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Computing HD(x)

Three algorithms
1 Complex analytic
2 p-adic
3 Chinese Remainder Theorem (CRT)

Comparison

Heuristically, all have complexity O(|D| log3+ε |D|) [BBEL].

Practically, the complex analytic method is much faster (≈ 50x)

. . . and it can use much smaller class polynomials (≈ 30x).
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Constructing elliptic curves of known order

Using complex multiplication (CM method)
Given p and t 6= 0, let D < 0 be a discriminant satisfying

4p = t2 − v2D.

We wish to find an elliptic curve E/Fp with N = p + 1± t points.

Hilbert class polynomials modulo p

Given a root j of HD(x) over Fp, let k = j/(1728− j). The curve

y2 = x3 + 3kx + 2k

has trace ±t (twist to choose the sign).

Not all curves with trace ±t necessarily have HD(j) = 0.
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Hilbert class polynomials

The Hilbert class polynomial HD(x)

HD(x) ∈ Z[x ] is the minimal polynomial of the j-invariant of the
complex elliptic curve C/OD, where OD is the imaginary
quadratic order with discriminant D.

HD(x) modulo a (totally) split prime p

The polynomial HD(x) splits completely over Fp, and its roots
are precisely the j-invariants of the elliptic curves E whose
endomorphism ring is isomorphic to OD (OE = OD).
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Practical considerations

We need |D| to be small
Any ordinary elliptic curve can, in principle, be constructed via
the CM method. A random curve will have |D| ≈ p.

We can only handle small |D|, say |D| < 1010.

Why small |D|?
The polynomial HD(x) is big.
We typically need O(|D| log |D|) bits to represent HD(x).

If |D| ≈ p that might be a lot of bits. . .
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|D| h h lg B |D| h h lg B

106 + 3 105 113KB 106 + 20 320 909KB
107 + 3 706 5MB 107 + 4 1648 26MB
108 + 3 1702 33MB 108 + 20 5056 240MB
109 + 3 3680 184MB 109 + 20 12672 2GB
1010 + 3 10538 2GB 1010 + 4 40944 23GB

1011 + 3 31057 16GB 1011 + 4 150192 323GB
1012 + 3 124568 265GB 1012 + 4 569376 5TB
1013 + 3 497056 4TB 1013 + 4 2100400 71TB
1014 + 3 1425472 39TB 1014 + 4 4927264 446TB

Size estimates for HD(x)
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More practical considerations

We don’t want |D| to be too small

Some security standards require h(D) ≥ 200.
This is easily accomplished with |D| ≈ 106.

Do we ever need to use larger values of |D|?
“Because we need to factor HD(x), it makes no sense to choose
larger class numbers (than 5000) because deg(HD) = h(D).”

Handbook of Elliptic and Hyperelliptic Curve Cryptography.
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Pairing-based cryptography

Pairing-friendly curves
The most desirable curves for pairing-based cryptography have
near-prime order and embedding degree k between 6 and 24.

Choosing p and k
We should choose the size of Fp to balance the difficulty of the
discrete logarithm problems in E/Fp and Fpk . For example

80-bit security: k = 6 and 170 < lg p < 192.
110-bit security: k = 10 and 220 < lg p < 256.

FST, “A taxonomy of pairing-friendly elliptic curves,” 2006.

Such curves are very rare. . .
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k b0 b1 L = 106 107 108 109 1010 1011 1012

6 170 192 0 0 1 11 33 149 493
10 220 256 0 0 0 0 8 29 81

Number of prime-order elliptic curves over Fp with
b0 < lg p < b1, embedding degree k , and |D| < L.

Karabina and Teske, “On prime-order elliptic curves with embedding degrees
k = 3, 4, and 6,” ANTS VIII (2008).

Freeman, “Constructing pairing-friendly elliptic curves with embedding
degree 10,” ANTS VII (2006).
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Pairing-friendly curves

Bisson-Satoh construction
Given a pairing-friendly curve E with small discriminant D, find
a pairing-friendly curve E ′ with larger discriminant D′ = n2D,
while preserving the values of ρ and k .

For example: D = −3, ρ = 1, and k = 12.

Requires large |D′|
To make it impractical to compute an isogeny from E ′ to E , we
want prime n > 105, yielding |D′| > 1010.

Bisson and Satoh, ”More discriminants with the Brezing-Weng method”.
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New results

Algorithm to compute HD(x) mod p based on [ALV+BBEL]

Repairs a technical defect in the algorithm of [BBEL].
Much better constant factors.
Heuristic complexity O(|D| log2+ε |D|) for most D.
Requires only O(|D|1/2+ε) space.
Faster than the complex analytic method for large D.

Practical achievements

Records to date: |D| > 1012 and h(D) ≈ 400,000.
Constructed many pairing-friendly curves with |D| > 1010.

See http://math.mit.edu/˜drew for examples.

Plus, breaking news (joint work with Andreas Enge).

http://math.mit.edu/~drew
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Basic CRT method (using split primes)

Step 1: Pick split primes

Find p1, . . . ,pn of the form 4pi = u2 − v2D with
∏

pi > B.

Step 2: Compute HD(x) mod pi

Determine the roots j1, . . . , jh of HD(x) over Fpi .
Compute HD(x) =

∏
(x − jk ) mod pi .

Step 3: Apply CRT to compute HD(x)

Compute HD(x) by applying the CRT to each coefficient.
Better, compute HD(x) mod P via the explicit CRT [MS 1990].

First proposed by Chao, Nakamura, Sobataka, and Tsujii (1998).
Agashe, Lauter, and Venkatesan (2004) suggested explicit CRT.
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Running time of the CRT method

Time complexity
As originally proposed, Step 2 tests every element of Fp to see
if it is the j-invariant of a curve with endomorphism ring OD.

The total complexity is then Ω(|D|3/2). This is not competitive.

Modified Step 2 [BBEL 2008]
Find a single root of HD(x) in Fp, then enumerate conjugates
via the action of Cl(D), using an isogeny walk.

Improved time complexity

The complexity is now O(|D|1+ε). This is potentially competitive.
However, preliminary results are disappointing.
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Space required to compute HD(x) mod P

Online version of the explicit CRT
Explicit CRT computes each coefficient c of HD(x) mod P as

c =
(∑

aiMici − rM
)

mod P

where r is the closest integer to
∑

aici/Mi . The values ai , Mi ,
and M are the same for each c.
We can forget ci once we compute its terms in c and r .

Space complexity

The total space is then O(|D|1/2+ε log P).

This is interesting, but only if the time can be improved.

See Bernstein for more details on the explicit CRT.
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CRT algorithm (split primes)

Given a fundamental discriminant D < −4 and a prime P with
4P = t2 − v2D, determine j(E) for all E/FP with OE = OD:

1 Compute the norm-minimal rep. S of Cl(D) and b = lg B.
Pick split primes p1, . . . ,pn with

∑
lg pi > b + 1.

Perform CRT precomputation.

2 Repeat for each pi :

a Find E/Fpi such that OE = OD.
b Compute the orbit j1, . . . , jh of j(E) under 〈S〉.
c Compute HD(x) =

∏
(x − jk ) mod pi .

d Update CRT sums for each coefficient of HD(x) mod pi .

3 Perform CRT postcomputation to obtain HD(x) mod P.

4 Find a root of HD(x) mod P and compute its orbit.

Under GRH: Step 2 is repeated n = O(|D|1/2 log log |D|) times and every
step has complexity O(|D|1/2+ε) (assume log P = O(log |D|)).
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Step 2a: Finding a curve with trace ±t

First test
Find E and a random α ∈ E for which (p + 1± t)α = 0.

1 If both signs of t are possible, test whether (p + 1)α and tα
have the same x coordinate [BBEL].

2 Don’t test random curves. Search a parameterized family
[Kubert] with suitable torsion (up to 15x faster).

3 Multiply in parallel using affine coordinates.

Second test
Apply a generic algorithm to compute the group exponent of E
(or its twist) using an expected O(log1+ε p) group operations.
For p > 229 this determines #E .
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Step 2a: Finding a curve with OE = OD

Which curves over Fp have trace ±t?

There are H(4p − t2) = H(−v2D) distinct j-invariants of curves
with trace ±t over Fp [Duering]. For D < −4 we have

H(−v2D) =
∑
u|v

h(u2D).

The term h(u2D) counts curves with D(OE ) = u2D.

What does this tell us?
If v = 1 then E has trace ±t if and only if OE = OD (easy).
If v > 1 then we have H(4p − t2) > h(D) (harder).

This is a good thing!
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Step 1: Pick your primes with care

The problem
There are only h(D) curves over Fp with OE = OD.
As p grows, they get harder and harder to find: O(p/h(D)).
Especially when h(D) is small.

The solution [BBEL]
Use a curve with trace ±t to find a curve with OE = OD by
climbing isogeny volcanoes.

Improvement

We should pick our primes based on the ratio p/H(4p − t2).
We want p/H(4p − t2)� 2

√
p. Easy to do when h(D) is big.
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Step 2a: Finding a curve with OE = OD

Classical modular polynomials Φ`(X ,Y )

There is an `-isogeny between E and E ′ iff Φ` (j(E), j(E ′)) = 0.
To find `-isogenies from E , factor Φ` (X , j(E)).

Isogeny volcanoes [Kohel 1996, Fouquet-Morain 2002]
The isogenies of degree ` among curves with trace ±t form a
directed graph consisting of a cycle (the surface) with trees of
height k rooted at each surface node (`k‖v ).

For surface nodes, `2 does not divide D(OE ).

How to find a curve with OE = OD

Starting from a curve with trace ±t , climb to the surface of
every `-volcano for `|v .
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Step 2b: Computing the orbit of j(E)

The group action of Cl(D) on j(E)

An ideal α in OE
∼= EndC(E) defines an `-isogeny

E → E/E [α] = E ′,

with OE ′ = OE and ` = N(α). This gives an action on the set
{j(E) : OE = OD} which factors through Cl(D) and reduces
mod p for split primes (but ` depends on α).

Touring the rim
We compute this action explicitly by walking along the surface
of the volcano of `-isogenies. For ` - v , set j1 = j(E), pick a root
j2 of Φ(X , j1), then let jk+1 be the root of Φ(X , jk )/(x − jk−1).

We can handle `|v , but this is efficient only for very small `.
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Step 2b: Computing the orbit of j(E)

Walking the entire orbit
Given a basis αs, . . . , α1 for Cl(D) = 〈αs〉 × · · · × 〈α1〉,
we compute the orbit of j = j(E) by computing β(j) for every
β = αek

k · · ·α
e1
1 with 0 ≤ ei < |αi | in a lexicographic ordering of

(ek , . . . ,e1) (one isogeny per step).

Complexity

Each step involves O(`2i ) operations in Fp, where `i = N(αi).
We need the `i to be small.

But this may not be possible using a basis!
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Representation by a sequence of generators

Cyclic composition series
Let α1, . . . , αs generate a finite group G and suppose

G = 〈α1, . . . , αs〉 −→ 〈α1, . . . , αs−1〉 −→ . . . −→ 〈α1〉 −→ 1

is a cyclic composition series. Let n1 = |α1| and define

ni = |〈α1, . . . , αi〉|/|〈α1, . . . , αi−1〉|.

Each ni divides (but need not equal) |αi |, and
∏

ni = |G|.

Unique representation

Every β ∈ G can be written uniquely as β = αe1
1 · · ·α

es
s , with

0 ≤ ei < ni (we may omit αi for which ni = 1).
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Step 1: The norm-minimal representation of Cl(D)

Generators for Cl(D)

Represent Cl(D) with reduced binary quadratic forms
(ax2 + bxy + cy2). The reduced primeforms of discriminant D
generate Cl(D) (a ≤

√
|D|/3 or a ≤ 6 log2 |D| under GRH).

Norm-minimal representation
Let α1, . . . , αs be the sequence of primeforms of discriminant D
ordered by a and define n1, . . . ,ns as above. The subsequence
of αi with ni > 1 is the norm-minimal representation of Cl(D).

Computing the ni

We can compute the ni using either O(|G|) or O(|G|1/2+ε|S|)
group operations with a generic group algorithm.
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Step 2c: Computing HD(x) =
∏

(x − jk) mod pi

Building a polynomial from its roots
Standard problem with a simple solution: build a product tree.
Using FFT , complexity is O(h log2 h) operations in Fpi .

Harvey’s experimental znpoly library

Fast polynomial multiplication in Z/nZ for n < 264, via multipoint
Kronecker substitution. Two to three times faster than NTL for
polynomials of degree 103 to 106.

http://cims.nyu.edu/˜harvey/

http://cims.nyu.edu/~harvey/
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CRT algorithm (split primes)

Given a fundamental discriminant D < −4 and a prime P with
4P = t2 − v2D, determine j(E) for all E/FP with OE = OD:

1 Compute the norm-minimal rep. S of Cl(D) and b = lg B.
Pick split primes p1, . . . ,pn with

∑
lg pi > b + 1.

Perform CRT precomputation.

2 Repeat for each pi :

a Find E/Fpi such that OE = OD.
b Compute the orbit j1, . . . , jh of j(E) under 〈S〉.
c Compute HD(x) =

∏
(x − jk ) mod pi .

d Update CRT sums for each coefficient of HD(x) mod pi .

3 Perform CRT postcomputation to obtain HD(x) mod P.

4 Find a root of HD(x) mod P and compute its orbit.

Under GRH: Step 2 is repeated n = O(|D|1/2 log log |D|) times and every
step has complexity O(|D|1/2+ε) (assume log P = O(log |D|)).
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A back-of-the-envelope complexity discussion

Some useful facts and heuristics
1 h(D) ≈ 0.28|D|1/2 on average.
2 max pi = O(|D| log1+ε |D|) heuristically (pi � 264).
3 max ` = O(log1+ε |D|) conjecturally, and for most D,

max ` = O(log log |D|) heuristically.

Which step is asymptotically dominant?
If Fpi adds/mults cost O(1), for most D we expect:

1 Step 2a has complexity O(|D|1/2 log1.5+ε |D|).
2 Step 2b has complexity O(|D|1/2 log1+ε |D|).
3 Step 2c has complexity O(|D|1/2 log2+ε |D|).

For exceptionally bad D, Step 2b is Ω(|D|1/2 log2 |D|).
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Summary

Key improvements to [BBEL]

O(|D|1/2+ε) space via online explicit CRT.
Pick primes and curves carefully!
Don’t be afraid to climb volcanoes.
Norm-minimal representation of Cl(D).

Key constant factors
Elliptic curve arithmetic.
Finding roots of small polynomials.
Building large polynomials from roots.
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−D 12, 901, 800, 539 13, 977, 210, 083 17, 237, 858, 107

h(D) 54,706 20,944 14,064
dlg Be 5,597,125 2,520,162 1,737,687
`1 3 3 11
`2 5 23
Cl(D) time 0.1 0.3 0.2

n 144,301 70,403 50,098
dlg(max pi )e 41 38 38
prime time 3.4 1.5 1.0

CRT pre time 2.8 0.9 0.6
CRT post time 0.9 0.9 0.6

(a,b,c) splits (61,17,22) (82,8,10) (54,44,2)
Step 2 time 98,000 34,700 59,400

root time 347 171 67
roots time 220 132 130

CRT method computing HD mod P (MNT curves, k = 6)
(2.8GHz AMD Athlon CPU times in seconds)
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−D h(D) ` dlg Be time split

28, 894, 627 724 7 66k 57 (64,35,1)
116, 799, 691 2,112 5 196k 309 (64,32,4)
228, 099, 523 1,296 17 143k 1,300 (32,67,0)
615, 602, 347 5,509 7 514k 2,540 (49,47,4)

1, 218, 951, 379 6,320 5 659k 3,270 (66,29,5)
2, 302, 080, 411 10,152 3/5 1.0m 8,200 (69,25,7)
4, 508, 791, 627 7,867 11 0.9m 16,400 (53,46,1)
9, 177, 974, 187 16,600 3/11 1.8m 46,400 (55,40,5)

17, 237, 858, 107 14,064 11 1.7m 62,900 (57,41,2)
35, 586, 455, 227 18,481 19 2.3m 232,000 (32,67,1)
69, 623, 892, 083 56,760 3 6.8m 212,000 (79,9,12)

137, 472, 195, 531 129,520 3/5 15m 1,170,000 (57,30,12)
275, 022, 600, 899 247,002 3 27m 2,400,000 (58,16,26)
553, 555, 955, 779 122,992 5 16m 1,890,000 (68,24,8)

1, 006, 819, 828, 491 180,616 3 25m 4,430,000 (71,18,11)

CRT method computing HD mod P (MNT curves, k = 6)

(2.8 GHz AMD Athlon CPU seconds)
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−D −D/200, 000 time

28, 894, 627 140 57
116, 799, 691 580 309
228, 099, 523 1,100 1,300
615, 602, 347 3,100 2,540

1, 218, 951, 379 6,100 3,270
2, 302, 080, 411 11,500 8,200
4, 508, 791, 627 22,500 16,400
9, 177, 974, 187 45,900 46,400

17, 237, 858, 107 86,200 62,900
35, 586, 455, 227 178,000 232,000
69, 623, 892, 083 348,000 212,000

137, 472, 195, 531 687,000 1,170,000
275, 022, 600, 899 1,380,000 2,400,000
553, 555, 955, 779 2,770,000 1,890,000

1, 006, 819, 828, 491 5,040,000 4,430,000

CRT method computing HD mod P (MNT curves, k = 6)

(2.8 GHz AMD Athlon CPU seconds)
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Scalability

Distributed computation
Large tests were run on 14 PCs in parallel (2 cores each).
Elapsed times:

D = −1,006,819,828,491,h(D) = 181,616 1.8 days
D = −905,270,581,331,h(D) = 391,652 1.1 days*

Minimal space requirements
Largest test used less than 300MB memory (per core).
Total disk storage under 1GB.

Plenty of headroom

For |D| in the range 108 to 1012 the observed running time is
essentially linear in |D|. Larger computations are feasible.
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Complex Analytic CRT Method

−D h(D) bits time bits time ratio

6961631 5000 9.5k 28 269k 190 0.15
23512271 10000 20k 210 573k 840 0.25
98016239 20000 45k 1,800 1.3m 4,200 0.43

357116231 40000 97k 14,000 2.7m 20,000 0.70
2093236031 100000 265k 260,000 7.4m 140,000 1.86

Complex Analytic (double η quotient) vs.
CRT method (j)

(2.4 GHz AMD Opteron CPU seconds)

Enge, “The complexity of class polynomial computations via floating point

approximations” (2008)
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What about other class invariants?

Theoretical obstructions [BBEL]
In general, one cannot uniquely determine class invariants
other than j over Fp.

Breaking news (joint with Andreas Enge)
The CRT method can use other class invariants in many cases.
For example:

If D is not divisible by 3, we achieve a 3x improvement
using the invariant γ2.
If D is also congruent to 1 mod 8, we achieve up to a 9x
improvement using the invariant f 8.

This is work in progress, further improvements are expected.
Ideally, we would use f whenever possible (potential 24x).
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Alternative class invariants with the CRT method

The class invariants: f , j , and γ2 [Weber]
Define the complex function f (z) by

f (z) = e−πi/24 η
(
(z + 1)/2

)
η(z)

where η(z) is the Dedekind η-function. We then have

j(z) =
(f 24(z)− 16)3

f 24(z)
; γ2(z) =

f 24(z)− 16
f 8(z)

.

Note that j = (γ2)3.
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Alternative class invariants with the CRT method

Modified CRT method using γ2

Provided that D is not divisible by 3:
Reduce height estimate by a factor of 3.
Restrict to pi ≡ 2 mod 3 so that cube roots are unique.
Compute γ2 = 3

√
j for each j enumerated in Step 2b.

Form Wγ2(x) =
∏

(x − γ2) instead of HD(x) in Step 2c.
Cube a root of Wγ2(x) mod P to get desired j at the end.

Further Improvement
Using suitable modular polynomials, enumerate γ2 values
directly rather than taking the cube root of each j .
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−D 12, 901, 800, 539 13, 977, 210, 083 17, 237, 858, 107
h(D) 54,706 20,944 14,064
`1 3 3 11
`2 5 23

dlg Be 5,597,125 2,520,162 1,737,687
n 144,301 70,403 50,098
(a,b,c) splits (61,17,22) (82,8,10) (54,44,2)
Step 2 time 98,000 34,700 59,400

dlg Be 1,814,367 883,076 574,545
n 49,122 24,279 17,196
(a,b,c) splits (59,13,28) (78,7,14) (55,43,2)
Step 2 time 28,400 9,100 20,400

CRT method j vs. γ2 (MNT curves, k = 6)
(2.8GHz AMD Athlon CPU times in seconds)
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−D h(D) time (j) time (γ2)

28, 894, 627 724 57 21
116, 799, 691 2,112 309 94
228, 099, 523 1,296 1300 404
615, 602, 347 5,509 2,540 895

1, 218, 951, 379 6,320 3,270 1,000
4, 508, 791, 627 7,867 16,400 5,400

17, 237, 858, 107 14,064 62,900 20,400
35, 586, 455, 227 18,481 232,000 74,600
69, 623, 892, 083 56,760 212,000 55,600

275, 022, 600, 899 247,002 2,400,000 690,000
553, 555, 955, 779 122,992 1,890,000 480,000
905, 270, 581, 331 391,652 7,860,000 2,200,000

CRT method j vs. γ2 (MNT curves, k = 6)

(2.8 GHz AMD Athlon CPU seconds)
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Complex Analytic CRT Method

−D h(D) bits time bits time ratio

6961631 5000 9.5k 28 30k 34 0.82
23512271 10000 20k 210 64k 150 1.4
98016239 20000 45k 1,800 141k 710 2.5

357116231 40000 97k 14,000 302k 3,200 4.4
2093236031 100000 265k 260,000 827k 22,000 12

Complex Analytic (double η quotient) vs.
CRT method (f 8)

(2.4 GHz AMD Opteron CPU seconds)
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Areas for future work

To do list
Continue to improve constant factors.
Expand and refine the use of other class invariants.
Post more pairing-friendly curves at

http://math.mit.edu/˜drew

Requests welcome.
Source code will be available under GPL.

Open question

Is there an O(p1/2+ε) algorithm to compute HD(x) mod p for an
inert prime p?

http://math.mit.edu/~drew
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