].

F νn (x) =
det(M(m, ν, x/2))

det(M(m, ν, 0))
.

where

M(m, ν, x) =


Γ(ν + 1, x) Γ(ν + 2, x) Γ(ν + 3, x) · · · Γ(ν +m,x)
Γ(ν + 2, x) Γ(ν + 3, x) Γ(ν + 4, x) · · · Γ(ν +m+ 1, x)
Γ(ν + 3, x) Γ(ν + 4, x) Γ(ν + 5, x) · · · Γ(ν +m+ 2, x)

...
...

...
. . .

...
Γ(ν +m,x) Γ(ν +m+ 1, x) Γ(ν +m+ 2, x) · · · Γ(ν + 2m− 1, x)

 .

4.1.4 Remaining Formulas in Table 1

The Fredholm determinant is a standard procedure. The multivariate integral
recurrence was computed in the real case in [11] and in the complex case in [15].
Various hypergeometric representations may be found in [9], but to date we are
not aware of the complex representation of the confluent representation in [24]
which probably is worth pursuing.

4.2 Asymptotics of Smallest Singular Value Densities of
Complex Gaussians

A very useful expansion extends a result from [15, (3.29)]

Lemma 4.1. As n→∞, we have the first two terms in the asymptotic expan-
sion of scaled Laguerre polynomials whose degree and constant parameter sum
to n:

L
(k)
n−k(−x/n) ∼ nk

{
Ik(2
√
x)

xk/2
− 1

2n

(
Ik−2(2

√
x)

x(k−2)/2

)
+O

(
1

n2

)}
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Proof. We omit the tedious details but this (and indeed generalizations of this
result) may be computed either through direct expansion of the Laguerre poly-
nomial or through the differential equation it satisfies.

We can use the lemma above to obtain asymptotics of the distribution

F
(ν)
n (x). As a result, we have ample evidence to believe the following conjecture:

Conjecture 1. (Verified correct for ν = 0, 1, 2, . . . , 25) Let F
(ν)
n (x) be the dis-

tribution of nσ2
min of an n+ ν by n complex Gaussian. We propose that

F (ν)
n (x) = F (ν)

∞ (x) +
ν

2n
xf (ν)
∞ (x) +O(

1

n2
)

note: The above is readily checked to be scale invariant, so it is not necessary
to state the particular variances in the matrix as long as they are equal.

In light of Lemma 4.1, our conjecture may be deduced from

Conjecture 2. Consider the Bessel function (evaluated at x) determinant∣∣∣∣∣∣∣∣∣∣∣

I0 I1 I2 · · · Iν−1

I1 I0 I1 · · · Iν−2

I2 I1 I0 · · · Iν−3

...
...

...
. . .

...
Iν−1 Iν−2 Iν−3 · · · I0

∣∣∣∣∣∣∣∣∣∣∣
.

We propose that the following determinant equation is an equality for ν ≥ 2,
where the first/second determinant below on the left side of the equal sign is
identical to the above except for the first/second column respectively.∣∣∣∣∣∣∣∣∣∣∣

I2 I1 I2 · · ·Iν−1

I3 I0 I1 · · ·Iν−2

I4 I1 I0 · · ·Iν−3

...
...

...
. . .

...
Iν+1 Iν−2 Iν−3· · · I0

∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣

I0 I1 I2 · · ·Iν−1

I1 I2 I1 · · ·Iν−2

I2 I3 I0 · · ·Iν−3

...
...

...
. . .

...
Iν−1 Iν Iν−3· · · I0

∣∣∣∣∣∣∣∣∣∣∣
= ν

∣∣∣∣∣∣∣∣∣∣∣

I2 I1 I0 · · ·Iν−3

I3 I2 I1 · · ·Iν−4

I4 I1 I2 · · ·Iν−5

...
...

...
. . .

...
Iν+1 Iν Iν−1· · · I2

∣∣∣∣∣∣∣∣∣∣∣
.

Proof. This may be obtained by comparing the asymptotics of F νn (x) using
Lemma 4.1, and taking the derivative of the determinant for F ν∞(x), using the
derivative of d

dxIj(x) = 1
2 (Ij+1(x)+Ij−1(x)) and the usual multilinear properties

of determinants.
Remark: This conjecture has been verified symbolically for ν = 2, . . . , 25

symbolically in Mathematica and Maple, and numerically for larger values.
Our main interest in this conjecture is that once granted it would give the

following corollary of Theorem 3.1. (Verified at this time for ν ≤ 25.)

Conjecture 3. Suppose we have a non-Gaussian n + ν by n random matrix
with real kurtosis γ. Then with λmin as the square of the smallest singular value,

P (nλmin ≥ x) = F ν∞(x) +
ν + γ

2n
fν∞(x) +O(1/n2).
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5 The smallest eigenvalue in Johansson-Laguerre
ensemble

5.1 Reminder on Johansson-Laguerre ensemble

We here recall some important facts about the Johansson-Laguerre ensemble,
that we use in the following.

Notations: We call µn,p the law of the sample covariance matrix 1
nM

∗M
defined in (1). We denote by λ1 ≤ λ2 ≤ · · · ≤ λn the ordered eigenvalues of the
random sample covariance matrix 1

nM
∗M. We also set

H =
W√
n
,

and denote the distribution of the random matrix H by Pn. The ordered eigen-
values of HH∗ are denoted by y1(H) ≤ y2(H) ≤ · · · ≤ yn(H).

We can now state the known results about the joint eigenvalue density (j.e.d.)
induced by the Johansson-Laguerre ensemble. By construction, this is obtained
as the integral w.r.t. Pn of the j.e.d. of the Deformed Laguerre Ensemble . The
latter has been first computed by [16] and [18].

We now set

s =
a2

n
.

Proposition 5.1. The symmetrized eigenvalue measure on Rn+ induced by µn,p
has a density w.r.t. Lebesgue measure given by

g(x1, . . . , xn) =

∫
dPn(H)

∆(x)

∆(y(H))
det
(e− yi(H)+xj

2t

2t
Iν(

√
yi(H)xj
t

)
( xj
yi(H)

) ν
2
)n
i,j=1

,

(7)

where t = a2

2n = s
2 , and ∆(x) =

∏
i<j(xi − xj).

From the above computation, all eigenvalue statistics can in principle be
computed. In particular, the m-point correlation functions of µn,p defined by
Rm(u1, . . . , um) = n!

(n−m)!

∫
Rn−m+

g(u1, . . . , un)
∏n
i=m+1 dui are given by the in-

tegral w.r.t. to dPn(H) of those of the Deformed Laguerre Ensemble, i.e. the
covariance matrix n−1MnM

∗
n when H is given. Let Rm(u, v; y(H)) be the m-

point correlation function of the Deformed Laguerre Ensemble (defined by the
fixed matrix H). Then

Proposition 5.2.

Rm(u1, . . . , um) =

∫
Mp,n(C)

dPn(H)Rm(u1, . . . , um; y(H)).
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The second remarkable fact is that the Deformed Laguerre Ensemble induces
a determinantal random point field, that is all the m-point correlation functions
are given by the determinant of a m×m matrix involving the same correlation
kernel.

Proposition 5.3. Let m be a given integer. Then one has that

Rm(u1, . . . , um; y(H)) = det (Kn(ui, uj ; y(H)))
m
i,j=1 ,

where the correlation kernel Kn is defined in Theorem 5.4 below.

There are two important facts about this determinantal structure. The
fundamental characteristic of the correlation kernel is that it depends only on
the spectrum of HH∗ and more precisely on its spectral measure. Since we
are interested in the determinant of matrices with entries Kn(xi, xj ; y), we can

consider the correlation kernel up to a conjugation: Kn(xi, xj)
f(xi)
f(xj)

. This has

no impact on correlation functions and we may use this fact later.

Theorem 5.4. The correlation kernel of the Deformed Laguerre Ensemble (H
is fixed) is also given by

Kn(u, v; y(H)) =
1

iπs3
eiνπ

∫
Γ

∫
γ

dwdzwzKB

(2zu1/2

s
,

2wv1/2

s

)(w
z

)ν
×

n∏
i=1

w2 − yi(H)

z2 − yi(H)
exp {w

2 − z2

s
}
(

1− s
n∑
i=1

yi(H)

(w2 − yi(H))(z2 − yi(H))

)
.

(8)

where the contour Γ is symmetric around 0 and encircles the ±
√
yi(H), γ is the

imaginary axis oriented positively 0 −→ +∞, 0 −→ −∞, and KB is the kernel
defined by

KB(x, y) =
xI
′

ν(x)Iν(y)− yI ′ν(y)Iν(x)

x2 − y2
. (9)

For ease of exposition, we drop from now on the dependency of the correla-
tion kernel Kn on the spectrum of H and write Kn(u, v) for Kn(u, v; y(H)). The
goal of this section is to deduce Theorem 3.1 by a careful asymptotic analysis
of the above formulas.

5.2 Asymptotic expansion of the partition function at the
hard edge

The main result of this section is to prove the following expansion for the par-
tition function at the hard edge: Set α = σ2/4 with σ =

√
1/4 + a2.

Theorem 1. There exists a non-negative function g0
n, depending on n, so that

P
(
λmin ≥

αs

n2

)
= g0

n(s) +
1

n
∂βg

0
n(βs)|β=1

∫
dPn(H)[∆n(H)] + o(

1

n
)
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where

∆n(H) =
−1

v±c m′0(v±c )
Xn(v±c )

with Xn(z) =
∑n
i=1

1
yi(H)−z −nm0(z), m0(z) =

∫
(x− z)−1ρ(dx) is the Stieltjes

transform of the Marchenko-Pastur distribution ρ, (yi)1≤i≤n are the eigenvalues
of H, and v±c = (w±c )2 where

w±c = ±i(R− 1/R)/2, R :=
√

1 + 4a2.

We will estimate the term
∫
dPn(H)[∆n(H)] in terms of the kurtosis in the

next section. We prove Theorem 1 in the next subsections.

5.2.1 Expansion of the correlation kernel

Let z±c be the critical points of

Fn(w) := w2/a2 +
1

n

n∑
i=1

ln(w2 − yi), (10)

where the yi are the eigenvalues of H∗H. Then we have the following Lemma.
Let Kn be the kernel defined in Theorem 5.4.

Lemma 5.5. There exists a smooth function A such that for all x, y

α

n2
Kn(uαn−2, vαn−2; y(H)) =

K̃B(u, v) +
A(u, v)

n
+ ((zc/wc)

2 − 1)
∂

∂β

∣∣∣
β=1

βK̃B(βu, βv) + o(
1

n
).

where K̃B is the usual Bessel kernel

K̃B(u, v) := eiνπKB(i
√
u, i
√
v)

with KB defined in (9).

Proof
To focus on local eigenvalue statistics at the hard edge, we consider

u =

(
a2

2nr0

)2

x; v =

(
a2

2nr0

)2

y, where r0 will be fixed later.

As ν = p − n is a fixed integer independent of n, this readily implies that the
Bessel kernel shall not play a role in the large exponential term of the correlation
kernel. In other words, the large exponential term to be considered is Fn defined
in (10). The correlation kernel can then be re-written as

Kn(u, v) =
1

iπs3
eiνπ

∫
Γ

∫
γ

dwdz w z KB

(zx1/2

r0
,
wy1/2

r0

)(w
z

)ν

17



× exp {nFn(w)− nFn(z)}g̃(w, z), (11)

where

g̃(w, z) := a2g(w, z) = 1− s
n∑
i=1

yi
(w2 − yi)(z2 − yi)

=
a2

2

wF ′n(w)− zF ′n(z)

w2 − z2
.

We note that Fn(w) = Hn(w2) where Hn(w) = w/a2 + 1
n

∑n
i=1 ln(w − yi).

We may compare the exponential term Fn to its ”limit”, using the conver-
gence of the spectral measure of H∗H to the Marchenko-Pastur distribution ρ.
Set

F (w) := w2/a2 +

∫
ln(w2 − y)dρ(y).

It was proved in [5] that this asymptotic exponential term has two conjugated
critical points satisfying F ′(w) = 0 and which are given by

w±c = ±i(R− 1/R)/2, R :=
√

1 + 4a2.

Let us also denote by z±c the true non real critical points (which can be seen to
exist and be conjugate [5]) associated to Fn. These critical points do depend
on n but for ease of notation we do not stress this dependence. These critical
points satisfy

F ′n(z±) = 0, z+
c = −z−c

and it is not difficult to see that they are also on the imaginary axis.
We now refer to the results established in [5] to claim the following facts:

• there exist constants C and ξ > 0 such that

|z±c − w±c | ≤ Cn−ξ.

This comes from concentration results for the spectral measure of H es-
tablished in [17] and [2].

• Fix θ > 0. By the saddle point analysis performed in [5], the contribution
of the parts of the contours γ and Γ within {|w − z±c | ≥ nθn−1/2} is

O(e−cn
θ

) for some c > 0. This contribution ”far from the critical points
” is thus exponentially negligible. In the sequel we will choose θ = 1/11.
The choice of 1/11 is arbitrary.

• We can thus restrict both the w and z integrals to neighborhoods of width
n1/11n−1/2 of the critical points z±c .

Also , we can assume that the parts of the contours Γ and γ that will contribute
to the asymptotics are symmetric w.r.t. z±c . This comes from the fact that the
initials contours exhibit this symmetry and the location of the critical points.
A plot of the oriented contours close to critical points is given in Figure 5.2.1.

Let us now make the change of variables

w = z1
c + sn−1/2; z = z2

c + tn−1/2;
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z−c

γ−

Γ−

Γ+

γ+

z+
c

Figure 5: Contours close to the critical points

where z1
c , z

2
c = z±c and the ± depends on the part of the contours γ and Γ

under consideration and s, t satisfy |s|, |t| ≤ n1/11. Then we perform the Taylor
expansion of each of the terms arising in both z and w integrands. Then one
has that

enF (z±c +sn−1/2)−nF (z±c )

= e
F ′′(z±c ) s

2

2 +
∑5
i=3 F

(i)(z±c ) si

i!ni/2−1 (1 +O(n−23/22))

= eF
′′(z±c ) s

2

2 +
1

n1/2
eF
′′(z±c ) s

2

2
F 3(z±c )

6
s︸ ︷︷ ︸

e1(s)

+
1

n
eF
′′(z±c ) s

2

2

(F (4)(z±c )s4

4!
+

(
F 3(z±c )

6

)2
s6

2

)
︸ ︷︷ ︸

e2(s)

+o(
1

n
)eF

′′(z±c ) s
2

2 .

(12)

as |s| ≤ n1/11. For each term in the integrand, one has to consider the con-
tribution of equal or opposite critical points. In the following, we denote by
zc, z

1
c , z

2
c any of the two critical points (allowing zc to take different values with

a slight abuse of notation). We then perform the Taylor expansion of each of
the functions arising in the integrands.

wz = z1
cz

2
c + n−1/2 (sz2

c + tz1
c )︸ ︷︷ ︸

v1(s,t)

+
1

n
st︸︷︷︸

v2(s,t)

,
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g

(
z1
c +

s

n1/2
, z2
c +

t

n1/2

)
=
F ′′n (zc)

2
1z1c=z2c

+
1√
n

(
s
∂

∂x1
+ t

∂

∂x2

)
g(x1, x2)

∣∣∣
z1c ,z

2
c︸ ︷︷ ︸

g1(s,t)

+
1

n

(
(
s2

2

∂2

∂x2
1

g(x1, x2) +
t2

2

∂2

∂x2
2

+ st
∂2

∂x2∂x1
)g(x1, x2)

∣∣∣
z1c ,z

2
c

)
︸ ︷︷ ︸

g2(s,t)

+o(
1

n
).

(w
z

)ν
= (z1

c/z
2
c )ν + n−1/2 (z1

c/z
2
c )ν(

νs

z1
c

− νt

z2
c

)︸ ︷︷ ︸
r1(s,t)

+
1

n
(z1
c/z

2
c )ν
(
ν(ν − 1)s2

(z1
c )2

+
ν(ν + 1)t2

(z2
c )2

− ν2st

z1
cz

2
c

)
︸ ︷︷ ︸

r2(s,t)

+o(
1

n
).

KB

(
zx1/2

r0
,
wy1/2

r0

)
= KB

(
zcx

1/2

r0
,
zcy

1/2

r0

)
+

1√
n

(
s
∂

∂x1
+ t

∂

∂x2

) ∣∣∣
zc,zc

KB

(
x1x

1/2

r0
,
x2y

1/2

r0

)
︸ ︷︷ ︸

h1(s,t)

+
1

n

(
s2

2

∂2

∂x2
1

+
t2

2

∂2

∂x2
2

+ st
∂2

∂x1∂x2

) ∣∣∣
zc,zc

KB

(
x1x

1/2

r0
,
x2y

1/2

r0

)
︸ ︷︷ ︸

h2(s,t)

+o(
1

n
). (13)

In all the lines above, z1
c/z

2
c = ±1 depending on equal or opposite critical points.

Also one can note that the o are uniform as long as |s|, |t| < n1/11.

We now choose
r0 = |w+

c |.

Combining the whole contribution of neighborhoods of a pair of equal critical
points e.g., denoted by Kn(u, v)equal, we find that it has an expansion of the
form

a4

4n2r2
0

Kn(u, v)equal =
∑
zc=z

±
c

±
4iπ

eiνπ
∫
R

∫
iR
dsdt
|zc|2

r2
0

(
KB(

zcx
1/2

|w+
c |

,
zcy

1/2

|w+
c |

) +

2∑
i=1

hi(s, t)

ni/2
+ o(

1

n
)

)

×

(
F ′′(zc)

2
+

2∑
i=1

gi(s, t)

ni/2
+ o(

1

n
)

)
(1 +

2∑
i=1

ri(s, t)

ni/2
+ o(

1

n
))

×(1 +

2∑
i=1

vi(s, t)n
−i/2z−2

c )
(

exp {F ′′(zc)(s2 − t2)/2}(1 + o(
1

n
))

+n−1/2(e1(s)− e1(t)) +
1

n
(−e1(s)e1(t) + e2(s)− e2(t))

)
, (14)
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where hi, ei, ri, vi and gi defined above have no singularity.

It is not difficult also to see that h1, g1, r1, e1 are odd functions in s as well as
in t: because of the symmetry of the contour, their contribution will thus van-
ish. The first non zero lower order term in the asymptotic expansion will thus
come from the combined contributions h1g1, g1r1, r1h1, h1e1, g1e1, r1e1, r1v1...
and those from h2, g2, r2, e2, v2.Therefore one can check that one gets the ex-
pansion

α

n2
Kn(

αx

n2
,
αy

n2
)equal =

eiνπ

2
(
|z±c |
|w±c |

)2KB(
z±c x

1/2

|w+
c |

,
z±c y

1/2

|w+
c |

) +
a1(z±c ;x, y)

n
+ o(

1

n
),

(15)
where a1 is a function of z±c , x, y only. a1 is a smooth and non vanishing function
a priori.

We can write the first term above as (
z±c
w±c

)2K̃B((
z±c
w±c

)2x1/2, (
z±c
w±c

)2y1/2) so

that we deduce that

eiνπ(
z±c
|w±c |

)2KB(
z±c x

|w+
c |
,
z±c y

|w+
c |

)

= K̃B(x, y) +

(
(
z±c
w±c

)2 − 1

)
∂β(βK̃B(βx, βy))|β=1 + o(z±c − w±c ) .

One can do the same thing for the combined contribution of opposite critical
points and get a similar result. We refer to [5] for more detail about this fact.

5.2.2 Asymptotic expansion of the density

The distribution of the smallest eigenvalue of Mn is defined by

P
(
λmin ≥

αs

n2

)
=

∫
dPn(H) det(I − K̃n)L2(0,s),

where K̃n is the rescaled correlation kernel α
n2Kn(xαn−2, yαn−2). In the above

we choose α = (a2/2r0)2. The limiting correlation kernel is then, at the first
order, the Bessel kernel:

K̃B(x, y) := eiνπKB(i
√
x, i
√
y).

The error terms are ordered according to their order of magnitude: the first
order error term, in the order of O(n−1), can thus come from two terms in (15),
namely
-the deterministic part that is a1(z±c ;x, y). These terms yield a contribution in
the order of 1

n . However it is clear that as a1 is smooth

a1(z±c ;x, y) = a1(w±c ;x, y) + o(1) .

As a consequence there is no fourth moment contribution in these 1
n terms. We

denote the contribution of the deterministic error from all the combined (equal
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or not) critical points by A(x, y)/n.
-the kernel (arising 4 times due to the combination of critical points)

eiνπ(
z+
c

|w+
c |

)2KB(
z+
c

|w+
c |

(
√
x,
√
y)) = K̃B(x, y) +

∫ |z+c /w+
c |

2

1

∂

∂β
βK̃B(βx, βy)dβ.

Combining all the arguments above, one then gets the following:

α

n2
Kn(xαn−2, yαn−2)

= K̃B(x, y) +
A(x, y)

n
+ ((z+

c /w
+
c )2 − 1)

∂

∂β

∣∣∣
β=1

βK̃B(βx, βy) + o(
1

n
).

The Fredholm determinant can be developed to obtain that

det(I − K̃n)L2(0,s)

=
∑
k

(−1)k

k!

∫
[0,s]k

det
(
K̃n(xi, xj)

)k
i,j=1

=
∑
k

(−1)k

k!

∫
[0,s]k

det
(
K̃B(xi, xj)

)k
i,j=1

det (I +G(xi, xj))
k
i,j=1 ,

(16)

where we have set

G(xi, xj) =
(
K̃B(xi, xj)

)−1

1≤i,j≤k
(B(xi, xj))

k
i,j=1

with

B(xi, xj) =
A(xi, xj)

n
+ 2(z+

c /w
+
c − 1)

∂

∂β

∣∣∣
β=1

βK̃B(βxi, βxj) + o(
1

n
).

The matrix
(
K̃B(xi, xj)

)k
i,j=1

is indeed invertible for any k.

Therefore, up to an error term in the order o( 1
n ) at most,

det(I − K̃n)L2(0,s)

= det(I − K̃B) +
∑
k

(−1)k

k!

∫
[0,s]k

det
(
K̃B(xi, xj)

)k
i,j=1

Tr (G(xi, xj))
k
i,j=1 dx

(17)

now if we just consider the term which is linear in (zc/wc − 1) which will bring
the contribution depending on the fourth cumulant we have that the correction
is

∑
k

(−1)k

k!

∫
[0,s]k

det
(
K̃B(xi, xj)

)k
i,j=1

Tr(K̃B

−1
∂ββK̃B(βxi, βxj))

k
i,j=1dx|β=1
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= ∂β
∑
k

(−1)k

k!

∫
[0,s]k

det
(
K̃B(xi, xj)

)k
i,j=1

Tr(log βK̃B(βxi, βxj))
k
i,j=1dx|β=1.

As K̃B is trace class, we can write

Tr(log βK̃B(βxi, βxj))
k
i,j=1 = log det

(
βK̃B(βxi, βxj)

)k
i,j=1

= ∂β
∑
k

(−1)k

k!

∫
[0,s]k

det
(
βK̃B(βxi, βxj)

)k
i,j=1

dx|β=1

= ∂β
∑
k

(−1)k

k!

∫
[0,s]k

det
(
βK̃B(βxi, βxj)

)k
i,j=1

dx|β=1

= ∂β
∑
k

(−1)k

k!

∫
[0,sβ]k

det
(
K̃B(yi, yj)

)k
i,j=1

dyi|β=1

= ∂β det(I − K̃B)L2(0,sβ)

∣∣∣
β=1

. (18)

Hence, since det(I−K̃B)L2(0,sβ) is the leading order in the expansion of P
(
λmin ≥ αs

n2

)
plugging (17) into (18) shows that there exists a function g0

n (whose leading or-

der is det(I − K̃B)L2(0,sβ)) so that

P
(
λmin ≥

αs

n2

)
= g0

n(s) + ∂βg
0
n(βs)|β=1

∫
dPn(H)[(

z+
c

w+
c

)2 − 1] + o(
1

n
) (19)

5.2.3 An estimate for
( z+c
w+
c

)2 − 1

Let

Xn(z) =

n∑
i=1

1

yi − z
− nm0(z)

where z ∈ C\R. Let us express (z+
c )2−(w+

c )2 in terms of Xn. The critical point
z+
c of Fn lies in a neighborhood of the critical point w+

c of F . So u+
c = (z+

c )2 is
in a neighborhood of v+

c = (w+
c )2. These points are the solutions with positive

imaginary part of

1

a2
+

1

n

∑ 1

u+
c − yi

= 0,
1

a2
+

∫
1

v+
c − y

dρ(y) = 0.

Therefore it is easy to check that∫
u+
c − v+

c

(v+
c − y)2

dρ(y) +
1

n
Xn(v+

c ) = o(
1

n
, (z+

c − w+
c ))

which gives

(
z+
c

w+
c

)2 − 1 = − 1

v+
c m′0(v+

c )

1

n
Xn(v+

c ) + o(
1

n
). (20)

The proof of Theorem 1 is therefore complete. In the next section we estimate
the expectation of Xn(v+

c ) to estimate the correction in (19).
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5.3 The role of the fourth moment

In this section we compute E[Xn(v+
c )], which with Theorem 1, will allow to

prove Theorem 3.1.

5.3.1 Central limit theorem estimate

In this section we compute the asymptotics of the mean of Xn(z). Such type of
estimates is now well known, and can for instance be found in Bai and Silverstein
book [3] for either Wigner matrices or Wishart matrices with κ4 = 0. We refer
to [3, Theorem 9.10] for a precise statement. In the more complicated setting
of F -matrices, we refer the reader to [31]. In the case where κ4 6= 0, the
asymptotics of the mean have been computed in [23]. To ease the reading,
we here show how this computation can be done, following the ideas from [25]
and [3]. We shall prove the following result.

Proposition 1. Under hypothesis 4, we have

lim
n→∞

E[Xn(z)] = A(z)− κ4B(z)

with A independent of κ4, and if m0(z) =
∫

(x− z)−1dρ(x),

B(z) =
m0(z)2

(1 + m0(z)
4 )2(z + zm0(z)

2 )
.

Proof. We recall that the entries of W have variance 1
4 . We thus write WW ∗ =

1
4XX

∗ where X has standardized entries. Let z be a complex number with
positive imaginary part and set γn = p

n . We recall [21] that

m0(z) := lim
n→∞

1

n
Tr(

WW ∗

n
− zI)−1

is uniquely defined as the solution with non negative imaginary part of the
equation

1

1 + 1
4m0(z)

= −zm0(z). (21)

We now investigate the fluctuations of mn(z) := 1
nTr(WW∗

n − zI)−1 w.r.t.
m0. We denote for each k = 1, . . . , p by Xk the kth column of X. Using formula
(16) in [20], one has that

1 + zmn(z) = γn −
1

n

p∑
k=1

1

1 + 1
4nX

∗
kR

(k)Xk

= γn −
γn

1 + 1
4mn(z)

+
1

n

p∑
k=1

δk

(1 + 1
4mn(z) + δk)(1 + 1

4mn(z))
,

(22)
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where R(k) =
(

1
4n (XX∗ −XkX

∗
k)− zI

)−1
and

δk =
1

4n
X∗kR

(k)Xk −
1

4
mn(z).

We next use the fact that the error term δk can be written

δk =
1

4n

n∑
i=1

(
|Xki|2 − 1

)
R

(k)
ii +

1

4n

n∑
i6=j,i,j=1

XkiXkjR
(k)
ij +

1

n
Tr(R(k) −R).

We first show that supk |δ|k → 0 a.s. By (4), it it clear that one can fix C large
enough so that

P (∃i, j, |Xij | ≥ C lnn) ≤ 1

n2
.

Hence, up to a negligible probability set, one can truncate the entries Xij →
Xij1|Xij |≤C lnn. Then it can be shown that E supk |δk|6 ≤ (C lnn)12n−2 so that
supk |δk| → 0 as. This follows from Lemma 3.1 in [26].

Plugging the above into (22), we obtain

1 + zmn(z) = γn −
γn

1 + 1
4mn(z)

+
1

n

p∑
k=1

δk

(1 + 1
4mn(z))2

×
(

1− δk

(1 + 1
4mn(z))

+
δ2
k

(1 + 1
4mn(z) + δk)(1 + 1

4mn(z))

)
. (23)

Set now
β4 = E(|Xik|2 − 1)2.

We are interested in the asymptotics of the expected value of the right hand
side of (23) in terms of the fourth moment of the entries of W or equivalently
in terms of β4. First observe that

|E(δk)| = |E 1

n
(Tr(R(k) −R))| ≤ 1

n=(z)
(24)

by Weyl’s interlacing formula. In fact, we have the following linear algebra
formula

R(k) −R =
1

4n
RXkX

∗
kR

(k)

which shows the more precise estimate

E(δk) ' 1

4n2
Tr(R2) + o(

1

n2
) =

m′0(z)

4n
+ o(

1

n2
)

is independent of β4 at first order. The second moment satisfies

E(δ2
k) =

1

16n2

(
n∑
i=1

(R
(k)
ii )2β4

)
+ E

∑
i6=j

|R(k)
ij |2

16n2
|XkiXkj |2 + E

1

n2

(
Tr(R(k) −R)

)2

−E

 1

2n2

(∑
i

R
(k)
ii (|Xki|2 − 1) +

n∑
i 6=j,i,j=1

XkiXkjR
(k)
ij

)
Tr(R−R(k))

 . (25)
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Lemma 5.6. For all z ∈ C\R

E
1

n2

(
Tr(R(k) −R)

)2

≤ Cte 1

n2=z2
,

and∣∣∣∣∣E
 1

4n2

(∑
i

R
(k)
ii (|Xki|2 − 1) +

n∑
i6=j,i,j=1

XkiXkjR
(k)
ij

)
TrR

∣∣∣∣∣ ≤ Cte 1

n
3
2=z

.

The first inequality follows from (24) whereas the second is based on the use
of the same formula together with

E

∣∣∣∣∣∣
∑
i

R
(k)
ii (|Xki|2 − 1) +

n∑
i 6=j,i,j=1

XkiXkjR
(k)
ij

∣∣∣∣∣∣


≤ E


∣∣∣∣∣∣
∑
i

R
(k)
ii (|Xki|2 − 1) +

n∑
i 6=j,i,j=1

XkiXkjR
(k)
ij

∣∣∣∣∣∣
2


1
2

≤ CE
[
Tr((R(k))2)

] 1
2 ≤
√
n

=z

Moreover, as ∀i = 1, . . . , n, |R(k)
ii −m0(z)| goes to 0 (as can be checked by

concentration inequalities, invariance by permutations of the indices of E[R
(k)
ii ],

and our estimate on mn), we have

E
∑
i 6=j

|R(k)
ij |2

16n2
∼ 1

16n2
Tr(RR∗)− 1

16n
|m0|2(z) ∼ =m0(z)

16n=z
− 1

16n
|m0|2(z)

Denote by kn(z) the solution of the equation

1 + zkn(z) = γn −
γn

1 + 1
4kn(z)

,

which satisfies =kn(z) ≥ 0 when =z ≥ 0. Then we have proved that mn(z)
satisfies a similar equation:

1 + zmn(z) = γn −
γn

1 + 1
4mn(z)

+ En,

where the error term En satisfies

EEn = cn −
β4m0(z)2

16n(1 + 1
4m0)3

+ o(
1

n
)
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with

cn =
1

4n(1 + m0(z)
4 )2

m′0(z)− 1

16n(1 + m0(z)
4 )3

(
=m0(z)

=z
− |m0(z)|2) + o(

1

n
) .

Thus,

(mn(z)− kn(z))

(
z +

1− γn
4

+
z

4
(mn(z) + kn(z))

)
= En(1 +

1

4
mn(z)). (26)

From this we deduce that (for the term depending on the fourth cumulant)

E(mn(z)− kn(z)) =
c(z)

n
− β4

16n

m0(z)2

(1 + 1
4m0(z))2

1

z + zm0(z)/2
+ o(

1

n
)

where c(z) is independent of β4. Since

β4 = E(|Xij |2 − 1)2 = E(4|Wij |2 − σ2)2

= 42(κ4 + 1/16)

we have completed the proof of Proposition 1, since kn −m0(z) is of order 1
n

and independent of κ4.

5.3.2 Estimate at the critical point

We deduce from Proposition 1 that for z = v+
c ,

nE[mn(v+
c )−m0(v+

c )] = c(v+
c )− β4

16

a−4

(1 + 1
4a
−2)2

1

v+
c (1 + 1

2a
−2)

+ o(1).

Moreover we know that m0(v+
c ) = a−2, and that

v+
c = − a4

1
4 + a2

= − 4a4

1 + 4a2
.

Also by (21), after taking the derivative, we have

m′0(z) = −m0(z)(1 +m0(z)/4)

z(1 +m0(z)/2)
,

so that at the critical point we get

m′0(v+
c ) =

(4a2 + 1)2

16a6(a2 + 1
2 )
,

v+
c m
′
0(v+

c ) = − (1 + 4a2)

4( 1
2 + a2)

= −
a−2(1 + 1

4a2 )

1 + 1
2a2

.
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Therefore, with the notations of Theorem 1, we find constants C independent
of β4 (and which may change from line to line) so that

∫
dPn(H)[∆n(H)] = − 1

v+
c m′0(v+

c )
E[n(mn(v+

c )−m0(v+
c ))] + o(1)

= −
1 + 1

2a2

a−2(1 + 1
4a2 )

β4

16

a−4

(1 + 1
4a2 )2

1

1 + 1
2a2

1 + 4a2

4a4
+ C + o(1)

= − β4

(1 + 4a2)2
+ C + o(1) = −κ4 + 1/16

( 1
4 + a2)2

+ C + o(1).

Rescale the matrix M by dividing it by σ so as to standardize the entries. We
have therefore found that the deviation of the smallest eigenvalue are such that

P
(
λmin(

MM∗

n
σ2) ≥ s

n2

)
= gn(s) +

γ

2n
sg′n(s) + o(

1

n
),

where γ is the kurtosis defined in Definition (1). At this point gn is identified
to be the distribution function at the Hard Edge of the Laguerre ensemble with
variance 1, as it corresponds to the case where γ = 0.

6 Deformed GUE in the bulk

Let W = (Wij)
n
i,j=1 be a Hermitian Wigner matrix of size n. The entries Wij

1 ≤ i < j ≤ n are i.i.d. with distribution µ. The entries along the diagonal are
i.i.d. real random variables with law µ′ independent of the off diagonal entries.
We assume that µ has sub exponential tails and satisfy∫

xdµ(x) = 0,

∫
|x|2dµ(x) = 1/4,

∫
x3dµ(x) = 0.

The same assumptions are also assumed to hold true for µ′. Let also V be
a GUE random matrix with i.i.d. NC(0, 1) entries and consider the rescaled
matrix

Mn =
1√
n

(W + aV ).

We denote by λ1 ≤ λ2 ≤ · · · ≤ λn the ordered eigenvalues of Mn. By Wigner’s
theorem, it is known that the spectral measure of Mn

µn =
1

n

n∑
i=1

δλi

converges weakly to the semi-circle distribution with density

σsc(x) =
1

2πσ2

√
4σ2 − x21|x|≤2σ; σ2 = 1/4 + a2. (27)
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This is the Deformed GUE ensemble studied by Johansson [19]. In this
section, we study the localization of the eigenvalues λi with respect to the
quantiles of the limiting semi-circle distribution. We study the 1

n expansion of
this localization, showing that it depends on κ4, and prove Theorem 3.3.

The route we follow is similar to that we took in the previous section for
Wishart matrices: we first obtain a 1

n expansion of the correlation functions of
the Deformed GUE. The dependency of this expansion in the fourth moment of
µ is then derived.

6.1 Asymptotic analysis of the correlation functions

Let ρn be the one point correlation function of the Deformed GUE. We prove in
this subsection the following result, with z±c , w

±
c critical points similar to those

of the last section, which we will define precisely in the proof.

Proposition 6.1. For all ε > 0, uniformly on u ∈ [−2σ + ε, 2σ − ε], we have

ρn(u) = σsc(u) + E[

(
=z+

c (u)

=w+
c (u)

− 1

)
]σsc(u) +

C ′(u)

n
+ o(

1

n
),

where the function u 7→ C ′(u) does not depend on the distribution of the entries
of W whereas z+

c depends on the eigenvalues of W .

Proof of Proposition 6.1: Denote by y1 ≤ y2 ≤ · · · ≤ yn the ordered
eigenvalues of W/

√
n. [19, (2.20)] proves that, for a fixed W/

√
n, the eigenvalue

density of Mn induces a determinantal process with correlation kernel given by

Kn(u, v; y(
W√
n

)) =
n

(2iπ)2

∫
Γ

dz

∫
γ

dwen(Fv(w)−Fv(z)) 1− e
(u−v)zn

a2

z(u− v)
gn(z, w),

where

Fv(z) =
(z − v)2

2a2
+

1

n

∑
ln(z − yi),

and

gn(z, w) = F ′u(z) + z
F ′v(z)− F ′v(w)

z − w
.

The contour Γ has to encircle all the yi’s and γ is parallel to the imaginary axis.
We now consider the asymptotics of the correlation kernel in the bulk, that is

close to some point u0 ∈ (−2σ+δ, 2σ−δ) for some δ > 0 (small). We recall that
we can consider the correlation kernel up to conjugation: this follows from the

fact that det (Kn(xi, xj ; y)) = det
(
Kn(xi, xj ; y) h(xi)

h(xj)

)
, for any non vanishing

function h. We omit some details in the next asymptotic analysis as it closely
follows the arguments of [19] and those of Subsection 5.2.

Let then u, v be points in the bulk with

u = u0 +
αx

n
, v = u0 +

αx̃

n
;u0 =

√
1 + 4a2 cos(θ0), θ0 ∈ (2ε, π − 2ε). (28)
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The constant α will be fixed afterwards. Then the approximate large exponential
term to lead the asymptotic analysis is given by

F̃v(z) =
(z − v)2

2a2
+

∫
ln(z − y)dρ(y),

where ρ is the semi-circle distribution with support [−1, 1]. In the following we
note R0 =

√
1 + 4a2 = 2σ.

We recall the following facts from [19], Section 3. Let u0 =
√

1 + 4a2 cos(θ0)
be a given point in the bulk.

• The approximate critical points, i.e. the solutions of F̃ ′u0
(z) = 0 are given

by

w±c (u0) = (R0e
iθc ± 1

R0eiθc
)/2.

The true critical points satisfy F ′u0
(z) = 0. Among the solutions, we

disregard the n−1 real solutions which are interlaced with the eigenvalues
y1, . . . , yn. The two remaining solutions are complex conjugate with non
zero imaginary part and we denote them by z±c (u0). Furthermore [19]
proves that

|zc(u0)+ − wc(u0)+| ≤ n−ξ

for any point u0 in the bulk of the spectrum.

• We now fix the contours for the saddle point analysis. The steep de-
scent/ascent contours can be chosen as :

γ = z+
c (v) + it, t ∈ R,

Γ = {z±c (r), r = R0 cos(θ), θ ∈ (ε, π − ε)}
⋃
{z±c (R0 cos(ε)) + x, x > 0}⋃

{z±c (−R0 cos(ε))− x, x > 0}.

It is an easy computation (using that <F ′′u0
(w) > 0 along γ) to check that

the contribution of the contour γ∩|w−z±c (v)| ≥ n1/12−1/2 is exponentially
negligible. Indeed there exists a constant c > 0 such that∣∣∣ ∫

γ∩|w−z±c (v)|≥n1/12−1/2

en<(Fu0 (w)−Fu0 (z+c (v)))dw
∣∣∣ ≤ e−cn1/6

.

Similarly the contribution of the contour Γ∩ |w− z±c (v)| ≥ n1/12−1/2 is of

order e−cn
1/6

that of a neighborhood of z±c (v).

For ease of notation, we now denote zc(v) := z+
c (v). We now modify slightly

the contours so as to make the contours symmetric around z±c (v). To this aim
we slightly modify the Γ contour: in a neighborhood of width n1/12−1/2 we
replace Γ by a straight line through z±c (v) with slope z′c(v). This slope is well
defined as

z′c(v) =
1

F ′′v (zc(v))
6= 0,
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e

zc(u0)

N1/12−1/2
Γ

E

Γ′

Figure 6: Modification of the Γ contour

using that |z±c (v) − w±c (u0)| ≤ n−ξ. We refer to Figure 6.1, to define the new
contour Γ′ which is more explanatory.

Denote by E the leftmost point of Γ∩{w, |w−zc(v)| = n1/12−1/2}. Then there
exists v1 such that E = zc(v1). We then define e by e = zc(v) + z′c(v)(v1 − v).
We then draw the segment [e, zc(v)] and draw also its symmetric to the right of
zc(v). Then it is an easy fact that

|E − e| ≤ Cn1/12−1/2, for some constant C.

Furthermore, as e, E both lie within a distance n1/12−1/2 from zc(v), it follows
that

∀z ∈ [e, E],
∣∣∣<(nFv(z)− nFv(E)

)∣∣∣ ≤ Cn3(1/12−1/2) = Cn
1
4 << n1/6.

This follows from the fact that |F ′v(z)| = O(n1/12−1/2) along the segment [e, E].
This is now enough as <nFv(E) > <nFv(zc) + cn1/6 to ensure that the defor-
mation has no impact on the asymptotic analysis.

We now make the change of variables z = z±c (v)+ t√
n
, w = z±c (v)+ s√

n
where

|s|, |t| ≤ n1/12−1/2. We examine the contributions of the different terms in the
integrand. We first consider gn. We start with the combined contribution of
equal critical points, e.g. z and w close to the same critical point. In this case,
using (28), we have that

gn(w, z)

z
= F ′′v (zc(v)) +

1√
n

(
F

(3)
v (zc(v))

2
(s+ t) + zc(v)−1F ′′v (zc(v))t

)

+
1

n

(
F

(4)
v (zc(v))

3!
(s2 + t2 + st)− F ′′v (zc(v))t2

zc(v)2
+

1

2

F
(3)
v (zc(v))

zc(v)
t2

)

+
α(x− x̃)

2a2nzc(v)
+ o(

1

n
).
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On the other hand when w and z lie in the neighborhood of different critical
points, one gets that

gn(w, z)

z
=
α(x− x̃)

nz±c
+
F ′′v (zc(v))t

z±c
√
n

+
F

(2)
v (z±c (v))t− F (2)

v (z∓c (v))s

2(z±c − z∓c )
√
n

+O(
1

n
),

where the O( 1
n ) depends on the third derivative of Fv only. One also has that

exp{nFv(z)} = exp{nFv(z±c ) + F ′′v (z±c )t2/2 + F (3)
v (z±c )

t3

3!
√
n

+ o(1/
√
n)}.

Consider for instance the contribution to 1
nKn(u, v; y( W√

n
)) of contours close to

the same critical points z, w ' zc(v) : this yields

1

(2iπ)2

∫
ds

∫
dt

(
F ′′v (zc(v)) +

1√
n

(
F

(3)
v (zc(v))

2
(s+ t) +

F ′′v (zc(v))t

zc(v)

)
+O(1/n)

)

exp{F ′′v (zc(v))(s2 − t2)/2 + F (3)
v (zc(v))

s3 − t3

3!
√
n

+O(1/n)}1− e
n(u−v)zc(v)+t

√
n(u−v)

a2

n(u− v)

=
±1

2iπ

1− e
(u−v)zc(v)n

a2

n(u− v)
+O(1/n), (29)

where we used the symmetry of the contours on s, t to obtain that the O(1/
√
N)

vanishes. Note that n(u− v) is of order 1. We next turn to the remaining term
in the integrand (which is not exponentially large) and which depends on z only,
namely

1− e
(u−v)zn

a2 .

One has that

1− e(x−x̃)αa−2z±c = 1− e(x−x̃)αa−2<z+c ei±(x−x̃)αa−2=zc .

We do the same for the contribution of non equal critical points. One may

note in addition that Fv(z
−
c ) = Fv(z

+
c ). Due to the fact that gn vanishes at

different critical points, we see that the contribution from different critical terms
is in the order of 1/N . Furthermore it only depends on zc(v).
Combining the whole, apart from constants, one has that

α

n
Kn(u, v; y(

W√
n

)) =
e(x−x̃) α

a2
<z+c

2iπ(x− x̃)

(
ei(x−x̃) α

a2
=z+c −e−i(x−x̃) α

a2
=z+c

)
+
C(x, x̃)

n
+o(

1

n
).

The function C(x, x̃) does not depend on the detail of the distributions µ, µ′

of the entries of W . We now choose α = σsc(u0)−1 where σsc is the density
of the semi-circle distribution defined in (27). It has been proved in [19] that
=w+

c (u0) = πa2σsc(u0). Setting then

β := =z+
c (u0)/=(w+

c (u0))

32



we then obtain that

α

n
Kn(u, v; y(

W√
n

))e−(x−x̃) α
a2
<z+c =

sinπβ(x− x̃)

π(x− x̃)
+
C ′(x, x̃)

n
+ o(

1

n
).

The constant C ′(x, x̃) does not depend on the distribution of the entries of W .
This proves Proposition 6.1 since by taking the limit where x̃→ x e.g.

ρn(x) = E[
1

n
Kn(u, u; y(

W√
n

))]

=
1

α
E[β] +

C ′(x, x)

αn
+ o(

1

n
)

= σsc(u0) + σsc(u0)E[(β − 1)] +
C ′(x, x)

αn
+ o(

1

n
) .

6.2 An estimate for zc−wc and the role of the fourth mo-
ment

We follow the route developed for Wishart matrices, showing first that the
fluctuations of z±c (u0) around w±c (u0) depend on the fourth moment of the
entries of W .

We fix a point u in the bulk of the spectrum.

Proposition 6.2. There exists a constant Cn = Cn(u) independent of the dis-
tribution µ and l = l(u) ∈ R such that nCn → l such that

E[zc(u)− wc(u)] =
Cn + β4m0(wc)

4/(16n)

(a−2 +m′0(wc))(wc +m0(wc)/2)
+ o(

1

n
).

As a consequence, for any ε > 0 uniformly on u ∈ [−2σ + ε, 2σ − ε],

ρn(u) = σsc(u) +
C ′(u)

n
+ κ4

D(u)

n
+ o(

1

n
), (30)

where D(u) is the term uniquely defined by

n
E[=(zc(u)− wc(u))]

πa2
= nE[(β(u)− 1)]σsc(u) = C ′(u) + κ4D(u) + o(1), (31)

where C ′(u) is a constant independent of µ.

Proof of Proposition 6.2: We first relate critical points zc and wc to the
difference of the Stieltjes transforms mn−m0. The true and approximate critical
points satisfy the following equations:

zc − u
a2

−mn(zc) = 0;
wc − u
a2

−m0(wc) = 0.

Hence,

(
1

a2
−m′0(wc))(zc − wc) = mn(wc)−m0(wc) + o(

1

n
) (32)
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where we have used that mn − m0 is of order 1
n . Indeed, the estimate will

again rely on the estimate of the mean of the central limit theorem for Wigner
matrices, see [3, Theorem 9.2]. For the sake of completeness we recall the main
steps. Using Schur complement formulae (see [1] Section 2.4 e.g.) one has that

mn(z) =
1

n

n∑
i=1

1

−z +Wiin−1/2 − h∗iR(i)(z)hi
,

where hi is the ith column of W/
√
n with ith entry removed and R(i) is the

resolvent of the (n−1)×(n−1) matrix formed from W/
√
n by removing column

and row i. Copying the proof of Subsection 5.3.1, we write

mn(z) +
1

z + 1
4mn(z)

=
1

n

n∑
i=1

δn

(z + 1
4mn(z))(z + 1

4mn(z) + δn)
=: En,

where δn = Wiin
−1/2 + 1

4mn−h∗iR(i)(z)hi. Again a Central Limit Theorem can
be established from the above. We do not give the details as this uses the same
arguments as in Subsection 5.3.1. One then finds that

E[En] = cn +
β4m0(z)2

16n(z + 1
4m0)3

+ o(
1

n
), (33)

where the sequence cn = cn(z) is given by

cn =
1

4n(z + m0(z)
4 )2

m′0(z)− 1

16n(z + m0(z)
4 )3

(
=m0(z)

=z
− |m0(z)|2) + o(

1

n
) .

We recall that the limiting Stieltjes transform satisfies

m0(z) +
1

z + 1
4m0(z)

= 0.

As a consequence , we get

(mn(z)−m0(z))(z +
1

4
(mn(z) +m0(z)) = En(z +

1

4
mn(z)), (34)

from which we deduce (using that mn(z)−m0(z)→ 0 as n→∞) that

E[(mn(z)−m0(z))](z +m0(z)/2) ∼ E[En](z +
1

4
m0(z))

= [cn +
β4m0(z)4

16n
](z +

1

4
m0(z)) + o(

1

n
).

(35)

Combining (33), (34) and (35) and using the fact that |zc(v)+ − wc(v)+| ≤
n−ξ for any point v in the bulk of the spectrum, we deduce the first part
of Proposition 6.2. Using Proposition 6.1, the expansion for the one point
correlation function follows.
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6.3 The localization of eigenvalues

We now use (30) to obtain a precise localization of eigenvalues in the bulk of the
spectrum. A conjecture of Tao and Vu (more precisely Conjecture 1.7 in [27])
states that (when the variance of the entries of W is 1

4 ), there exists a constant
c > 0 and a function x 7→ C ′(x) independent of κ4 such that

E (λi − γi) =
1

nσsc(γi)

∫ γi

0

C ′(x)dx+
κ4

2n
(2γ3

i − γi) +O(
1

n1+c
) (36)

where γi is given by Nsc(γi) = i/n if Nsc(x) =
∫ x
−∞ dσsc(u). We do not prove the

conjecture but another version instead. More precisely we obtain the following
estimate. Fix δ > 0 and an integer i such that δ < i/n < 1− δ. Define also

Nn(x) :=
1

n
]{i, λi ≤ x}, with λ1 ≤ λ2 ≤ · · · ≤ λn;

(37)

Let us define the quantile γ̂i by

γ̂i := inf

{
y,

∫ y

−∞
ρn(x)dx =

i

n

}
.

By definition ENn(γ̂i) = i/n. We prove the following result.

Proposition 6.3. There exists a constant c > 0 and a function x 7→ C ′(x)
independent of κ4 such that

γ̂i − γi =
1

nσsc(γi)

∫ γi

0

C ′(x)dx+
κ4

2n
(2γ3

i − γi) +O(
1

n1+c
) (38)

The main step to prove this proposition is the following.

Proposition 6.4. Assume that i ≥ n/2 without loss of generality. There exists
a constant c > 0 such that

γ̂i − γi − γ̂[n/2] + γ[n/2] =
1

σsc(γi)

∫ γi

γ[n/2]

[ρn(x)− σsc(x)]dx+O(
1

n1+c
). (39)

Note here that γ[n/2] = 0 when n is even.

Proof of Proposition 6.4: The proof is divided into Lemma 1 and Lemma
2 below.

Lemma 1. For any ε > 0, there exists c > 0 such that uniformly on i ∈
[εN, (1− ε)N ]

γi − γ̂i = E (Nn(γ̂i)−Nsc(γ̂i))
1

σsc(γi)
+O(

1

n1+c
). (40)
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Proof of Lemma 1: Under assumptions of sub exponential tails, it is proved
in [12] (see also Remark 2.4 of [27]) that given η > 0 for n large enough

P
(

max
εN≤i≤(1−ε)n

|γi − λi| ≥ nη−1

)
≤ n− logn. (41)

Note that the λi have all finite moments, see e.g. [1, 2.1.6]. In particular this
implies that

max
εN≤i≤(1−ε)n

|γi − γ̂i| ≤ nη−1. (42)

From the fact that ENn(γ̂i) = Nsc(γi), we deduce that

ENn(γ̂i)−Nsc(γ̂i) = Nsc(γi)−Nsc(γ̂i)

= N ′sc(γi)(γi − γ̂i)−
∫ γ̂i

γi

∫ u

γi

N ′′sc(s)ds. (43)

Using that N ′sc(x) = 1
2πσ2

√
4σ2 − x21|x|≤2σ and that both γi and γ̂i lie within

(−2σ + ε, 2σ − ε) for some 0 < ε < 2σ, we deduce that

ENn(γ̂i)−Nsc(γ̂i) = σsc(γi)(γi − γ̂i) +O(γi − γ̂i)2.

We now make the following replacement.

Lemma 2. Let ε > 0. There exist a constant c > 0 such that uniformly on
i ∈ [εn, (1− ε)n],

E (Nn(γ̂i)−Nsc(γ̂i)) = E (Nn(γi)−Nsc(γi)) +O(
1

n1+c
) . (44)

Proof of Lemma 2: We write that

E (Nn(γ̂i)−Nsc(γ̂i))
= E (Nn(γi)−Nsc(γi)) + E (Nn(γ̂i)−Nn(γi)−Nsc(γ̂i) +Nsc(γi)) . (45)

We show that the second term in (45) is negligible with respect to n−1. In fact,
for ε > 0, there exists δ > 0 such that for any i ∈ [εn, (1− ε)n],∣∣∣E (Nn(γ̂i)−Nn(γi)−Nsc(γ̂i) +Nsc(γi))

∣∣∣ ≤ ∣∣∣ ∫ γ̂i

γi

(ρn(x)− σ(x))dx
∣∣∣

≤ nη−1 1

nη+ 1−η
2

≤ 1

n1+ 1−η
2

.(46)

In the last line, we have used (30). This finishes the proof of Lemma 2.
Combining Lemma 1 and Lemma 2 yields Proposition 6.4:

γi − γ̂i − γ[n/2] + γ̂[n/2] =
1

σsc(γi)

∫ γi

γ[n/2]

[ρn(x)− σsc(x)]dx+O(
1

n1+c
)

=
1

nσsc(γi)

∫ γi

γ[n/2]

(C ′(x) + κ4D(x))dx+O(
1

n1+c
)
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=
1

nσsc(γi)

∫ γi

0

(C ′(x) + κ4D(x))dx+O(
1

n1+c
)

(47)

where we used that γ[n/2] vanishes or is at most of order 1/n. This formula will

be the basis for identifying the role κ4 in the 1
n expansion of γ̂i. We now write

for a point x in the bulk (−R(1− δ), R(1− δ)) that

x =
√

1 + 4a2 cos θ.

We also write that γi =
√

1 + 4a2 cos θ0. We then have that

wc(x) =
cos θ

R
+

2a2

R
e±iθ; m0(wc(x)) = ±iπσsc(x)− 2

1 + 4a2
x.

By combining Proposition 6.2 and (31), we have that

C(x) = =
(

m0(wc(x))4

16(wc(x) +m0(wc(x)))π
(1 + o(1))

)
. (48)

When a→ 0, we then have the following estimates

x ∼ cos θ; m0(wc(x)) ∼ −2e−iθ; σ(x) ∼ 2

π
sin θ;wc +m0(wc)/2 ∼ i sin θ.

Using (47) and identifying the term depending on κ4 in the limit a → 0, we
then find that

γi − γ̂i − γ[n/2] + γ̂[n/2]

=
1

nσsc(γi)

∫ γi

0

(C ′(x) + κ4D(x))dx+O(
1

n1+c
)

=
1

nσsc(γi)

∫ γi

0

C ′(x)dx+
κ4

n

π

2 sin θ0

∫ π/2

θ0

cos(4θ)

π
dθ +O(

1

n1+c
)

=
1

nσsc(γi)

∫ γi

0

C ′(x)dx− κ4

2n
cos θ0(2 cos2 θ0 − 1) +O(

1

n1+c
), (49)

where in the last line we used that 1
4 sin(4θ) = sin θ cos θ cos(2θ). Thus we have

that

γi − γ̂i − γ[n/2] + γ̂[n/2]

=
1

nσsc(γi)

∫ γi

0

C ′(x)dx− κ4

2n
(2γ3

i − γi) +O(
1

n1+c
). (50)

We finally show that

lim
n→∞

n
(
−γ[n/2] + γ̂[n/2]

)
= 0

which completes the proof of Proposition 6.3.
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To that end, let us first notice that for any C8 function f which is supported
in [− 1

2 ,
1
2 ], we have

lim
n→∞

E[

n∑
i=1

f(λi)] = m(f) + κ4

∫ 1

−1

f(t)T4(t)
dt√

1− t2
:= mκ4

(f) . (51)

with T4 the fourth Tchebychev polynomials and m(f) a linear form independent
of κ4. This is an extension of the formulas found in [3, Theorem 9.2, formula
(9.2.4)] up to the normalization (the variance is 1

4 here) to C8 functions. We
can extend the convergence (51) to functions which are only C8 by noticing
that the error in (35) still goes to zero uniformly on =z ≥ n−1/7 and then using
that for f C8 compactly supported, we can find by [1, (5.5.11)] a function Ψ so
that Ψ(t, 0) = f(t) compactly supported and bounded by |y|8 so that for any
probability measure µ

<
∫ ∞

0

dy

∫
dxΨ(x, y)

∫
1

t− x− iy
dµ(t) =

∫
Ψ(t, 0)dµ(t)

Hence,

E[
∑

f(λi)]− nσsc(f) = <
∫ ∞

0

dy

∫
dxΨ(x, y)n(mn(x+ iy)−m0(x+ iy)) .

Applying the previous estimate for y ≥ n−1/7 and on y ∈ [0, n−1/7] simply
bounding |n(mn(x+iy)−m0(x+iy))| ≤ 2ny−2 s well as |Ψ|(x, y) ≤ 1x∈[−M,M ]y

8

provide the announced convergence (51).
Next we can rewrite (51) in terms of the quantiles γ̂i as

mκ4(f) = n

∫
f(x)ρn(x)dx+ o(1)

=
∑
i

f(γ̂i) +
∑
i

f ′(γ̂i)(γ̂i+1 − γ̂i) + o(1)

where we used that γ̂i+1 − γ̂i is of order n−1 by (50). Now, again by (50)∑
i

f(γ̂i) =
∑
i

f(γi) +
∑
i

f ′(γi)(γ̂i − γi) +O(
1

n−1+2η
)

where we used that γ[n/2] − γ̂[n/2] = O(nη−1) by (42). Moreover∑
i

f(γi) = n

∫
f(x)σsc(x)dx−

∑
i

f ′(γi)(γi+1 − γi) + o(1)

Noting that the first term in the right hand side vanishes we deduce that

mκ4
(f) =

∑
i

f ′(γi)[γ̂i+1 − γ̂i − γi+1 + γi + γ̂i − γi] + o(1)
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where γ̂i+1− γ̂i− γi+1 + γi is at most of order n−2 by (50). Hence, we find that

−mκ4(f) =
∑

f ′(γi)(γi − γ̂i) + o(1)

=
1

n

∑
i

f ′(γi)[n(γ[n/2] − γ̂[n/2])] +
1

n

∑
i

f ′(γi)

σsc(γi)

∫ γi

0

C ′(x)dx

+
κ4

2n

∑
i

f ′(γi)(2γ
3
i − γi) + o(1)

=

∫
f ′(x)σsc(x)dx[n(γ[n/2] − γ̂[n/2])] +

∫
f ′(x)

∫ x

0

C ′(y)dydx

+
κ4

2

∫
f ′(x)(2x3 − x)σsc(x)dx+ o(1) .

We finally take f ′ even, that is f odd in which case the last term in κ4 vanishes,
as well as the term depending on κ4 in mκ4

as T4 is even and f odd. Hence, we
deduce that there exists a constant independent of κ4 such that

lim
n→∞

n(γ[n/2] − γ̂[n/2]) = C .

In fact, this constant must vanish as in the case where the distribution is sym-
metric, and n even, both γ[n/2] and γ̂[n/2] vanish by symmetry.
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