
Introduction The CRT Method Class Invariants

Computing class polynomials with the
Chinese Remainder Theorem

Andrew V. Sutherland

Massachusetts Institute of Technology

November 19, 2008

Introduction The CRT Method Class Invariants

Computing Hilbert class polynomials

Three algorithms
1 Complex analytic
2 p-adic
3 Chinese Remainder Theorem (CRT)

Comparison

Heuristically, all have complexity O(|D| log3+ε |D|) [BBEL].

Practically, the complex analytic method is much faster (≈ 50x)

. . . and it can use much smaller class polynomials (≈ 30x).

Introduction The CRT Method Class Invariants

Constructing elliptic curves of known order

Using complex multiplication (CM method)
Given p and t 6= 0, let D < 0 be a discriminant satisfying

4p = t2 − v2D.

We wish to find an elliptic curve E/Fp with N = p + 1± t points.

Hilbert class polynomials modulo p

Given a root j of HD(x) over Fp, let k = j/(1728− j). The curve

y2 = x3 + 3kx + 2k

has trace ±t (twist to choose the sign).

Not all curves with trace ±t necessarily have HD(j) = 0.

Introduction The CRT Method Class Invariants

Hilbert class polynomials

The Hilbert class polynomial HD(x)

HD(x) ∈ Z[x] is the minimal polynomial of the j-invariant of the
complex elliptic curve C/OD, where OD is the imaginary
quadratic order with discriminant D.

HD(x) modulo a totally split prime (4p = t2 − v2D)

The polynomial HD(x) splits completely over Fp, and its roots
are precisely the j-invariants of the elliptic curves E whose
endomorphism ring is isomorphic to OD (OE = OD).

Introduction The CRT Method Class Invariants

Practical considerations

We need |D| to be small
Any ordinary elliptic curve can, in principle, be constructed via
the CM method. A random curve will have |D| ≈ p.

We can only handle small |D|, say |D| < 1010.

Why small |D|?
The polynomial HD(x) is big.
We typically need O(|D| log |D|) bits to represent HD(x).

If |D| ≈ p that might be a lot of bits. . .

Introduction The CRT Method Class Invariants

Introduction The CRT Method Class Invariants

|D| h h lg B |D| h h lg B

106 + 3 105 113KB 106 + 20 320 909KB
107 + 3 706 5MB 107 + 4 1648 26MB
108 + 3 1702 33MB 108 + 20 5056 240MB
109 + 3 3680 184MB 109 + 20 12672 2GB
1010 + 3 10538 2GB 1010 + 4 40944 23GB

1011 + 3 31057 16GB 1011 + 4 150192 323GB
1012 + 3 124568 265GB 1012 + 4 569376 5TB
1013 + 3 497056 4TB 1013 + 4 2100400 71TB
1014 + 3 1425472 39TB 1014 + 4 4927264 446TB

Size estimates for HD(x)

B =

h

bh/2c

!
exp

π
p
|D|

hX
i=1

1
ai

!

Introduction The CRT Method Class Invariants

Pairing-based cryptography

Pairing-friendly curves
The most desirable curves for pairing-based cryptography have
near-prime order and embedding degree k between 6 and 24.

Choosing p and k
We should choose the size of Fp to balance the difficulty of the
discrete logarithm problems in E/Fp and Fpk . For example

80-bit security: k = 6 and 170 < lg p < 192.
110-bit security: k = 10 and 220 < lg p < 256.

FST, “A taxonomy of pairing-friendly elliptic curves,” 2006.

Such curves are very rare. . .

Introduction The CRT Method Class Invariants

k b0 b1 106 107 108 109 1010 1011 1012 1013

6 170 192 0 0 1 11 33 149 493 1722
10 220 256 0 0 0 0 8 29 85 278

Number of prime-order elliptic curves over Fp with
b0 < lg p < b1, embedding degree k , and |D| < 10n.

Karabina and Teske, “On prime-order elliptic curves with embedding degrees
k = 3, 4, and 6,” ANTS VIII (2008).

Freeman, “Constructing pairing-friendly elliptic curves with embedding
degree 10,” ANTS VII (2006).

Introduction The CRT Method Class Invariants

Basic CRT method

Step 1: Pick totally split primes

Find p1, . . . , pn of the form 4pi = t2 − v2D with
∏

pi > B.

Step 2: Compute HD(x) mod pi

Determine the roots j1, . . . , jh of HD(x) over Fpi .
Compute HD(x) =

∏
(x − jk) mod pi .

Step 3: Apply the CRT to compute HD(x)

Compute HD(x) by applying the CRT to each coefficient.
Better, compute HD(x) mod P via the explicit CRT [MS 1990].

First proposed by Chao, Nakamura, Sobataka, and Tsujii (1998).
Agashe, Lauter, and Venkatesan (2004) suggested explicit CRT.

Introduction The CRT Method Class Invariants

Running time of the CRT method

Time complexity
As originally proposed, Step 2 tests every element of Fp to see
if it is the j-invariant of a curve with endomorphism ring OD.

The total complexity is then Ω(|D|3/2). This is not competitive.

Modified Step 2 [BBEL 2008]
Find a single root of HD(x) in Fp, then enumerate conjugates
via the action of Cl(D), using an isogeny walk.

Improved time complexity

The complexity is now O(|D|1+ε). This is potentially competitive.
However, preliminary results are disappointing.

Introduction The CRT Method Class Invariants

Explicit Chinese Remainder Theorem

Standard CRT
Suppose c ≡ ci mod pi , then

c ≡
∑

aiciMi mod M,

where Mi = M/pi and ai = 1/Mi mod pi .

Explicit CRT
We can determine c mod P directly via

c =
(∑

aiMici − rM
)

mod P,

where r is the closest integer to
∑

aici/Mi .

Montgomery and Silverman, 1990.

Introduction The CRT Method Class Invariants

Space required to compute HD(x) mod P

Online version of the explicit CRT
The ai , Mi , and M are the same for every coefficient of HD(x).

These can be precomputed in time (and space) O(|D|1/2+ε).

We can forget ci once we incorporate it into running totals for c
and r , requiring only O(log P) bits per coefficient.

Space complexity

The total space is then O(|D|1/2+ε log P).

This is interesting, but only if the time can be improved.

See Bernstein for other applications of the explicit CRT.

Introduction The CRT Method Class Invariants

CRT algorithm (split primes)

Given 4P = t2 − v2D, compute j(E) for all E/FP with OE = OD:

1 Construct generating set S for Cl(D).
Pick totally split primes p1, . . . , pn.
Perform CRT precomputation.

2 For each pi :

a Find E/Fpi such that OE = OD.
b Compute the orbit j1, . . . , jh of j(E) under 〈S〉.
c Compute HD(x) =

∏
(x − jk) mod pi .

d Update CRT sums for each coefficient of HD(x) mod pi .

3 Perform CRT postcomputation to obtain HD(x) mod P.

4 Find a root of HD(x) mod P and compute its orbit.

Under the GRH: Step 2 is repeated n = O(|D|1/2 log log |D|) times and every
step has complexity O(|D|1/2+ε), assuming log P = O(log |D|).

Introduction The CRT Method Class Invariants

Step 2a: Finding a curve with trace ±t

Randomized algorithm
1 Pick E and α ∈ E until (p + 1± t)α = 0.
2 Determine #E by computing λ(E) or λ(Ẽ).
3 If #E 6= p + 1± t goto Step 1.

Problem
Picking random curves is too slow (≈ 2

√
p curves to test).

Solution
Don’t use random curves!

Introduction The CRT Method Class Invariants

Generating curves with prescribed torsion

Parameterized families via X1(N).
For N ≤ 10 and N = 12, parametrizations over Q [Kubert].

For any N, a point on X1(N)/Fp defines a curve E/Fp.

Additional modularity constraints
We can efficiently control #E mod 3 and #E mod 4.

Example
Suppose p + 1− t is divisible by 13 and congruent to 6 mod 12.
We can ensure #E ≡ p + t − 1 mod 132.

Narrows the search by ≈ 110x (net speedup 20x to 30x).

See http://arxiv.org/abs/0811.0296 for details.

http://arxiv.org/abs/0811.0296

Introduction The CRT Method Class Invariants

Step 2a: Finding a curve with OE = OD

Which curves over Fp have trace ±t?

There are H(4p − t2) = H(−v2D) distinct j-invariants of curves
with trace ±t over Fp [Deuring]. For D < −4 we have

H(−v2D) =
∑
u|v

h(u2D).

The term h(u2D) counts curves with D(OE) = u2D.

What does this tell us?
If v = 1 then E has trace ±t if and only if OE = OD (easy).
If v > 1 then we have H(4p − t2) > h(D) (harder).

This is a good thing!

Introduction The CRT Method Class Invariants

Step 1: Pick your primes with care

Problem
There are only h(D) curves over Fp with OE = OD.
As p grows, they get harder and harder to find: O(p/h(D)).
Especially when h(D) is small.

Solution [BBEL]
Use a curve with trace ±t to find a curve with OE = OD by
climbing isogeny volcanoes.

Improvement

We should pick our primes based on the ratio p/H(4p − t2).
We want p/H(4p − t2) small. Easy to do when h(D) is big.

Introduction The CRT Method Class Invariants

Step 2a: Finding a curve with OE = OD

Classical modular polynomials Φ`(X , Y)

There is an `-isogeny between E and E ′ iff Φ` (j(E), j(E ′)) = 0.
To find `-isogenies from E , factor Φ` (X , j(E)).

Isogeny volcanoes [Kohel 1996, Fouquet-Morain 2002]
The isogenies of degree ` among curves with trace ±t form a
directed graph consisting of a cycle (the surface) with trees of
height k rooted at each surface node (`k‖v).

For surface nodes, `2 does not divide D(OE).

How to find a curve with OE = OD

Starting from a curve with trace ±t , climb to the surface of
every `-volcano for `|v .

Introduction The CRT Method Class Invariants

Introduction The CRT Method Class Invariants

Step 2b: Computing the orbit of j(E)

The group action of Cl(D) on j(E)

An ideal α in OE
∼= End(E) defines an `-isogeny

E → E/E [α] = E ′,

with OE ′ = OE and ` = N(α). This gives an action on the set
{j(E) : OE = OD} which factors through Cl(D) and reduces
mod p for totally split primes (but ` depends on α).

Touring the rim
We compute this action explicitly by walking along the surface
of the volcano of `-isogenies. For ` - v , set j1 = j(E), pick a root
j2 of Φ`(X , j1), then let jk+1 be the root of Φ`(X , jk)/(x − jk−1).

We can handle `|v , but this is efficient only for very small `.

Introduction The CRT Method Class Invariants

Introduction The CRT Method Class Invariants

Step 2b: Computing the orbit of j(E)

Walking the entire orbit
Given a basis αs, . . . , α1 for Cl(D) = 〈αs〉 × · · · × 〈α1〉,
we compute the orbit of j = j(E) by computing β(j) for every
β = αek

k · · ·αe1
1 with 0 ≤ ei < |αi | in a lexicographic ordering of

(ek , . . . , e1) (one isogeny per step).

Complexity

Each step involves O(`2
i) operations in Fp, where `i = N(αi).

We need the `i to be small.

But this may not be possible using a basis!

Introduction The CRT Method Class Invariants

Representation by a sequence of generators

Cyclic composition series
Let α1, . . . , αs generate a finite group G and suppose

G = 〈α1, . . . , αs〉 −→ 〈α1, . . . , αs−1〉 −→ . . . −→ 〈α1〉 −→ 1

is a cyclic composition series. Let n1 = |α1| and define

ni = |〈α1, . . . , αi〉|/|〈α1, . . . , αi−1〉|.

Each ni divides (but need not equal) |αi |, and
∏

ni = |G|.

Unique representation

Every β ∈ G can be written uniquely as β = αe1
1 · · ·αes

s , with
0 ≤ ei < ni (we may omit αi for which ni = 1).

Introduction The CRT Method Class Invariants

Step 1: Generating system for Cl(D)

A generating set for Cl(D)

Represent Cl(D) with binary quadratic forms ax2 + bxy + cy2.
Under GRH, forms with prime a ≤ 6 log2 |D| generate Cl(D).

Norm-minimal generating system S
Let α1, . . . , αs be the sequence of primeforms ordered by a.
Let S be the subsequence of αi with ni > 1.

Computing the ni

We can compute the ni using either O(|G|) or O(|G|1/2+ε|S|)
group operations with a generic group algorithm.

Introduction The CRT Method Class Invariants

A back-of-the-envelope complexity discussion

Some useful facts and heuristics
1 h(D) ≈ 0.28|D|1/2 on average.
2 max pi = O(|D| log1+ε |D|) heuristically (pi � 264).
3 max ` = O(log1+ε |D|) conjecturally, and for most D,

max ` = O(log log |D|) heuristically.

Which step is asymptotically dominant?
If Fpi adds/mults cost O(1), for most D we expect:

1 Step 2a has complexity O(|D|1/2 log1.5+ε |D|).
2 Step 2b has complexity O(|D|1/2 log1+ε |D|).
3 Step 2c has complexity O(|D|1/2 log2+ε |D|).

For exceptionally bad D, Step 2b is Ω(|D|1/2 log2 |D|).

Introduction The CRT Method Class Invariants

Step 2c: Computing HD(x) =
∏

(x − jk) mod pi

Building a polynomial from its roots
Standard problem with a simple solution: build a product tree.
Using FFT , complexity is O(h log2 h) operations in Fpi .

Harvey’s experimental znpoly library

Fast polynomial multiplication in Z/nZ for n < 264, via
multi-point Kronecker substitution. Two to three times faster
than NTL for polynomials of degree 103 to 106.

http://cims.nyu.edu/˜harvey/

http://cims.nyu.edu/~harvey/

Introduction The CRT Method Class Invariants

−D 12, 901, 800, 539 13, 977, 210, 083 17, 237, 858, 107

h(D) 54,076 20,944 14,064
dlg Be 5,497,124 2,520,162 1,737,687
`1 3 3 11
`2 5 23
Cl(D) time 0.1 0.3 0.2

n 141,155 68,646 47,302
dlg(max pi)e 42 39 38
prime time 3.9 1.3 1.9

CRT pre time 2.8 0.9 0.6
CRT post time 0.9 0.9 0.6

(a,b,c) splits (56,14,30) (81,7,13) (50,48,2)
Step 2 time 70,600 27,000 45,300

root time 347 171 67
roots time 220 132 130

CRT method computing HD mod P (MNT curves, k = 6)
(2.8GHz AMD Athlon CPU times in seconds)

Introduction The CRT Method Class Invariants

Class invariants and class polynomials

The j-invariant j(τ)

For τ ∈ H, define j(τ) = j(Eτ), where Eτ = C/[1, τ].
1 Q(j(τ)) is the ring class field of OD

∼= End(Eτ).
2 The min. poly. of j(τ) is Pj(x) = HD(x) (for any τ).

Other class invariants ϕ(τ)

If Q(ϕ(τ)) = Q(j(τ)), we call ϕ(τ) a class invariant [Weber].

We want ϕ to satisfy (2) (not always true) and to have an
algebraic relationship with j .

Pϕ(x) may have much smaller coefficients than HD(x).

Introduction The CRT Method Class Invariants

Alternative class invariants [with Enge]

A simple example (assume 3 - D)

The function γ2 = 3
√

j is a class invariant satisfying (2).

A minimally modified algorithm:
1 Reduce height estimate by a factor of 3.
2 Restrict to pi ≡ 2 mod 3 so that cube roots are unique.
3 Compute γ2 = 3

√
j for each j enumerated in Step 2b.

4 Form Pγ2(x) =
∏

(x − γ2) instead of HD(x) in Step 2c.
5 Cube a root of Pγ2(x) mod P to get desired j at the end.

Variations
It is also possible to use pi ≡ 1 mod 3 [Bröker].
One can enumerate γ2 directly in Step 2b.

Introduction The CRT Method Class Invariants

Better class invariants for the CRT method

For 3 - D and |D| ≡ 7 mod 8 use f 2 [Weber]

Use pi ≡ 11 mod 12 to determine f 2 over Fpi via

γ2 = (f 24 − 16)/f 8.

Reduces the height bound by a factor of 36.

For |D| ≡ 11 mod 24 use g2 [Ramanujan]

Use pi ≡ 2 mod 3 to determine g2 over Fpi via

γ2 = g6 − 27g−6 − 6.

Reduces the height bound by a factor of 18.

When constructing an elliptic curve of prime order, we have |D| ≡ 3 mod 8.

Introduction The CRT Method Class Invariants

j γ2 g2

dlg Be 5,497,124 1,832,376 305,397
n 144,145 49,097 8,768

splits (56,14,30) (42,22,36) (18,42,40)
Step 2 time 70,600 19,600 2,940

speed up - 3.6 24

CRT method class invariant comparison

D = −12, 901, 800, 539 h(D) = 54, 076

Introduction The CRT Method Class Invariants

Complex Analytic CRT Method

−D h(D) bits time bits time ratio

6961631 5000 9.5k 28 7.5k 7 4
23512271 10000 20k 210 16k 29 7
98016239 20000 45k 1,800 35k 140 13

357116231 40000 97k 14,000 76k 650 22
2093236031 100000 265k 260,000 207k 4,600 57

Complex Analytic (double η quotient) vs.
CRT method (f 2)

(2.4 GHz AMD Opteron CPU seconds)

Enge, “The complexity of class polynomial computations via floating point

approximations” (2008)

Introduction The CRT Method Class Invariants

Scalability

Distributed computation
Elapsed times on 14 PCs run in parallel (2 cores each):

D = −10, 149, 832, 121, 843, h = 690, 706 11 hours

D = −102, 197, 306, 669, 747, h = 2, 014, 236 4.6 days

Using Ramanujan invariant g2.

Minimal space requirements
Under 300MB memory (per core). Total storage under 2GB.
(Class polynomial over Z[x] is more than 4TB.)

Plenty of headroom
Larger computations are feasible.

Introduction The CRT Method Class Invariants

−D h(D) bits primes time split

106 + 19 342 1.3k 65 ¡0.1 (43,50,7)
107 + 19 1,140 5.2k 222 1.0 (24,61,15)
108 + 19 3,258 16k 597 8.2 (35,49,16)
109 + 19 10,478 57k 1,909 110 (28,42,30)

1010 + 19 39,809 220k 6,561 1,700 (21,38,41)
1011 + 19 160,731 970k 25,431 34,000 (14,34,52)
1012 + 19 366,468 2.6m 63,335 230,000 (21,30,50)
1013 + 19 1,360,096 10m 223,637 3,600,000 (15,27,58)
1014 + 43 2,959,552 25m 523,719 22,000,000 (20,25,55)

CRT method using Ramanujan invariant (|D| = 11 mod 24)

(Estimated 2.8 GHz AMD Athlon CPU seconds)

	Introduction
	Constructing elliptic curves of known order

	The CRT Method
	Background

	Class Invariants
	Class Polynomials

