# Computing class polynomials with the Chinese Remainder Theorem 

Andrew V. Sutherland

Massachusetts Institute of Technology
November 19, 2008

## Computing Hilbert class polynomials

## Three algorithms

(1) Complex analytic
(2) $p$-adic
(3) Chinese Remainder Theorem (CRT)

## Comparison

Heuristically, all have complexity $O\left(|D| \log ^{3+\epsilon}|D|\right)$ [BBEL].
Practically, the complex analytic method is much faster ( $\approx 50 x$ )
$\ldots$. and it can use much smaller class polynomials $(\approx 30 x)$.

## Constructing elliptic curves of known order

## Using complex multiplication (CM method)

Given $p$ and $t \neq 0$, let $D<0$ be a discriminant satisfying

$$
4 p=t^{2}-v^{2} D .
$$

We wish to find an elliptic curve $\mathrm{E} / \mathbb{F}_{p}$ with $N=p+1 \pm t$ points.

## Hilbert class polynomials modulo $p$

Given a root $j$ of $H_{D}(x)$ over $\mathbb{F}_{p}$, let $k=j /(1728-j)$. The curve

$$
y^{2}=x^{3}+3 k x+2 k
$$

has trace $\pm t$ (twist to choose the sign).

Not all curves with trace $\pm t$ necessarily have $H_{D}(j)=0$.

## Hilbert class polynomials

## The Hilbert class polynomial $H_{D}(x)$

$H_{D}(x) \in \mathbb{Z}[x]$ is the minimal polynomial of the $j$-invariant of the complex elliptic curve $\mathbb{C} / \mathcal{O}_{D}$, where $\mathcal{O}_{D}$ is the imaginary quadratic order with discriminant $D$.

## $H_{D}(x)$ modulo a totally split prime ( $\left.4 p=t^{2}-v^{2} D\right)$

The polynomial $H_{D}(x)$ splits completely over $\mathbb{F}_{p}$, and its roots are precisely the $j$-invariants of the elliptic curves $E$ whose endomorphism ring is isomorphic to $\mathcal{O}_{D}\left(\mathcal{O}_{E}=\mathcal{O}_{D}\right)$.

## Practical considerations

## We need $|D|$ to be small

Any ordinary elliptic curve can, in principle, be constructed via the CM method. A random curve will have $|D| \approx p$.
We can only handle small $|D|$, say $|D|<10^{10}$.

## Why small $|D| ?$

The polynomial $H_{D}(x)$ is big.
We typically need $O(|D| \log |D|)$ bits to represent $H_{D}(x)$.

If $|D| \approx p$ that might be a lot of bits. . .

| $\|D\|$ | $h$ | $h \lg B$ | $\|D\|$ | $h$ | $h \lg B$ |
| :--- | ---: | ---: | :--- | ---: | ---: |
| $10^{6}+3$ | 105 | 113 KB | $10^{6}+20$ | 320 | 909 KB |
| $10^{7}+3$ | 706 | 5 MB | $10^{7}+4$ | 1648 | 26 MB |
| $10^{8}+3$ | 1702 | 33 MB | $10^{8}+20$ | 5056 | 240 MB |
| $10^{9}+3$ | 3680 | 184 MB | $10^{9}+20$ | 12672 | 2 GB |
| $10^{10}+3$ | 10538 | 2 GB | $10^{10}+4$ | 40944 | 23 GB |
| $10^{11}+3$ | 31057 | 16 GB | $10^{11}+4$ | 150192 | 323 GB |
| $10^{12}+3$ | 124568 | 265 GB | $10^{12}+4$ | 569376 | 5 TB |
| $10^{13}+3$ | 497056 | 4 TB | $10^{13}+4$ | 2100400 | 71 TB |
| $10^{14}+3$ | 1425472 | 39 TB | $10^{14}+4$ | 4927264 | 446 TB |

Size estimates for $H_{D}(x)$

$$
B=\binom{h}{\lfloor h / 2\rfloor} \exp \left(\pi \sqrt{|D|} \sum_{i=1}^{h} \frac{1}{a_{i}}\right)
$$

## Pairing-based cryptography

## Pairing-friendly curves

The most desirable curves for pairing-based cryptography have near-prime order and embedding degree $k$ between 6 and 24 .

## Choosing $p$ and $k$

We should choose the size of $\mathbb{F}_{p}$ to balance the difficulty of the discrete logarithm problems in $E / \mathbb{F}_{p}$ and $\mathbb{F}_{p^{k}}$. For example

- 80-bit security: $k=6$ and $170<\lg p<192$.
- 110-bit security: $k=10$ and $220<\lg p<256$.

FST, "A taxonomy of pairing-friendly elliptic curves," 2006.

Such curves are very rare...

| $k$ | $b_{0}$ | $b_{1}$ | $10^{6}$ | $10^{7}$ | $10^{8}$ | $10^{9}$ | $10^{10}$ | $10^{11}$ | $10^{12}$ | $10^{13}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 6 | 170 | 192 | 0 | 0 | 1 | 11 | 33 | 149 | 493 | 1722 |
| 10 | 220 | 256 | 0 | 0 | 0 | 0 | 8 | 29 | 85 | 278 |

Number of prime-order elliptic curves over $\mathbb{F}_{p}$ with $b_{0}<\lg p<b_{1}$, embedding degree $k$, and $|D|<10^{n}$.

Karabina and Teske, "On prime-order elliptic curves with embedding degrees $k=3,4$, and 6," ANTS VIII (2008).
Freeman, "Constructing pairing-friendly elliptic curves with embedding degree 10," ANTS VII (2006).

## Basic CRT method

## Step 1: Pick totally split primes

Find $p_{1}, \ldots, p_{n}$ of the form $4 p_{i}=t^{2}-v^{2} D$ with $\prod p_{i}>B$.

## Step 2: Compute $H_{D}(x) \bmod p_{i}$

Determine the roots $j_{1}, \ldots, j_{h}$ of $H_{D}(x)$ over $\mathbb{F}_{p_{i}}$.
Compute $H_{D}(x)=\Pi\left(x-j_{k}\right) \bmod p_{i}$.

## Step 3: Apply the CRT to compute $H_{D}(x)$

Compute $H_{D}(x)$ by applying the CRT to each coefficient. Better, compute $H_{D}(x) \bmod P$ via the explicit CRT [MS 1990].

First proposed by Chao, Nakamura, Sobataka, and Tsujii (1998). Agashe, Lauter, and Venkatesan (2004) suggested explicit CRT.

## Running time of the CRT method

## Time complexity

As originally proposed, Step 2 tests every element of $\mathbb{F}_{p}$ to see if it is the $j$-invariant of a curve with endomorphism ring $\mathcal{O}_{D}$.
The total complexity is then $\Omega\left(|D|^{3 / 2}\right)$. This is not competitive.

## Modified Step 2 [BBEL 2008]

Find a single root of $H_{D}(x)$ in $\mathbb{F}_{p}$, then enumerate conjugates via the action of $C l(D)$, using an isogeny walk.

## Improved time complexity

The complexity is now $O\left(|D|^{1+\epsilon}\right)$. This is potentially competitive. However, preliminary results are disappointing.

## Explicit Chinese Remainder Theorem

## Standard CRT

Suppose $c \equiv c_{i} \bmod p_{i}$, then

$$
c \equiv \sum a_{i} c_{i} M_{i} \bmod M
$$

where $M_{i}=M / p_{i}$ and $a_{i}=1 / M_{i} \bmod p_{i}$.

## Explicit CRT

We can determine $c$ mod $P$ directly via

$$
c=\left(\sum a_{i} M_{i} c_{i}-r M\right) \bmod P
$$

where $r$ is the closest integer to $\sum a_{i} c_{i} / M_{i}$.
Montgomery and Silverman, 1990.

## Space required to compute $H_{D}(x) \bmod P$

## Online version of the explicit CRT

The $a_{i}, M_{i}$, and $M$ are the same for every coefficient of $H_{D}(x)$.
These can be precomputed in time (and space) $O\left(|D|^{1 / 2+\epsilon}\right)$.
We can forget $c_{i}$ once we incorporate it into running totals for $c$ and $r$, requiring only $O(\log P)$ bits per coefficient.

## Space complexity

The total space is then $O\left(|D|^{1 / 2+\epsilon} \log P\right)$.
This is interesting, but only if the time can be improved.

See Bernstein for other applications of the explicit CRT.

## CRT algorithm (split primes)

Given $4 P=t^{2}-v^{2} D$, compute $j(E)$ for all $E / \mathbb{F}_{P}$ with $\mathcal{O}_{E}=\mathcal{O}_{D}$ :
(1) Construct generating set $S$ for $C l(D)$.

Pick totally split primes $p_{1}, \ldots, p_{n}$.
Perform CRT precomputation.
(2) For each $p_{i}$ :
(c) Find $E / \mathbb{F}_{p_{i}}$ such that $\mathcal{O}_{E}=\mathcal{O}_{D}$.
(1) Compute the orbit $j_{1}, \ldots, j_{h}$ of $j(E)$ under $\langle S\rangle$.
( ( Compute $H_{D}(x)=\Pi\left(x-j_{k}\right) \bmod p_{i}$.
(0) Update CRT sums for each coefficient of $H_{D}(x) \bmod p_{i}$.
(3) Perform CRT postcomputation to obtain $H_{D}(x) \bmod P$.
(4) Find a root of $H_{D}(x) \bmod P$ and compute its orbit.

Under the GRH: Step 2 is repeated $n=O\left(|D|^{1 / 2} \log \log |D|\right)$ times and every step has complexity $O\left(|D|^{1 / 2+\epsilon}\right)$, assuming $\log P=O(\log |D|)$.

## Step 2a: Finding a curve with trace $\pm t$

## Randomized algorithm

(1) Pick $E$ and $\alpha \in E$ until $(p+1 \pm t) \alpha=0$.
(2) Determine $\# E$ by computing $\lambda(E)$ or $\lambda(\tilde{E})$.
(3) If $\# E \neq p+1 \pm t$ goto Step 1 .

## Problem

Picking random curves is too slow ( $\approx 2 \sqrt{p}$ curves to test).

## Solution

Don't use random curves!

## Generating curves with prescribed torsion

## Parameterized families via $X_{1}(N)$.

For $N \leq 10$ and $N=12$, parametrizations over $\mathbb{Q}[$ Kubert].
For any $N$, a point on $X_{1}(N) / \mathbb{F}_{p}$ defines a curve $E / \mathbb{F}_{p}$.

## Additional modularity constraints

We can efficiently control \#E mod 3 and \#E mod 4 .

## Example

Suppose $p+1-t$ is divisible by 13 and congruent to $6 \bmod 12$. We can ensure $\# E \equiv p+t-1 \bmod 132$.
Narrows the search by $\approx 110 x$ (net speedup 20x to $30 x$ ).
See http://arxiv.org/abs/0811.0296 for details.

## Step 2a: Finding a curve with $\mathcal{O}_{E}=\mathcal{O}_{D}$

## Which curves over $\mathbb{F}_{p}$ have trace $\pm t$ ?

There are $H\left(4 p-t^{2}\right)=H\left(-v^{2} D\right)$ distinct $j$-invariants of curves with trace $\pm t$ over $\mathbb{F}_{p}$ [Deuring]. For $D<-4$ we have

$$
H\left(-v^{2} D\right)=\sum_{u \mid v} h\left(u^{2} D\right) .
$$

The term $h\left(u^{2} D\right)$ counts curves with $D\left(\mathcal{O}_{E}\right)=u^{2} D$.

## What does this tell us?

If $v=1$ then $E$ has trace $\pm t$ if and only if $\mathcal{O}_{E}=\mathcal{O}_{D}$ (easy).
If $v>1$ then we have $H\left(4 p-t^{2}\right)>h(D)$ (harder).

This is a good thing!

## Step 1: Pick your primes with care

## Problem

There are only $h(D)$ curves over $\mathbb{F}_{p}$ with $\mathcal{O}_{E}=\mathcal{O}_{D}$.
As $p$ grows, they get harder and harder to find: $O(p / h(D))$.
Especially when $h(D)$ is small.

## Solution [BBEL]

Use a curve with trace $\pm t$ to find a curve with $\mathcal{O}_{E}=\mathcal{O}_{D}$ by climbing isogeny volcanoes.

## Improvement

We should pick our primes based on the ratio $p / H\left(4 p-t^{2}\right)$. We want $p / H\left(4 p-t^{2}\right)$ small. Easy to do when $h(D)$ is big.

## Step 2a: Finding a curve with $\mathcal{O}_{E}=\mathcal{O}_{D}$

## Classical modular polynomials $\Phi_{\ell}(X, Y)$

There is an $\ell$-isogeny between $E$ and $E^{\prime}$ iff $\Phi_{\ell}\left(j(E), j\left(E^{\prime}\right)\right)=0$. To find $\ell$-isogenies from $E$, factor $\Phi_{\ell}(X, j(E))$.

## Isogeny volcanoes [Kohel 1996, Fouquet-Morain 2002]

The isogenies of degree $\ell$ among curves with trace $\pm t$ form a directed graph consisting of a cycle (the surface) with trees of height $k$ rooted at each surface node ( $\ell^{k} \| v$ ).
For surface nodes, $\ell^{2}$ does not divide $D\left(\mathcal{O}_{E}\right)$.

## How to find a curve with $\mathcal{O}_{E}=\mathcal{O}_{D}$

Starting from a curve with trace $\pm t$, climb to the surface of every $\ell$-volcano for $\ell \mid v$.


## Step 2b: Computing the orbit of $j(E)$

## The group action of $C l(D)$ on $j(E)$

An ideal $\alpha$ in $\mathcal{O}_{E} \cong E n d(E)$ defines an $\ell$-isogeny

$$
E \rightarrow E / E[\alpha]=E^{\prime},
$$

with $\mathcal{O}_{E^{\prime}}=\mathcal{O}_{E}$ and $\ell=N(\alpha)$. This gives an action on the set $\left\{j(E): \mathcal{O}_{E}=\mathcal{O}_{D}\right\}$ which factors through $C I(D)$ and reduces $\bmod p$ for totally split primes (but $\ell$ depends on $\alpha$ ).

## Touring the rim

We compute this action explicitly by walking along the surface of the volcano of $\ell$-isogenies. For $\ell \nmid v$, set $j_{1}=j(E)$, pick a root $j_{2}$ of $\Phi_{\ell}\left(X, j_{1}\right)$, then let $j_{k+1}$ be the root of $\Phi_{\ell}\left(X, j_{k}\right) /\left(x-j_{k-1}\right)$. We can handle $\ell \mid v$, but this is efficient only for very small $\ell$.


## Step 2b: Computing the orbit of $j(E)$

## Walking the entire orbit

Given a basis $\alpha_{s}, \ldots, \alpha_{1}$ for $C /(D)=\left\langle\alpha_{s}\right\rangle \times \cdots \times\left\langle\alpha_{1}\right\rangle$, we compute the orbit of $j=j(E)$ by computing $\beta(j)$ for every $\beta=\alpha_{k}^{e_{k}} \cdots \alpha_{1}^{e_{1}}$ with $0 \leq \boldsymbol{e}_{i}<\left|\alpha_{i}\right|$ in a lexicographic ordering of $\left(e_{k}, \ldots, e_{1}\right)$ (one isogeny per step).

## Complexity

Each step involves $O\left(\ell_{i}^{2}\right)$ operations in $\mathbb{F}_{p}$, where $\ell_{i}=N\left(\alpha_{i}\right)$. We need the $\ell_{i}$ to be small.

But this may not be possible using a basis!

## Representation by a sequence of generators

## Cyclic composition series

Let $\alpha_{1}, \ldots, \alpha_{s}$ generate a finite group $G$ and suppose

$$
\mathbf{G}=\left\langle\alpha_{1}, \ldots, \alpha_{s}\right\rangle \longrightarrow\left\langle\alpha_{1}, \ldots, \alpha_{s-1}\right\rangle \longrightarrow \ldots \longrightarrow\left\langle\alpha_{1}\right\rangle \longrightarrow 1
$$

is a cyclic composition series. Let $n_{1}=\left|\alpha_{1}\right|$ and define

$$
n_{i}=\left|\left\langle\alpha_{1}, \ldots, \alpha_{i}\right\rangle\right| /\left|\left\langle\alpha_{1}, \ldots, \alpha_{i-1}\right\rangle\right| .
$$

Each $n_{i}$ divides (but need not equal) $\left|\alpha_{i}\right|$, and $\prod n_{i}=|G|$.

## Unique representation

Every $\beta \in G$ can be written uniquely as $\beta=\alpha_{1}^{e_{1}} \cdots \alpha_{s}^{e_{s}}$, with $0 \leq e_{i}<n_{i}$ (we may omit $\alpha_{i}$ for which $n_{i}=1$ ).

## Step 1: Generating system for $C I(D)$

## A generating set for $C I(D)$

Represent $C I(D)$ with binary quadratic forms $a x^{2}+b x y+c y^{2}$. Under GRH, forms with prime $a \leq 6 \log ^{2}|D|$ generate $C I(D)$.

## Norm-minimal generating system $S$

Let $\alpha_{1}, \ldots, \alpha_{s}$ be the sequence of primeforms ordered by $a$. Let $S$ be the subsequence of $\alpha_{i}$ with $n_{i}>1$.

## Computing the $n_{i}$

We can compute the $n_{i}$ using either $O(|G|)$ or $O\left(|G|^{1 / 2+\epsilon}|S|\right)$ group operations with a generic group algorithm.

## A back-of-the-envelope complexity discussion

## Some useful facts and heuristics

(1) $h(D) \approx 0.28|D|^{1 / 2}$ on average.
(2) $\max p_{i}=O\left(|D| \log ^{1+\epsilon}|D|\right)$ heuristically $\left(p_{i} \ll 2^{64}\right)$.
(3) $\max \ell=O\left(\log ^{1+\epsilon}|D|\right)$ conjecturally, and for most $D$, $\max \ell=O(\log \log |D|)$ heuristically.

## Which step is asymptotically dominant?

If $\mathbb{F}_{p_{i}}$ adds/mults cost $O(1)$, for most $D$ we expect:
(1) Step 2 a has complexity $O\left(|D|^{1 / 2} \log ^{1.5+\epsilon}|D|\right)$.
(2) Step $2 b$ has complexity $O\left(|D|^{1 / 2} \log ^{1+\epsilon}|D|\right)$.
(3) Step 2c has complexity $O\left(|D|^{1 / 2} \log ^{2+\epsilon}|D|\right)$.

For exceptionally bad $D$, Step 2 b is $\Omega\left(|D|^{1 / 2} \log ^{2}|D|\right)$.

## Step 2c: Computing $H_{D}(x)=\Pi\left(x-j_{k}\right) \bmod p_{i}$

## Building a polynomial from its roots

Standard problem with a simple solution: build a product tree. Using $F F T$, complexity is $O\left(h \log ^{2} h\right)$ operations in $\mathbb{F}_{p_{i}}$.

## Harvey's experimental znpoly library

Fast polynomial multiplication in $\mathbb{Z} / n \mathbb{Z}$ for $n<2^{64}$, via multi-point Kronecker substitution. Two to three times faster than NTL for polynomials of degree $10^{3}$ to $10^{6}$.
http://cims.nyu.edu/~harvey/

| $-D$ | $12,901,800,539$ | $13,977,210,083$ | $17,237,858,107$ |
| :--- | ---: | ---: | ---: |
| $h(D)$ | 54,076 | 20,944 | 14,064 |
| $\lceil\lg B\rceil$ | $5,497,124$ | $2,520,162$ | $1,737,687$ |
| $\ell_{1}$ | 3 | 3 | 11 |
| $\ell_{2}$ | 5 |  | 23 |
| $C l(D)$ time | 0.1 | 0.3 | 0.2 |
| $n$ | 141,155 | 68,646 | 47,302 |
| $\left\lceil\lg \left(\max p_{i}\right)\right\rceil$ | 42 | 39 | 38 |
| prime time | 3.9 | 1.3 | 1.9 |
| CRT pre time | 2.8 | 0.9 | 0.6 |
| CRT post time | 0.9 | 0.9 | 0.6 |
| (a,b,c) splits | $\mathbf{( 5 6 , 1 4 , \mathbf { 3 0 }}$ | $\mathbf{7 0 , 6 0 0}$ | $\mathbf{( 8 1 , 7 , 1 3 )}$ |
| Step 2 time | $\mathbf{2 7 , 0 0 0}$ | $\mathbf{( 5 0 , 4 8 , \mathbf { 2 }}$ |  |
| root time | $\mathbf{3 4 7}$ | $\mathbf{4 5 , 3 0 0}$ |  |
| roots time | 220 | 171 | 67 |

CRT method computing $H_{D}$ mod $P$ (MNT curves, $k=6$ )
(2.8GHz AMD Athlon CPU times in seconds)

## Class invariants and class polynomials

## The $j$-invariant $j(\tau)$

For $\tau \in \mathbb{H}$, define $j(\tau)=j\left(E_{\tau}\right)$, where $E_{\tau}=\mathbb{C} /[1, \tau]$.
(1) $\mathbb{Q}(j(\tau))$ is the ring class field of $\mathcal{O}_{D} \cong \operatorname{End}\left(E_{\tau}\right)$.
(2) The min. poly. of $j(\tau)$ is $\mathcal{P}_{j}(x)=H_{D}(x)$ (for any $\left.\tau\right)$.

## Other class invariants $\varphi(\tau)$

If $\mathbb{Q}(\varphi(\tau))=\mathbb{Q}(j(\tau))$, we call $\varphi(\tau)$ a class invariant [Weber].
We want $\varphi$ to satisfy (2) (not always true) and to have an algebraic relationship with $j$.
$\mathcal{P}_{\varphi}(x)$ may have much smaller coefficients than $H_{D}(x)$.

## Alternative class invariants [with Enge]

## A simple example (assume $3 \nmid D$ )

The function $\gamma_{2}=\sqrt[3]{j}$ is a class invariant satisfying (2).
A minimally modified algorithm:
(1) Reduce height estimate by a factor of 3 .
(2) Restrict to $p_{i} \equiv 2 \bmod 3$ so that cube roots are unique.
(3) Compute $\gamma_{2}=\sqrt[3]{j}$ for each $j$ enumerated in Step 2b.
(4) Form $\mathcal{P}_{\gamma_{2}}(x)=\Pi\left(x-\gamma_{2}\right)$ instead of $H_{D}(x)$ in Step 2c.
(5) Cube a root of $\mathcal{P}_{\gamma_{2}}(x) \bmod P$ to get desired $j$ at the end.

## Variations

- It is also possible to use $p_{i} \equiv 1 \bmod 3$ [Bröker].
- One can enumerate $\gamma_{2}$ directly in Step $2 b$.


## Better class invariants for the CRT method

## For $3 \nmid D$ and $|D| \equiv 7 \bmod 8$ use $f^{2}$ [Weber]

Use $p_{i} \equiv 11$ mod 12 to determine $f^{2}$ over $\mathbb{F}_{p_{i}}$ via

$$
\gamma_{2}=\left(f^{24}-16\right) / f^{8} .
$$

Reduces the height bound by a factor of 36 .

## For $|D| \equiv 11 \bmod 24$ use $g^{2}$ [Ramanujan]

Use $p_{i} \equiv 2 \bmod 3$ to determine $g^{2}$ over $\mathbb{F}_{p_{i}}$ via

$$
\gamma_{2}=g^{6}-27 g^{-6}-6 .
$$

Reduces the height bound by a factor of 18 .

When constructing an elliptic curve of prime order, we have $|D| \equiv 3 \bmod 8$.

|  | $\boldsymbol{j}$ | $\boldsymbol{\gamma}_{2}$ | $\boldsymbol{g}^{2}$ |
| :--- | ---: | ---: | ---: |
| $\lceil\lg B\rceil$ | $5,497,124$ | $1,832,376$ | 305,397 |
| $n$ | 144,145 | 49,097 | 8,768 |
| splits | $(56,14,30)$ | $(42,22,36)$ | $(18,42,40)$ |
| Step 2 time | 70,600 | 19,600 | 2,940 |
| speed up | - | 3.6 | 24 |

## CRT method class invariant comparison

$$
D=-12,901,800,539 \quad h(D)=54,076
$$

| -D | $h(D)$ | Complex Analytic |  | CRT Method |  | ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | bits | time | bits | time |  |
| 6961631 | 5000 | 9.5 k | 28 | 7.5k | 7 | 4 |
| 23512271 | 10000 | 20k | 210 | 16k | 29 | 7 |
| 98016239 | 20000 | 45k | 1,800 | 35k | 140 | 13 |
| 357116231 | 40000 | 97k | 14,000 | 76k | 650 | 22 |
| 2093236031 | 100000 | 265k | 260,000 | 207k | 4,600 | 57 |

Complex Analytic (double $\eta$ quotient) vs.
CRT method ( $f^{2}$ )
(2.4 GHz AMD Opteron CPU seconds)

Enge, "The complexity of class polynomial computations via floating point approximations" (2008)

## Scalability

## Distributed computation

Elapsed times on 14 PCs run in parallel ( 2 cores each):

$$
\begin{array}{lll}
D=-10,149,832,121,843, & h=690,706 & 11 \text { hours } \\
D=-102,197,306,669,747, & h=2,014,236 & 4.6 \text { days }
\end{array}
$$

Using Ramanujan invariant $g^{2}$.

## Minimal space requirements

Under 300MB memory (per core). Total storage under 2GB. (Class polynomial over $\mathbb{Z}[x]$ is more than 4TB.)

## Plenty of headroom

Larger computations are feasible.

| $-D$ | $h(D)$ | bits | primes | time | split |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $10^{6}+19$ | 342 | 1.3 k | 65 | i0.1 | $(43,50,7)$ |
| $10^{7}+19$ | 1,140 | 5.2 k | 222 | 1.0 | $(24,61,15)$ |
| $10^{8}+19$ | 3,258 | 16 k | 597 | 8.2 | $(35,49,16)$ |
| $10^{9}+19$ | 10,478 | 57 k | 1,909 | 110 | $(28,42,30)$ |
| $10^{10}+19$ | 39,809 | 220 k | 6,561 | 1,700 | $(21,38,41)$ |
| $10^{11}+19$ | 160,731 | 970 k | 25,431 | 34,000 | $(14,34,52)$ |
| $10^{12}+19$ | 366,468 | 2.6 m | 63,335 | 230,000 | $(21,30,50)$ |
| $10^{13}+19$ | $1,360,096$ | 10 m | 223,637 | $3,600,000$ | $(15,27,58)$ |
| $10^{14}+43$ | $2,959,552$ | 25 m | 523,719 | $22,000,000$ | $(20,25,55)$ |

CRT method using Ramanujan invariant ( $|D|=11 \bmod 24$ )
(Estimated 2.8 GHz AMD Athlon CPU seconds)

