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Distributions of Frobenius traces

Let E/Q be a non-singular elliptic curve.
Let tp = #E(Fp) − p + 1 denote the trace of Frobenius.

Consider the distribution of

xp = −tp/
√

p ∈ [−2, 2]

as p 6 N varies over primes of good reduction.

What happens as N →∞?

http://math.mit.edu/˜drew
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Trace distributions in genus 1

1. Typical case (no CM)
All elliptic curves without CM have the Sato-Tate distribution.

[Clozel, Harris, Shepherd-Barron, Taylor, Barnet-Lamb, and Geraghty].

2. Exceptional cases (CM)
All elliptic curves with CM have the same exceptional distribution.

[classical]
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Zeta functions and L-polynomials

For a smooth projective curve C/Q and a good prime p define

Z(C/Fp; T) = exp

( ∞∑
k=1

NkTk/k

)
,

where Nk = #C/Fpk . This is a rational function of the form

Z(C/Fp; T) =
Lp(T)

(1 − T)(1 − pT)
,

where Lp(T) is an integer polynomial of degree 2g. For g = 2:

Lp(T) = p2T4 + c1pT3 + c2pT2 + c1T + 1.
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Unitarized L-polynomials

The polynomial

L̄p(T) = Lp(T/
√

p) =
2g∑

i=0

aiT i

has coefficients that satisfy ai = a2g−i and |ai| 6
(2g

i

)
.

Given a curve C, we may consider the distribution of a1, a2, . . . , ag,
taken over primes p 6 N of good reduction, as N →∞.

In this talk we will focus on genus g = 2.

http://math.mit.edu/˜drew
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The random matrix model

L̄p(T) is a real symmetric polynomial whose roots lie on the unit circle.

Every such polynomial arises as the characteristic polynomial χ(T) of
a unitary symplectic matrix in C2g×2g.

Conjecture (Katz-Sarnak)
For a typical curve of genus g, the distribution of L̄p converges to the
distribution of χ in USp(2g).

This conjecture has been proven “on average” for universal families of
hyperelliptic curves, including all genus 2 curves, by Katz and Sarnak.
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The Haar measure on USp(2g)

Let e±iθ1 , . . . , e±iθg denote the eigenvalues of a random conjugacy
class in USp(2g). The Weyl integration formula yields the measure

µ =
1
g!

(∏
j<k

(2 cos θj − 2 cos θk)
)2∏

j

(
2
π

sin2 θjdθj

)
.

In genus 1 we have USp(2) = SU(2) and µ = 2
π sin2 θdθ, which is the

Sato-Tate distribution.

Note that −a1 =
∑

2 cos θj is the trace.
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L̄p-distributions in genus 2

Our goal was to understand the L̄p-distributions that arise in genus 2,
including not only the generic case, but all the exceptional cases.

This presented three challenges:

Collecting data.

Identifying and distinguishing distributions.

Classifying the exceptional cases.
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Collecting data

There are four ways to compute L̄p in genus 2:

1 point counting: Õ(p2).

2 group computation: Õ(p3/4).

3 p-adic methods: Õ(p1/2).

4 `-adic methods: Õ(1).

For the feasible range of p 6 N, we found (2) to be the best.
We can accelerate the computation with partial use of (1) and (4).

Computing L-series of hyperelliptic curves, ANTS VIII, 2008, KS.
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Performance comparison

p ≈ 2k points+group group p-adic

214 0.22 0.55 4
215 0.34 0.88 6
216 0.56 1.33 8
217 0.98 2.21 11
218 1.82 3.42 17
219 3.44 5.87 27
220 7.98 10.1 40
221 18.9 17.9 66
222 52 35 104
223 54 176
224 104 288
225 173 494
226 306 871
227 505 1532

Time to compute Lp(T) in CPU milliseconds on a 2.5 GHz AMD Athlon
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Time to compute L̄p for all p 6 N

N 2 cores 16 cores

216 1 < 1
217 4 2
218 12 3
219 40 7
220 2:32 24
221 10:46 1:38
222 40:20 5:38
223 2:23:56 19:04
224 8:00:09 1:16:47
225 26:51:27 3:24:40
226 11:07:28
227 36:48:52
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Characterizing distributions

The moment sequence of a random variable X is

M[X] = (E[X0], E[X1], E[X2], . . .).

Provided X is suitably bounded, M[X] exists and uniquely determines
the distribution of X.

Given sample values x1, . . . , xN for X, the nth moment statistic is the
mean of xn

i . It converges to E[Xn] as N →∞.

If X is a symmetric integer polynomial of the eigenvalues of a random
matrix in USp(2g), then M[X] is an integer sequence.
This applies to all the coefficients of χ(T).
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The typical trace moment sequence in genus 1

Using the measure µ in genus 1, for t = −a1 we have

E[tn] =
2
π

∫π
0
(2 cos θ)n sin2 θdθ.

This is zero when n is odd, and for n = 2m we obtain

E[t2m] =
1

2m + 1

(
2m
m

)
.

and therefore

M[t] = (1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, . . .).

This is sequence A126120 in the OEIS.
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The typical trace moment sequence in genus g > 1

A similar computation in genus 2 yields

M[t] = (1, 0, 1, 0, 3, 0, 14, 0, 84, 0, 594, . . .),

which is sequence A138349, and in genus 3 we have

M[t] = (1, 0, 1, 0, 3, 0, 15, 0, 104, 0, 909, . . .),

which is sequence A138540.

In genus g, the nth moment of the trace is the number of returning
walks of length n on Zg with x1 > x2 > · · · > xg > 0 [Grabiner-Magyar].
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The exceptional trace moment sequence in genus 1

For an elliptic curve with CM we find that

E[t2m] =
1
2

(
2m
m

)
, for m > 0

yielding the moment sequence

M[t] = (1, 0, 1, 0, 3, 0, 10, 0, 35, 0, 126, 0, . . .),

whose even entries are A008828.
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An exceptional trace moment sequence in Genus 2
For a hyperelliptic curve whose Jacobian is isogenous to the
direct product of two elliptic curves, we compute M[t] = M[t1 + t2] via

E[(t1 + t2)n] =
∑(

n
i

)
E[ti

1]E[t
n−i
2 ].

For example, using

M[t1] = (1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, . . .),
M[t2] = (1, 0, 1, 0, 3, 0, 10, 0, 35, 0, 126, 0, 462, . . .),

we obtain A138551,

M[t] = (1, 0, 2, 0, 11, 0, 90, 0, 889, 0, 9723, . . .).

The second moment already differs from the standard sequence, and
the fourth moment differs greatly (11 versus 3).

Andrew V. Sutherland (MIT) L-polynomial distributions in genus 2 February 15, 2011 16 / 27

http://www.research.att.com/projects/OEIS?Anum=138551


Sieving for exceptional curves

We surveyed the L̄p-distributions of genus 2 curves

y2 = x5 + c4x4 + c3x3 + c2x2 + c1x + c0,

y2 = b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x + b0,

with integer coefficients |ci| 6 64 and |bi| 6 16, over 1010 curves.

We initially set N ≈ 212, discarded about 99% of the curves (those
whose moment statistics were “unexceptional”), then repeated this
process with N ≈ 216 and N ≈ 220.

We eventually found 30,000 non-isomorphic curves with apparently
exceptional distributions, many of which coincided.
Representative examples were computed to high precision N ≈ 226.
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Survey highlights

The moment statistics always appear to converge to integers.
20 distinct trace distributions (eventually found 23 of 24 predicted).
This exceeds the possibilities for End(Jac(C)), Aut(C), or MT(C).

The same L̄p-distribution can arise for split and simple Jacobians.

The density of zero traces can be any of

{0, 1/6, 1/4, 1/2, 7/12, 5/8, 3/4, 13/16, 7/8}.

Density 0 occurs in several exceptional cases.

Distinct L̄p-distributions may have identical trace distributions.
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Random matrix subgroup model

Conjecture
For a genus g curve C, the distribution of L̄p converges to the
distribution of χ in some infinite compact subgroup H ⊆ USp(2g).

Equality holds if and only if C has large Galois image.∗

*image of ρ` : Gal(Q/Q)→ Aut(T`(C)) Zariski dense in GSp(2g,Z`).
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Representations of genus 1 distributions

The Sato-Tate distribution has H = USp(2g), the typical case.

For CM curves, consider the subgroup of USp(2) = SU(2):

H =

{(
cos θ sin θ
− sin θ cos θ

)
,
(

i cos θ i sin θ
i sin θ −i cos θ

)
: θ ∈ [0, 2π]

}
.

This is a compact group (the normalizer of SO(2) in SU(2)).

Its Haar measure yields the desired moment sequence.
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Candidate subgroups in genus 2

Let G1 = SU(2) and G2 = N(SO(2)) ⊂ SU(2).

USp(4) — generic genus 2 curve.

Index 2 subgroup K of N(SO(2)× SO(2)) — genus 2 CM curve.
G1 × G1, G1 × G2, G2 × G2 — products of 2 elliptic curves.

J(G1 × G1) (but not J(G2 × G2) [Serre]).

Gi ⊗ G0 for some finite subgroup G0 of SU(2) —
“twisted” product of an elliptic curve with itself (22 cases!).

We require elements of G0 to have traces whose squares lie in Z.
We may assume −I ∈ G0.
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A very recent example

The genus 2 curve

y2 = 297x6 − 324x5 − 2970/37x4 + 720/37x3 + 1980/1369x2 − 144/1369x − 88/50653

found by Fité and Lario in December 2010 has L̄p-distribution matching
G2 ⊗ G0, where G0 is a binary dihedral group of order 24.

This distribution was predicted by our model that did not show up in
our survey. It also occurs for the curve

y2 = x6 − 9x5 − 15x4 + 30x3 + 15x2 − 9x − 1

whose coefficients lie just beyond the range of our search.

The paremetrizations they used (due to Cardona) also yielded two new
distributions that were not predicted by our model!
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Finite subgroups of SU(2)

A finite subgroup of SU(2) is isomorphic to one of the following:
Cyclic Cn group of order n.
Binary dihedral group BDn of order 4n.
Binary tetrahedral group BT (order 24).
Binary octahedral group BO (order 48).
Binary icosahedral group BI (order 120).

There are 12 groups on this list that are candidates for G0.

All of these give rise to distributions that match an exceptional
L̄p-polynomial distribution in genus 2.

This includes the two new distributions, arising from BT and BO,
which only seem applicable to G2.
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H # d c(H) z(H) M2 M4 M6 M8 M10

USp(4) 1 10 1 0 1 3 14 84 594
K 19 2 4 3/4 1 9 100 1225 15876
G1 × G1 2 6 1 0 2 10 70 588 5544
G1 × G2 3 4 2 0 2 11 90 889 9723
G2 × G2 8 2 4 1/4 2 12 110 1260 16002
J(G1 × G1) 9 6 2 1/2 1 5 35 294 2772
G1 ⊗ C2 5 3 1 0 4 32 320 3584 43008
G1 ⊗ C4 11b 3 2 1/2 2 16 160 1792 21504
G1 ⊗ C6 4 3 3 0 2 12 110 1204 14364
G1 ⊗ C8 7 3 4 1/4 2 12 100 1008 11424
G1 ⊗ C12 6 3 6 1/6 2 12 100 980 10584
G1 ⊗ BD1 11 3 2 1/2 2 16 160 1792 21504
G1 ⊗ BD2 18 3 4 3/4 1 8 80 896 10752
G1 ⊗ BD3 10 3 6 1/2 1 6 55 602 7182
G1 ⊗ BD4 16 3 8 5/8 1 6 50 504 5712
G1 ⊗ BD6 14 3 12 7/12 1 6 50 490 5292
G2 ⊗ C2 13 1 2 1/2 4 48 640 8960 129024
G2 ⊗ C4 21b 1 4 3/4 2 24 320 4480 64512
G2 ⊗ C6 12 1 6 1/2 2 18 220 3010 43092
G2 ⊗ C8 17 1 8 5/8 2 18 200 2520 34272
G2 ⊗ C12 15 1 12 7/12 2 18 200 2450 31752
G2 ⊗ BD1 21 1 4 3/4 2 24 320 4480 64512
G2 ⊗ BD2 23 1 8 7/8 1 12 160 2240 32256
G2 ⊗ BD3 20 1 12 3/4 1 9 110 1505 21546
G2 ⊗ BD4 22 1 16 13/16 1 9 100 1260 17136
G2 ⊗ BD6 24 1 24 19/24 1 9 100 1225 15876
G2 ⊗ BT 25 1 24 5/8 1 6 60 770 10836
G2 ⊗ BO 26 1 48 11/16 1 6 50 525 6426
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smalljac now available in purple Sage.

drew@math.mit.edu
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