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Abstract

In this paper, we propose a physically based calibration algorithm
for color reproduction using film. We demonstrate that color reproduc-
tion is a natural application of the Non-Negative Matrix Factorization
(NNMF) algorithm. The color reproduction of film is modelled as a
two-stage process: color-recording followed by color-reconstruction. To
compute the input that will produce a desired output, the proposed
algorithm inversely solves the two stages in sequence. The inversion of
the color-reconstruction stage consists of a basis extraction routine and
an application of Newton’s method. T'wo basis extraction algorithms,
the NNMF and an SVD-based alternative, are compared. For the in-
version of the color-recording stage, both a linear interpolation scheme
and a physical model of color film development processes are proposed.
Our intended application is the matching of the color seen through a
film projector with the color that an artist originally intended on a
computer screen.

1 Introduction

A common problem in animation film production is the discrepancy between
the color seen on a cinema screen and the original intent. To compensate,
one can build a calibration model that computes the necessary input for a
desired output.
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Calibration of a color system involves building a forward mapping that
characterizes system input-output relations, and inversely solving this map-
ping numerically. In [18], sharma reviews the applications of linear algebra
in the modelling of current color imaging systems. Communication of color
information between different color systems necessitates the use of a device-
independent color space in system characterization [17]. Overviews of color
system calibration and characterization can be found in [20, Chapter 1 and
Chapter 5]. Discussions of conditions for faithful color reproduction can be
found in Horn [10] and Sharma [19].

There are two common approaches for system characterization: inter-
polation and physical modelling. In an interpolation approach, one first
samples the input space of the system with a large number of samples, then
chooses a proper interpolation scheme given the inputs and outputs. In a
physical modelling approach, one constructs a parametric model based on
knowledge of the underlying physical processes and takes sampling data to
estimate the parameters. By exploiting extra information, physical models
usually have fewer parameters to estimate and can be reused for different
systems. For example, Hardeberg [9, Chapter 6] uses the Singular Value De-
composition (SVD) [8], also known as Principle Component Analysis (PCA)
[12], to estimate the sensitivity functions of a digital camera, thus generates
a physical characterization of the color system of interest.

Gennetten [7] uses a one-step interpolation approach to build a direct
forward input-output mapping to calibrate an ink-jet printer. Hardeberg
[9] also uses such an approach to characterize a scanner. This paper pro-
poses a novel two-stage calibration model for color reproduction of film and
demonstrates the implementations of both an interpolation approach and
a physical modelling approach. In a one-step interpolation approach, one
assumes no special knowledge of the system by treating it as a black box.
However, we already know that the reproduction of color using film consists
of two stages: First, the color information is recorded as dye densities on
a frame of developed film; then, color is reconstructed by shining a white
light through the frame of developed film. We refer to the two stages as a
color-recording stage and a color-reconstruction stage respectively, as shown
in Figure 1. Calibration is an inverse problem that requires an estimate of
the input-output mapping. By taking advantage of more physical informa-
tion available, i.e. treating the system as a gray box, a two-stage model
narrows down possible functional mappings to a more meaningful set than
that in a one-step interpolation approach.

Physical modelling of the color-reconstruction stage requires estimation
of basis functions of a lower dimensional vector space from sample data of
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Figure 1: Two stages of the color reproduction by film: a) Color-recording
stage: RGB color information of one color sample is recorded as a set of
three dye densities (c1,c2,c3). b) Color-reconstruction stage: the color is
reconstructed by filtering white light of a projecting lamp.

much higher dimensions. With the current application in color science as
an example, we argue generally that the Non-Negative Matrix Factorization
(NNMF) [13] can be physically and computationally more appropriate than
the SVD factorization in the estimation of underlying basis from a data set.
Both algorithms reduce the dimensionality of a problem to the “right” size,
but the NNMF goes further. Suppose one is given a data set in large dimen-
sional space and one needs the best approximation in a smaller space, say
three dimensional for our purpose. The SVD is well known to compute the
best approximation in the sense of the 2-norm or Frobenius norms [8]. In
our application, the extracted basis is a set of three vectors corresponding
to the three primary color spectra for a subtractive color mixing process,
which are analogous to the additive primary color spectra of red, green, and
blue [11]. The output spectra of color samples are results of non-negatively
adding three non-negative basis functions. In Figure 2(a) and Figure 2(b),
we show the orthogonal basis extracted by the SVD and the “primary col-
ors” produced by the NNMF. The plots illustrate that the orthogonality of
the SVD is too strong. What is needed instead are the edges of a mathe-
matical cone formed by points that are the projections of spectra onto the
three SVD-generated basis vectors. The three edges are the generating ba-
sis of points inside or on the cone. They are not necessarily orthogonal.
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Figure 2: a) Orthogonal basis extracted by SVD b) “Primary color” basis
extracted by NNMF c¢) CIERGB Color Matching Functions d) CIEXYZ
Color Matching Functions

Respecting the non-negative constraints, the NNMF extracts such edges of
the cone structure by an approximated matrix factorization. The princi-
ple of non-negatively adding basis, however, applies more generally. Other
applications of the NNMF may be found in [13] [14]. For example, in face
recognition, we might say one tries to identify primary facial features to
combine non-negatively. In [22], we proposed an alternative non-negative
matrix factorization algorithm, which involves the SVD factorization and
computational processing in the light of the geometry intuitions aforemen-
tioned.

The color-recording stage transforms RGB color information of exposing
light into a set of three dye densities of color film in a sequence of chemical
reactions [11] [4]. To inversely solve for an input color that produces a
desired set of densities, we use both an interpolation approach and a physical



modelling approach. In the latter approach, we build a mapping from the
input color space to the dye density space using a global least square fit
of physically motivated basis functions. Specifically, basing on results from
sensitometry research [21] [2], we choose linear basis functions to model the
density response to light exposure of a single dye layer, and multi-linear
basis functions to model possible inter-layer effects [1]. Result shows that
the proposed physically based numerical model captures main features in
the data.

The rest of this paper is organized into five sections: In Section 2, we give
the background for color calibration and introduce the proposed two-stage
calibration model for color film. In Section 3, we explain the physical model
of color-reconstruction stage and present the analysis behind the inversion
that utilizes Newton’s method. We also compare the performance of NNMF
with a SVD-based alternative as basis extraction schemes; In Section 4,
we describe color film processing and argue the plausibility of a physically
based numerical model for the color-recording stage. In this section, we
also describe an interpolation model; In Section 5, we list the steps of the
proposed two-stage calibration algorithm for color film; Section 6 is the

conclusion.

2 Background

2.1 Color Science

Visible light occupies a wavelength band ranging approximately from 380nm
to 780nm. Human color perception is facilitated by three types of color
sensitive cones in the retina. Each cone is most sensitive to light spectra that
correspond to one of the three primary colors, red, green and blue. Figure
3 shows a typical path of light that induces color perception: light [()\)
radiated from a light source illuminates a color object; The reflected light
r(A) impinges on the three cones in the retina; the light signal causes neurons
connected to the cones to fire at a rate that is determined by both the
spectrum of the reflected light from the color object and the cone sensitivity
functions [23].

Industry standards assume that the perceptual color space is three di-
mensional [3]. Mathematically, it means light spectra are projected onto a
three dimensional vector space spanned by the spectral sensitivity functions
of the three color cones [23]. In practice, convenient basis functions, such
as the CIERGB color matching functions br(A),bg(A),bp(\) as shown in
Figure 2(c) [6], are used instead. With the CIERGB basis available, any



Figure 3: A typical light path that induces human color perception a) a light
source b) an opaque color object ¢) human vision system

spectrum 7(A) of color light can be represented by a set of RGB tristimulus
values (R, G, B),
R = [r(A\)br(N)dA
G = [r(Nbe(NdA 1)
B = [r(A)bg(N)dA.

However, the projection from a higher dimensional space of spectra to a lower
dimensional space of tristimulus values gives rises to “metamers”, which
refers to sets of different light spectra that have the same tristimulus values
[23], and are therefore perceived as one color by human.

Another set of commonly used basis functions is the set of CIEXYZ color
matching functions, which is a linear transformation of the set of CIERGB
functions [23]. All the entries of CIEXYZ functions (see Figure 2(d)) are
chosen to be non-negative to avoid numerical instability due to substrac-
tion of two like numbers [20, Chapter 1]. XYZ color coordinates are the
tristimulus values corresponding to CIEXYZ basis.

2.2 Calibration of Color Reproduction Systems

A color reproduction system consists of mainly three components: 1) a
color sensing unit, such as human color vision system or a camera that
senses color light with either photosensitive grains in film or a CCD photon
detector array; 2) some color storage media, such as color film or a digital
storage device; 3) a color reconstruction unit, such as a projector with slides
or a CRT display. Color is captured by the color sensing unit and stored
in some intermediate media, then reconstructed by the color reconstruction
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Figure 4: Color calibration of a film system a) RGB laser writer b) film as
color reproduction system c) color matching by an artist

unit (with distortions), see Figure 4(b). In movie production, the color
reproduction system consists of a movie camera, color film, and a projector.
Similar color reproducing systems are key in animation film production,
photography, etc.

Figure 4 illustrates the color calibration process of film as a color re-
production system: Artists provide intended color in RGB format (usually
obtained using a calibrated computer monitor) that should be produced at
the output of the color system; With the proposed calibration model, the
input settings of a RGB laser is computed such that with such inputs the
film would reproduce the desired color. The goal of the calibration is to
solve for a set of three RGB laser settings inversely given a desired output
color.

Since most currently available color reproduction systems are built with
the assumption that the perceptual color space (or simply color space) is
a three dimensional vector space. Ideally we can view the reproduction of
color as applying a series of mappings from one vector space to another [10],
e.g., from [r;, g;, b;] € Q1 to [c1,co,c3] € Qa, then to [ry, go, bo] € N3, where
Q; is the RGB color space of the input color, s is the vector space of dye
density vectors of the film, Q3 is the RGB color space of the output color.
However, these mappings are not always linear. In this paper, we assume
the color space of the output device contains that of the input device, thus
avoid the complication of “out-of-gamut” color.



RGB values of input Taser lights CMY thickness vectors

0.4 6
5
(o] 4 .
> ..
©
(3) 3 i:.’
= -?'..'
L2 ¥
I
1 i
0
6
Green 0 0 Red Magenta dye 0 0 Cyan dye

Figure 5: (a) 1000 RGB values sampled from a RGB color cube (b) 1000
dye density vectors of color negative film produced by the 1000 RGB colors

2.3 A Two-Stage Calibration Model for Color Film

In treating color film as a color reproduction system, we take as outputs: the
transmitted light spectra resulted from shining white light through a frame
of developed film, and as inputs: the set of (R,G,B) values of the laser light
used to expose the film (see Figure 1). The objective of our calibration model
is to compute a set of three input settings of RGB laser that will produce
a desired output color specified in XYZ coordinates (which is equivalent to
RGB coordinates by a linear transformation).

2.3.1 The data set

The data set available for calibration is collected in the following steps: 1000
colors are sampled from a RGB color cube with 10 discrete sampling points
along each primary color axis; one frame of film is exposed to one solid color
out of the 1000 color samples and then developed; Then, we shine a white
light through each frame of developed film and measure the spectrum of
the output light using a spectrometer with a 101-point discretization of the
wavelength region of visible light. Figure 5(a) displays the 1000 inputs as
the grid points in a RGB color cube.

The available data set contains the inputs—a 10 x 10 x 10 sampling grid
points of a regular RGB color cube, the outputs—1000 discretely sampled
spectra of light outputs, plus one more spectrum of the a white light used as



the light source to produce the outputs. Two data sets have been collected,
one for a type of color positive film and the other for a type of color negative
film respectively.

2.3.2 The calibration model

Given inputs and outputs of a system, Gennetten [7] builds a direct inter-
polation model by treating the film system as one black box. Hardeberg
[9] also employs such an interpolation approach in the characterization of
a scanner system. However, we believe more refined physical models of the
system of interest would enable more accurate calibrations.

In this paper, we suggest a two-stage model for the film color reproduc-
tion process shown in Figure 1. In the first stage, a color light generated
by an RGB laser exposes a frame of color film. After the exposure and
development of the film, the color information of the input light is recorded
uniquely as a density vector (c1, ca, c3) where the components are the densi-
ties of primary-color-absorbing dyes, i.e. the cyan, yellow and magenta dyes
[4]. In the second stage, a white light is shined through the developed film.
As a component of the subtractive basis of color mixing, each primary-color-
absorbing dye in a separate dye layer mainly absorbs energy of the white
light at the wavelength range of its corresponding primary color. (Specif-
ically, cyan dye mainly absorbs red light, similarly, magenta dye absorbs
green light and yellow dye absorbs blue light.) The resulted color will be a
reconstruction of the original color with some distortion.

With respect to color processing, we refer to the first stage as the color-
recording stage, where the RGB values of a color input are recorded as a
density vector (ci,co,c3), and the second stage as the color-reconstruction
stage, where colors are reconstructed by shining white light through the
three dye layers of the developed frames of film. The three dye layers can
be thought of as a stack of three color filters (see Figure 6(b)).

The use of a set of density values (cj,ca,c3) as an intermediate state
decouples the two stages of color processing and allows us to inversely solve
the two stages separately. In the proposed algorithm, we first inversely solve
the color-reconstruction stage, i.e., solve for a set of density values (c1, ca, ¢3)
given the XYZ values of a desired output color. To perform this task, we
combine Newton’s method with either the well known SVD factorization or
the less known NNMF factorization. Then, we invert the color-recording
stage, by either an interpolation scheme or a physical modelling approach,
to compute a set of RGB laser input values from the set of density values
(c1,c2,c3) obtained from the inversion of color-reconstruction stage.
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Figure 6: Color reproduction using “tri-pack” color film a) unexposed film
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3 Inverting the Color Reconstruction Step

To solve the inverse problem of the color reconstruction step, we follow
three steps: 1) use the SVD to verify a hypothesis that each spectrum in
the data set is a linear superposition of three basis functions; 2) extract the
basis functions using either the NNMF or an alterative non-negative ma-
trix factorization algorithm that consists of the SVD and some geometrical
processing; 3) use Newton’s method to compute (¢, co, ¢3) for a given XY7Z
values.

3.1 The Model of Light Absorbing Dye Layers

Beer’s law [23] is valid for homogeneous isotropic absorption filters,

Iout()‘)
Iin( )

where A is the wavelength, ¢()\) is an absorption constant of the light ab-
sorbing material and c is its concentration (or density). The three layers of
primary-color-absorbing dyes, i.e., cyan, yellow and magenta dyes in a frame
of developed color film can be modelled as a stack of three such filters [5]
(see Figure 6(b)). The three dyes attenuate the input white light according
to their corresponding absorption functions ¢y (), ¢m(A), ¢c(A) (see Figure
6). (Examples of the logarithm of these functions extracted numerically

= (N (2)
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degree n= 1 2 3 4 5

L5170 | 0.83602 | 0.05044 | 0.99797 | 0.99818 | 0.99834

Table 1: Ratios of sums of singular value squares

from the available data set is shown in Figure 7.) Then, the output light
spectrum is determined by the densities of the dye layers (ci,co,c3), the
absorption functions of the dyes, ¢,(X), dp(A), d(A) and the spectrum of
the projecting lamp I;;,(\) as in the following equation,

Tout(A) = Lin(A) Py (A) ™ dm(A) 2 de(X) . (3)

Rewrite this equation and define the log-spectra-ratio (also known as the
spectral-dye-density function) d(\) as,

Iout()\)
Iin(X)

where bi(A) = —log(¢e(A)), b2(A) = —log(¢g(A)), bs(A) = —log(¢r(A))
are defined as the negative of logarithm of absorption functions. Thus, the
log-spectra-ratios are generated by non-negative linear combination of a set
of three log-absorption-basis functions, (b1(X\),b2(N),b3(N)), which are also
called the generators. It is important to note here that the entries of a
density vector (c1, co,c3) are always non-negative numbers.

d(A) = —log( ) = c1b1(A) + caba(A) + c3bz(N), (4)

3.2 Three Generators

If the data set is indeed generated using the aforementioned typical tri-pack
color film, we would expect that the spectra data has a three-generator
structure. In other words, each of the 1000 log-spectra-ratios is a linear
combination of the same set of three generators. In order to verify, we first
collect the 1000 log-spectra-ratios log(II"_“t) into a matrix V ¢ R!01x1000
where 101 is the number of sampling Wa(;(lélengths of the spectrometer used
and 1000 is the number of samples. Then, we apply the SVD to this matrix.
From Table 1, we see that the sum of the largest three singular value squares
captures 99.797% of the total sum, and the inclusion of the fourth largest
singular value square only improves the percentage by 0.19%. This suggests

strongly that a three-generator structure is embedded in the spectra data.

11
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Figure 7: The negative of log-absorption-basis functions (also know as the
spectral dye density functions) of cyan, magenta and yellow dye layers ex-
tracted by NNMF of 10000 iterations (dash lines) and by a geometry ap-
proach with SVD (solid lines).

3.3 Generators Extraction

Finding the three generators underlying the 1000 101-dimensional spectra,
which are listed as columns of the matrix V, can be formulated as a matrix
factorization of the form:

V ~ WH, (5)

where W € R3¢ R3*1000 haying only non-negative elements. The
three columns of W are the generators, i.e., the negative of log-absorption-
basis functions of the three dye layers. H is 1000 sets of three densities
(c1,c2,c3)”. The non-negativity is a physical constraint, which is due to the
nature of the color reproduction by color film. While respecting the non-
negativity, the NNMF iteratively updates W and H by a gradient descent
like update rule and optimizes a cost function that measures how well W H
approximates V. The NNMF has guaranteed convergence [13].

As an alternative, we suggest a generator extraction algorithm that is
based on the SVD factorization and geometric intuitions mentioned briefly
in the introduction section: In 3D Euclidean geometry, adding three inde-
pendent generators non-negatively will generate new points inside a convex

12



Figure 8: The 1000 density vectors form a parallelepiped structure. The
surfaces are densities of constant green exposure.

cone and the generators are the three bounding edges through the origin.
Generators extraction means to uncover these three bounding edges from the
density vectors. To extract the generators geometrically, we followed a series
of simple steps: Take SVD of the log-spectra-ratios; Project 1000 spectra
onto the assumed three dimensional space spanned by the first three orthog-
onal u vectors (i.e., the first three columns of matrix U resulted from the
SVD factorization). The resulted three dimensional density vectors have a
structure of a parallelepiped. See Figure 8, since each density is non-negative
and has an upper bound; Find the convex hull using existing MATLAB tool,
convezhulln [15]; Compute the three normal vectors of the three sides of the
parallelepiped that pass through the origin. Here, we use the normal vector
of the facet having the largest area on that side of the convex hull; The
three generator vectors are cross products of pairs of the three normal vec-
tors. The detail of the alternative algorithm and its performance comparison
with the NNMF are provided in [22].

Figure 7 compares the generators, or the log-absorption-basis functions
of the three dye layers obtained by the two different non-negative factor-
ization schemes. By considerations of color film design, the solid curves
obtained by the geometry approach would be a better set of absorption
functions for film, because there is less undesired cross frequency band ab-

13



sorption. Cross frequency band absorption is referred to as cross-layer ab-
sorption at later sections.

3.4 From XYZ Color Coordinates to Densities By Newton’s
Method

Once having the three basis functions (generators), we proceed to invert the
color-reconstruction stage using Newton’s method. The task is to obtain a
density vector given a desired color specified in XYZ color coordinates.

The formula that turns densities and the spectrum of a projecting lamp
into a set of XYZ tristimulus values (z,y, z) is

y — / y()\) IO(A)ef(clbl()\)+62b2(/\)+03b3()\))d)\. (6)

where z(\),y(A) and z(\) are the three CIEXYZ color matching functions
as shown in Figure 2(d). The inversion of the above equation requires the
solution of a set of nonlinear equations. This equation may be solved by
Newton’s method. Some experience shows that Newton’s method works
very well no matter where the starting point is.

The linearization requires the Jacobian

X X X

_ 0 0 0
J = Ocy Y Oca Y Jcg Y
z z z

T
ai o / y(N) | To(Aby(A)e™(crtr W Feaba@teaba g,
Ci

In other words an extra factor of -b;(\) is introduced into the integrand.
The same code that calculates XYZ values, may be used with this slight
modification to compute the Jacobian.

Suppose an)’ an) and an) are the nth iterates with corresponding z(™, y(")
and 2(™. Newton’s method computes,

cgnﬂ) an) 2™ T
e L= Lo |t (e ) (]
an+1) cgn) »(n) P

14



where the last vector is the desired XY7Z values.

It is worthwhile to note that the Jacobian is quite well conditioned.
This means that the map from density space to color space is everywhere
well determined. Using the data, we computed all 1000 condition numbers.
There were only about 100 of them that are bigger than 200 and the largest
was 6000. We recall from numerical analysis that the base-10 logarithm
of condition number is the number of digits that we expect to lose in a
computer. A condition number that is larger than 10'° is worrisome. The
observed condition numbers are considered to be very good and no fear needs
to occur when solving the linear equation involving J in Newton’s method.
Indeed we believe the negative densities are fine too. (Negative densities
are simply interpreted as amplification of the projection signal rather than
absorption.) Condition numbers only seem to get large when one of the
density components is large in magnitude, larger than physically realistic.

4 Inverting the Color Recording Step

For inversely solving the color-recording stage, i.e., obtaining the correct in-
put RGB values for a given density vector, we propose both an interpolation
approach and a physical modelling approach.

4.1 An Interpolation Scheme

In an interpolation approach, one treats the system as an unknown black
box with only the inputs and the outputs visible to an observer. Then,
interpolation functions are chosen to fit the output data with input data
over the domain of interest. With a linear three-dimensional interpolation
function f, we can inversely solve for the set of RGB values for a given set
of density values ¢ = (c1, ¢2, c3), where

Our interpolation algorithm consists mainly the following three steps:
For a given ¢, we find, in some optimal way, a set of four neighboring points
among all 1000 points shown in Figure 5(b), which forms a tetrahedron
encloses ¢ but not any other output points; Then, we choose an interpolation
function from a list of well known ones such as linear, Hermite, spline, and
etc.; Lastly, we solve for the RGB values inversely.

15



We found the interpolation tools in MATLAB convenient to use. In
particular, we used the 3D Delaunay tesselation routine of MATLAB [15] to
find the enclosing tetrahedron for each density vector. For the interpolation,
we choose to use linear interpolation for the convenience of implementation.

4.2 A Physical Modelling Approach
4.2.1 Color film processing

The shortcomings of an interpolation approach is that the resulting interpo-
lation functions can not be generalized to predict results in similar situations
and requires a large number of fitting parameters. If there are only a few un-
derlying physical processes at work in producing the data, then with enough
knowledge of the underlying processes, one can possibly device a physical
model that will explain the data with only a few parameters and capture
the general physics of alike systems. From a data processing perspective,
this results in efficient data compression.

In modelling the functional relationships between exposing light and dye
densities of developed film, an understanding of the film development process
is necessary. In the following paragraphs, we give a brief introduction of the
film development process. For a detailed description, we refer readers to
Hunt [11].

Figure 6(a) shows a typical “tri-pack” structure of color film. Each layer
contains silver halide grains that are mainly sensitive to one corresponding
primary color. Figure 9 illustrates a four-step development process for color
negative film in a microscopic scale. New film contains unexposed silver
halide grains (white squares) and coupler particles (circles). When exposed
to light, silver ions in some unexposed silver halide grains will acquire elec-
trons and form silver atom aggregate on the surface of the grain. Such
grains become exposed silver halide grains (square with a dot), which are
also called developable grains. Exposed grains in one emulsion layer form a
latent image whose density is dependent on the exposure of a correspond-
ing primary light. (Exposure is defined as the product of illuminance [16,
Pages 540] of exposing light and exposure time.) After the latent image
has formed, the film is treated with a color developer. Exposed silver halide
grain and nearby coupler particles will react with the developer and result in
completely developed grains of silver (black squares) and color dye particles
(circled letters). A bleach step that follows removes silver grains and destroy
the yellow filter layer. Finally, a fix step dissolves all remaining unexposed
silver halide grains and renders a color negative film with color dye images

16
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Figure 9: Sequence of chemical operations in film development (Legends: [J
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in three layers as seen in Figure 6(b). By the design of color negative film,
the more intense is the exposing light, the higher is the resulted dye den-
sities, in turn, the dimmer the negative is when viewed directly against a
light source. Therefore, we expect the dye densities increase monotonically
with their primary light exposure.

It is easy to confuse the light absorption by light sensitive emulsion layers
with the absorption by color dye layers in the other stage, i.e., the color-
reconstruction stage. Even though at the end of the development process of
color film, a light sensitive layer turns into its corresponding dye layer (ref.
Figure 9), but during the development process, the color light sensitive layers
are transparent. The absorption of color light during exposure is by colorless
sensitized frequency selective silver halide grains rather than dye particles.
Ideally, a color sensitive layer would only respond to its primary color light.
However, cross-layer-exposure effect always exists, just as does the cross-
layer absorption in color reconstruction (ref. the end of section 3.3). Cross-
layer-exposure effect is especially prominent in the cases of green-sensitive
and red-sensitive layers absorbing blue light. To alleviate the problem, a
yellow filter layer is inserted immediately after the blue-sensitive layer at
the top to absorb excess blue light, see Figure 6(a).

The quantitative study of the relationship between the density of devel-
oped silver grains and light exposure is the subject of a field called sensito-
metry. Experiments of sensitometry show that the optical density of silver
image D and the logarithms of exposure log(E) follows an H-D curve first
used by Hurter and Driffield [21] [2], see Figure 10. A H-D curve has three
regions, a “toe”, a linear region and a “shoulder”. Most types of color film
are designed to operate in the linear region. Thus, under normal conditions,
we would expect a linear relationship between density and log-exposure.
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Figure 10: H-D characteristic curve of a single emulsion layer

4.2.2 A physically based numerical model

In Figure 11, we present the NNMF generated densities (i.e., the H in
Equation 5) of color negative film in three sets of two plots. In the two
plots of the first row, densities of cyan, magenta and yellow dyes are plotted
over log R in solid color curves. The first plot shows the densities over log R
at three constant B values; The increasing order of the three B values is
indicated by circle, triangle and square; In this plot, the G value is held at
its minimum value. The second plot of the first row is the same except that
G takes on three constant values and B is held at its minimum. The other
two sets are the same except the roles of the R, G, and B are permuted.

The shape of the density curves of a complementary dye responding
to its primary light component does resemble the linear region of a H-D
characteristic curve. However, the existence of inter-layer effects is also
apparent: if such effects were absent, then as the intensity of a primary color
light increases along the abscissa, it should be that only its corresponding
color light sensitive layer would respond with deposited dye density increases
and the dye density curves of the other two layers would have stayed flat.
The pairings of a dye and the primary light that it mainly responds to are
as follows: yellow dye mainly responds to blue light, magenta dye mainly
responds to green light, and cyan dye mainly responds to red light.

By inter-layer effect, also called inter-image effect [1], we refer to the
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Figure 11: Experimental data and a model of the set of three tri-variate dye
density functions of negative film presented in six 2D plots.
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phenomena that a color light sensitive layer also responds to non-primary
light components. Possible causes include cross-layer exposure, cross-layer
inhibition, and etc.. Here, the most prominent inter-layer effect manifests
as that most dye densities decrease monotonically as the intensity of a non-
primary light component increases, e.g., yellow dye density in Figure 11(a),
cyan in Figure 11(c), and magenta in Figure 11(e). Development-inhibitor-
releasing (DIR) [11] couplers that are designed to retard the development
of neighboring dye layers to compensate for the cross-layer absorption in
color reconstruction (ref. the end of section 3.3) could be responsible for all
the negative linear response of dye densities to the log of non-primary light
exposure.

The unique pattern of the magenta dye in Figure 11(b) calls for special
attention: the decreasing of its density as non-primary red light increases
only happens at high constant log G values. Its density increases with log R
at low constant log G values. The slopes of the curves of magenta dye den-
sity over log R decrease as log G increases. This phenomena also displays
itself in Figure 11(c) where the magenta dye density curves of constant
log R values crosses each other as log G increases. A possible explanation
for this phenomena is that the increasing red exposure has two simultane-
ous effects on magenta layer: one effect is the cross-layer-exposure effect,
i.e. green-sensitive layer also develops against red light (evident in Figure
11(a)), however, much less than green light. Such effect is strong when only
red light presents and becomes less effective as the development of magenta
dye to the increasing primary exposure log G dominates; The other effect
is the DIR cross-layer-inhibition effect of the developing cyan layer on the
magenta layer. This effect is first dominated by the previous effect and
only becomes important when the first effect diminishes at high green expo-
sure. Its existence is indicated by the negative slopes of magenta curves of
high constant log G values in Figure 11(b). The diminishing of cross-layer-
exposure effect motivates a bi-linear term of log Rlog G in a model of the
functional relationship between magenta dye density and light exposure.

By earlier analysis, we hypothesize that there are only multi-linear terms
involved in the film development process, and each dye density function is
a linear superposition of a set of multi-linear basis,

(1,log R,log G,log B, log Rlog G,log G log B, log Blog R,log Rlog G log B).
Denote the density vector ¢ = (C,M,Y)T, where C = C(R,G,B), M =

M(R,G,B), Y =Y (R,G, B) are the tri-variate density functions of cyan,
magenta and yellow dyes of the negative color film used. A least-squares
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global fit generates the following model:

34811 2.0233 2330477 T 1 !
0.7549 —0.0088 —0.4854 log R
c ~0.3101  0.3522 —0.1433 log G
A | | 00632 —03981  0.8333 log B o
" —0.0635 —0.0460  0.0145 log Rlog G
0.0333 —0.0099 —0.0712 log G log B
—0.0202  0.0676 —0.0437 log Blog R
0.0038  0.0174 —0.0100 | | logRlogGlogB |

The model are plotted in dashed color lines in Figure 11. The results show
that our physically based modelling hypotheses are plausible.

5 The Calibration Algorithm

e Expose 1000 frames of color film to 1000 solid colors sampled from
a RGB color cube. Measure the spectra of the output color light
produced by shining white light through the developed 1000 frames of
film.

e Invert the color-reconstruction stage:

1. From the spectra data V, extract a set of three basis vectors W,
i.e. the log-absorption functions of three dye layers using either
the NNMF or its SVD-based alternative.

2. From a given intended color specified in XYZ color coordinates,
solve Equation 6 for a dye density vector (cj,ce,c3) using New-
ton’s method.

e Invert the color-recording stage:

1. Obtain the 1000 density vectors H of the 1000 spectra as the
other factor from the NNMF factorization.

2. Build a functional mapping between input RGB color space and
the dye density vector space via either interpolation or physical
modelling. The model is obtained by a global least squares fit
over a multi-linear basis.

3. Solve this function inversely for a set of calibrated RGB inputs
that will give the density vector obtained from the previous stage.

With the set of calibrated RGB values as input, the color film as a color
reproduction system will produce the intended color at the output.
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6 Conclusion

In this paper, we developed a two-stage calibration model for color film. We
demonstrated that NNMF-like algorithms are readily applicable to the char-
acterization of color reproduction systems due to the existence of intrinsic
non-negativity. We compared a SVD-based non-negative matrix factoriza-
tion algorithm with the NNMF algorithm on the task of log-absorption-basis
function extraction. We showed that the NNMF-like basis extraction com-
bined with Newton’s method can be used to solve an inverse problem. We
demonstrated the construction of an interpolation model and a physically
based numerical model as the mapping from input color space to dye density
space. The calibration procedure and the techniques used in this paper can
be generalized to apply to similar color systems.
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