Computing Hilbert class polynomials with the CRT method

Andrew V. Sutherland

Massachusetts Institute of Technology
September 23, 2008

Computing $H_{D}(x)$

Three algorithms

(1) Complex analytic
(2) p-adic
(3) Chinese Remainder Theorem (CRT)

Computing $H_{D}(x)$

Three algorithms

(Complex analytic
(2) p-adic
(3) Chinese Remainder Theorem (CRT)

Comparison

Heuristically, all have complexity $O\left(|D| \log ^{3+\epsilon}|D|\right)[B B E L]$.

Computing $H_{D}(x)$

Three algorithms

(1) Complex analytic
(2) p-adic
(3) Chinese Remainder Theorem (CRT)

Comparison

Heuristically, all have complexity $O\left(|D| \log ^{3+\epsilon}|D|\right)$ [BBEL].
Practically, the complex analytic method is much faster ($\approx 50 x$)

Computing $H_{D}(x)$

Three algorithms

(1) Complex analytic
(2) p-adic
(3) Chinese Remainder Theorem (CRT)

Comparison

Heuristically, all have complexity $O\left(|D| \log ^{3+\epsilon}|D|\right)$ [BBEL].
Practically, the complex analytic method is much faster ($\approx 50 x$)
\ldots and it can use much smaller class polynomials ($\approx 30 x$).

Constructing elliptic curves of known order

Using complex multiplication (CM method)

Given p and $t \neq 0$, let $D<0$ be a discriminant satisfying

$$
4 p=t^{2}-v^{2} D
$$

We wish to find an elliptic curve $\mathrm{E} / \mathbb{F}_{p}$ with $N=p+1 \pm t$ points.

Hilbert class polynomials modulo p

Given a root j of $H_{D}(x)$ over \mathbb{F}_{p}, let $k=j /(1728-j)$. The curve

$$
y^{2}=x^{3}+3 k x+2 k
$$

has trace $\pm t$ (twist to choose the sign).

Not all curves with trace $\pm t$ necessarily have $H_{D}(j)=0$.

Hilbert class polynomials

The Hilbert class polynomial $H_{D}(x)$

$H_{D}(x) \in \mathbb{Z}[x]$ is the minimal polynomial of the j-invariant of the complex elliptic curve $\mathbb{C} / \mathcal{O}_{D}$, where \mathcal{O}_{D} is the imaginary quadratic order with discriminant D.

$H_{D}(x)$ modulo a (totally) split prime p

The polynomial $H_{D}(x)$ splits completely over \mathbb{F}_{p}, and its roots are precisely the j-invariants of the elliptic curves E whose endomorphism ring is isomorphic to $\mathcal{O}_{D}\left(\mathcal{O}_{E}=\mathcal{O}_{D}\right)$.

Practical considerations

We need $|D|$ to be small

Any ordinary elliptic curve can, in principle, be constructed via the CM method. A random curve will have $|D| \approx p$.
We can only handle small $|D|$, say $|D|<10^{10}$.

Why small |D|?

The polynomial $H_{D}(x)$ is big.
We typically need $O(|D| \log |D|)$ bits to represent $H_{D}(x)$.

If $|D| \approx p$ that might be a lot of bits. ..

Visible
Universe

$\|D\|$	h	$h \lg B$	$\|D\|$	h	$h \lg B$
$10^{6}+3$	105	113 KB	$10^{6}+20$	320	909 KB
$10^{7}+3$	706	5 MB	$10^{7}+4$	1648	26 MB
$10^{8}+3$	1702	33 MB	$10^{8}+20$	5056	240 MB
$10^{9}+3$	3680	184 MB	$10^{9}+20$	12672	2 GB
$10^{10}+3$	10538	2 GB	$10^{10}+4$	40944	23 GB
$10^{11}+3$	31057	16 GB	$10^{11}+4$	150192	323 GB
$10^{12}+3$	124568	265 GB	$10^{12}+4$	569376	5 TB
$10^{13}+3$	497056	4 TB	$10^{13}+4$	2100400	71 TB
$10^{14}+3$	1425472	39 TB	$10^{14}+4$	4927264	446 TB

Size estimates for $H_{D}(x)$

$$
B=\binom{h}{\lfloor h / 2\rfloor} \exp \left(\pi \sqrt{|D|} \sum_{i=1}^{h} \frac{1}{a_{i}}\right)
$$

More practical considerations

We don't want $|D|$ to be too small

Some security standards require $h(D) \geq 200$.
This is easily accomplished with $|D| \approx 10^{6}$.

Do we ever need to use larger values of $|D|$?

"Because we need to factor $H_{D}(x)$, it makes no sense to choose larger class numbers (than 5000) because deg $\left(H_{D}\right)=h(D)$." Handbook of Elliptic and Hyperelliptic Curve Cryptography.

Pairing-based cryptography

Pairing-friendly curves

The most desirable curves for pairing-based cryptography have near-prime order and embedding degree k between 6 and 24 .

Choosing p and k

We should choose the size of \mathbb{F}_{p} to balance the difficulty of the discrete logarithm problems in E / \mathbb{F}_{p} and $\mathbb{F}_{p^{k}}$. For example

- 80-bit security: $k=6$ and $170<\lg p<192$.
- 110-bit security: $k=10$ and $220<\lg p<256$.

FST, "A taxonomy of pairing-friendly elliptic curves," 2006.

Such curves are very rare...

k	b_{0}	b_{1}	$L=$	10^{6}	10^{7}	10^{8}	10^{9}	10^{10}	10^{11}	10^{12}
6	170	192		0	0	1	11	33	149	493
10	220	256		0	0	0	0	8	29	81

Number of prime-order elliptic curves over \mathbb{F}_{p} with $b_{0}<\lg p<b_{1}$, embedding degree k, and $|D|<L$.

Karabina and Teske, "On prime-order elliptic curves with embedding degrees $k=3,4$, and 6," ANTS VIII (2008).
Freeman, "Constructing pairing-friendly elliptic curves with embedding degree 10," ANTS VII (2006).

Pairing-friendly curves

Bisson-Satoh construction

Given a pairing-friendly curve E with small discriminant D, find a pairing-friendly curve E^{\prime} with larger discriminant $D^{\prime}=n^{2} D$, while preserving the values of ρ and k.
For example: $D=-3, \rho=1$, and $k=12$.

Requires large $\left|D^{\prime}\right|$

To make it impractical to compute an isogeny from E^{\prime} to E, we want prime $n>10^{5}$, yielding $\left|D^{\prime}\right|>10^{10}$.

Bisson and Satoh, "More discriminants with the Brezing-Weng method".

New results

Algorithm to compute $H_{D}(x) \bmod p$ based on [ALV+BBEL]

- Repairs a technical defect in the algorithm of [BBEL].
- Much better constant factors.
- Heuristic complexity $O\left(|D| \log ^{2+\epsilon}|D|\right)$ for most D.
- Requires only $O\left(|D|^{1 / 2+\epsilon}\right)$ space.
- Faster than the complex analytic method for large D.

Practical achievements

Records to date: $|D|>10^{12}$ and $h(D) \approx 400,000$.
Constructed many pairing-friendly curves with $|D|>10^{10}$.
See http://math.mit.edu/~drew for examples.
Plus, breaking news (joint work with Andreas Enge).

Basic CRT method (using split primes)

Step 1: Pick split primes

Find p_{1}, \ldots, p_{n} of the form $4 p_{i}=u^{2}-v^{2} D$ with $\Pi p_{i}>B$.

Step 2: Compute $H_{D}(x) \bmod p_{i}$

Determine the roots j_{1}, \ldots, j_{h} of $H_{D}(x)$ over $\mathbb{F}_{p_{i}}$.
Compute $H_{D}(x)=\Pi\left(x-j_{k}\right) \bmod p_{i}$.

Step 3: Apply CRT to compute $H_{D}(x)$

Compute $H_{D}(x)$ by applying the CRT to each coefficient. Better, compute $H_{D}(x)$ mod P via the explicit CRT [MS 1990].

First proposed by Chao, Nakamura, Sobataka, and Tsujii (1998). Agashe, Lauter, and Venkatesan (2004) suggested explicit CRT.

Running time of the CRT method

Time complexity

As originally proposed, Step 2 tests every element of \mathbb{F}_{p} to see if it is the j-invariant of a curve with endomorphism ring \mathcal{O}_{D}.
The total complexity is then $\Omega\left(|D|^{3 / 2}\right)$. This is not competitive.

Modified Step 2 [BBEL 2008]

Find a single root of $H_{D}(x)$ in \mathbb{F}_{p}, then enumerate conjugates via the action of $C l(D)$, using an isogeny walk.

Improved time complexity

The complexity is now $O\left(|D|^{1+\epsilon}\right)$. This is potentially competitive. However, preliminary results are disappointing.

Space required to compute $H_{D}(x) \bmod P$

Online version of the explicit CRT

Explicit CRT computes each coefficient c of $H_{D}(x) \bmod P$ as

$$
c=\left(\sum a_{i} M_{i} c_{i}-r M\right) \bmod P
$$

where r is the closest integer to $\sum a_{i} c_{i} / M_{i}$. The values a_{i}, M_{i}, and M are the same for each c.
We can forget c_{i} once we compute its terms in c and r.

Space required to compute $H_{D}(x) \bmod P$

Online version of the explicit CRT

Explicit CRT computes each coefficient c of $H_{D}(x) \bmod P$ as

$$
c=\left(\sum a_{i} M_{i} c_{i}-r M\right) \bmod P
$$

where r is the closest integer to $\sum a_{i} c_{i} / M_{i}$. The values a_{i}, M_{i}, and M are the same for each c.
We can forget c_{i} once we compute its terms in c and r.

Space complexity

The total space is then $O\left(|D|^{1 / 2+\epsilon} \log P\right)$.
This is interesting, but only if the time can be improved.

See Bernstein for more details on the explicit CRT.

CRT algorithm (split primes)

Given a fundamental discriminant $D<-4$ and a prime P with $4 P=t^{2}-v^{2} D$, determine $j(E)$ for all E / \mathbb{F}_{P} with $\mathcal{O}_{E}=\mathcal{O}_{D}$:
(1) Compute the norm-minimal rep. S of $C l(D)$ and $b=\lg B$. Pick split primes p_{1}, \ldots, p_{n} with $\sum \lg p_{i}>b+1$.
Perform CRT precomputation.
(2) Repeat for each p_{i} :
(a Find $E / \mathbb{F}_{p_{i}}$ such that $\mathcal{O}_{E}=\mathcal{O}_{D}$.
(0) Compute the orbit j_{1}, \ldots, j_{h} of $j(E)$ under $\langle S\rangle$.
(© Compute $H_{D}(x)=\prod\left(x-j_{k}\right) \bmod p_{i}$.
(1) Update CRT sums for each coefficient of $H_{D}(x) \bmod p_{i}$.
(3) Perform CRT postcomputation to obtain $H_{D}(x) \bmod P$.
(4) Find a root of $H_{D}(x) \bmod P$ and compute its orbit.

Under GRH: Step 2 is repeated $n=O\left(|D|^{1 / 2} \log \log |D|\right)$ times and every step has complexity $O\left(|D|^{1 / 2+\epsilon}\right)($ assume $\log P=O(\log |D|)$).

Step 2a: Finding a curve with trace $\pm t$

First test

Find E and a random $\alpha \in E$ for which $(p+1 \pm t) \alpha=0$.
(1) If both signs of t are possible, test whether $(p+1) \alpha$ and $t \alpha$ have the same x coordinate [BBEL].
(2) Don't test random curves. Search a parameterized family [Kubert] with suitable torsion (up to $15 x$ faster).
(3) Multiply in parallel using affine coordinates.

Second test

Apply a generic algorithm to compute the group exponent of E (or its twist) using an expected $O\left(\log ^{1+\epsilon} p\right)$ group operations. For $p>229$ this determines $\# E$.

Step 2a: Finding a curve with $\mathcal{O}_{E}=\mathcal{O}_{D}$

Which curves over \mathbb{F}_{p} have trace $\pm t$?

There are $H\left(4 p-t^{2}\right)=H\left(-v^{2} D\right)$ distinct j-invariants of curves with trace $\pm t$ over \mathbb{F}_{p} [Duering]. For $D<-4$ we have

$$
H\left(-v^{2} D\right)=\sum_{u \mid v} h\left(u^{2} D\right) .
$$

The term $h\left(u^{2} D\right)$ counts curves with $D\left(\mathcal{O}_{E}\right)=u^{2} D$.

What does this tell us?

If $v=1$ then E has trace $\pm t$ if and only if $\mathcal{O}_{E}=\mathcal{O}_{D}$ (easy).
If $v>1$ then we have $H\left(4 p-t^{2}\right)>h(D)$ (harder).

This is a good thing!

Step 1: Pick your primes with care

The problem

There are only $h(D)$ curves over \mathbb{F}_{p} with $\mathcal{O}_{E}=\mathcal{O}_{D}$.
As p grows, they get harder and harder to find: $O(p / h(D))$. Especially when $h(D)$ is small.

The solution [BBEL]

Use a curve with trace $\pm t$ to find a curve with $\mathcal{O}_{E}=\mathcal{O}_{D}$ by climbing isogeny volcanoes.

Improvement

We should pick our primes based on the ratio $p / H\left(4 p-t^{2}\right)$. We want $p / H\left(4 p-t^{2}\right) \ll 2 \sqrt{p}$. Easy to do when $h(D)$ is big.

Step 2a: Finding a curve with $\mathcal{O}_{E}=\mathcal{O}_{D}$

Classical modular polynomials $\Phi_{\ell}(X, Y)$

There is an ℓ-isogeny between E and E^{\prime} iff $\Phi_{\ell}\left(j(E), j\left(E^{\prime}\right)\right)=0$. To find ℓ-isogenies from E, factor $\Phi_{\ell}(X, j(E))$.

Isogeny volcanoes [Kohel 1996, Fouquet-Morain 2002]

The isogenies of degree ℓ among curves with trace $\pm t$ form a directed graph consisting of a cycle (the surface) with trees of height k rooted at each surface node ($\ell^{k} \| v$).
For surface nodes, ℓ^{2} does not divide $D\left(\mathcal{O}_{E}\right)$.

How to find a curve with $\mathcal{O}_{E}=\mathcal{O}_{D}$

Starting from a curve with trace $\pm t$, climb to the surface of every ℓ-volcano for $\ell \mid v$.

Step 2b: Computing the orbit of $j(E)$

The group action of $C I(D)$ on $j(E)$

An ideal α in $\mathcal{O}_{E} \cong E n d_{\mathbb{C}}(E)$ defines an ℓ-isogeny

$$
E \rightarrow E / E[\alpha]=E^{\prime},
$$

with $\mathcal{O}_{E^{\prime}}=\mathcal{O}_{E}$ and $\ell=N(\alpha)$. This gives an action on the set $\left\{j(E): \mathcal{O}_{E}=\mathcal{O}_{D}\right\}$ which factors through $C I(D)$ and reduces $\bmod p$ for split primes (but ℓ depends on α).

Touring the rim

We compute this action explicitly by walking along the surface of the volcano of ℓ-isogenies. For $\ell \nmid v$, set $j_{1}=j(E)$, pick a root j_{2} of $\Phi\left(X, j_{1}\right)$, then let j_{k+1} be the root of $\Phi\left(X, j_{k}\right) /\left(x-j_{k-1}\right)$.
We can handle $\ell \mid v$, but this is efficient only for very small ℓ.

Step 2b: Computing the orbit of $j(E)$

Walking the entire orbit

Given a basis $\alpha_{s}, \ldots, \alpha_{1}$ for $C /(D)=\left\langle\alpha_{s}\right\rangle \times \cdots \times\left\langle\alpha_{1}\right\rangle$, we compute the orbit of $j=j(E)$ by computing $\beta(j)$ for every $\beta=\alpha_{k}^{e_{k}} \cdots \alpha_{1}^{e_{1}}$ with $0 \leq \boldsymbol{e}_{i}<\left|\alpha_{i}\right|$ in a lexicographic ordering of $\left(e_{k}, \ldots, e_{1}\right)$ (one isogeny per step).

Complexity

Each step involves $O\left(\ell_{i}^{2}\right)$ operations in \mathbb{F}_{p}, where $\ell_{i}=N\left(\alpha_{i}\right)$. We need the ℓ_{i} to be small.

But this may not be possible using a basis!

Representation by a sequence of generators

Cyclic composition series

Let $\alpha_{1}, \ldots, \alpha_{s}$ generate a finite group G and suppose

$$
\mathbf{G}=\left\langle\alpha_{1}, \ldots, \alpha_{s}\right\rangle \longrightarrow\left\langle\alpha_{1}, \ldots, \alpha_{s-1}\right\rangle \longrightarrow \ldots \longrightarrow\left\langle\alpha_{1}\right\rangle \longrightarrow 1
$$

is a cyclic composition series. Let $n_{1}=\left|\alpha_{1}\right|$ and define

$$
n_{i}=\left|\left\langle\alpha_{1}, \ldots, \alpha_{i}\right\rangle\right| /\left|\left\langle\alpha_{1}, \ldots, \alpha_{i-1}\right\rangle\right| .
$$

Each n_{i} divides (but need not equal) $\left|\alpha_{i}\right|$, and $\prod n_{i}=|G|$.

Unique representation

Every $\beta \in G$ can be written uniquely as $\beta=\alpha_{1}^{e_{1}} \cdots \alpha_{s}^{e_{s}}$, with $0 \leq e_{i}<n_{i}$ (we may omit α_{i} for which $n_{i}=1$).

Step 1: The norm-minimal representation of $C I(D)$

Generators for $C I(D)$

Represent $C I(D)$ with reduced binary quadratic forms $\left(a x^{2}+b x y+c y^{2}\right)$. The reduced primeforms of discriminant D generate $C l(D)\left(a \leq \sqrt{|D| / 3}\right.$ or $a \leq 6 \log ^{2}|D|$ under GRH).

Norm-minimal representation

Let $\alpha_{1}, \ldots, \alpha_{s}$ be the sequence of primeforms of discriminant D ordered by a and define n_{1}, \ldots, n_{s} as above. The subsequence of α_{i} with $n_{i}>1$ is the norm-minimal representation of $C /(D)$.

Computing the n_{i}

We can compute the n_{i} using either $O(|G|)$ or $O\left(|G|^{1 / 2+\epsilon}|S|\right)$ group operations with a generic group algorithm.

Step 2c: Computing $H_{D}(x)=\Pi\left(x-j_{k}\right) \bmod p_{i}$

Building a polynomial from its roots

Standard problem with a simple solution: build a product tree. Using $F F T$, complexity is $O\left(h \log ^{2} h\right)$ operations in $\mathbb{F}_{p_{i}}$.

Harvey's experimental znpoly library

Fast polynomial multiplication in $\mathbb{Z} / n \mathbb{Z}$ for $n<2^{64}$, via multipoint Kronecker substitution. Two to three times faster than NTL for polynomials of degree 10^{3} to 10^{6}.
http://cims.nyu.edu/~harvey/

CRT algorithm (split primes)

Given a fundamental discriminant $D<-4$ and a prime P with $4 P=t^{2}-v^{2} D$, determine $j(E)$ for all E / \mathbb{F}_{P} with $\mathcal{O}_{E}=\mathcal{O}_{D}$:
(1) Compute the norm-minimal rep. S of $C l(D)$ and $b=\lg B$. Pick split primes p_{1}, \ldots, p_{n} with $\sum \lg p_{i}>b+1$.
Perform CRT precomputation.
(2) Repeat for each p_{i} :
(a) Find $E / \mathbb{F}_{p_{i}}$ such that $\mathcal{O}_{E}=\mathcal{O}_{D}$.
(0) Compute the orbit j_{1}, \ldots, j_{h} of $j(E)$ under $\langle S\rangle$.
(© Compute $H_{D}(x)=\prod\left(x-j_{k}\right) \bmod p_{i}$.
(1) Update CRT sums for each coefficient of $H_{D}(x) \bmod p_{i}$.
(3) Perform CRT postcomputation to obtain $H_{D}(x) \bmod P$.
(4) Find a root of $H_{D}(x) \bmod P$ and compute its orbit.

Under GRH: Step 2 is repeated $n=O\left(|D|^{1 / 2} \log \log |D|\right)$ times and every step has complexity $O\left(|D|^{1 / 2+\epsilon}\right)($ assume $\log P=O(\log |D|)$).

A back-of-the-envelope complexity discussion

Some useful facts and heuristics

(1) $h(D) \approx 0.28|D|^{1 / 2}$ on average.
(2) $\max p_{i}=O\left(|D| \log ^{1+\epsilon}|D|\right)$ heuristically $\left(p_{i} \ll 2^{64}\right)$.
(3) $\max \ell=O\left(\log ^{1+\epsilon}|D|\right)$ conjecturally, and for most D, $\max \ell=O(\log \log |D|)$ heuristically.

Which step is asymptotically dominant?

If $\mathbb{F}_{p_{i}}$ adds/mults cost $O(1)$, for most D we expect:
(1) Step 2 a has complexity $O\left(|D|^{1 / 2} \log ^{1.5+\epsilon}|D|\right)$.
(2) Step 2 b has complexity $O\left(|D|^{1 / 2} \log ^{1+\epsilon}|D|\right)$.
(3) Step 2c has complexity $O\left(|D|^{1 / 2} \log ^{2+\epsilon}|D|\right)$.

For exceptionally bad D, Step 2 b is $\Omega\left(|D|^{1 / 2} \log ^{2}|D|\right)$.

Summary

Key improvements to [BBEL]

- $O\left(|D|^{1 / 2+\epsilon}\right)$ space via online explicit CRT.
- Pick primes and curves carefully!
- Don't be afraid to climb volcanoes.
- Norm-minimal representation of $C l(D)$.

Key constant factors

- Elliptic curve arithmetic.
- Finding roots of small polynomials.
- Building large polynomials from roots.

-D	12,901, 800, 539	13, 977, 210,083	17,237, 858,107
$h(D)$	54,706	20,944	14,064
$\lceil\lg B\rceil$	5,597,125	2,520,162	1,737,687
ℓ_{1}	3	3	11
ℓ_{2}	5		23
$C /(D)$ time	0.1	0.3	0.2
n	144,301	70,403	50,098
$\left\lceil\lg \left(\max p_{i}\right)\right\rceil$	41	38	38
prime time	3.4	1.5	1.0
CRT pre time	2.8	0.9	0.6
CRT post time	0.9	0.9	0.6
(a,b,c) splits	$(61,17,22)$	$(82,8,10)$	(54,44,2)
Step 2 time	98,000	34,700	59,400
root time	347	171	67
roots time	220	132	130

CRT method computing $H_{D} \bmod P$ (MNT curves, $k=6$)
(2.8GHz AMD Athlon CPU times in seconds)

$-D$	$h(D)$	ℓ	$\lceil\mathrm{lg} B\rceil$	time	split
$28,894,627$	724	7	66 k	57	$(64,35,1)$
$116,799,691$	2,112	5	196 k	309	$(64,32,4)$
$228,099,523$	1,296	17	143 k	1,300	$(32,67,0)$
$615,602,347$	5,509	7	514 k	2,540	$(49,47,4)$
$1,218,951,379$	6,320	5	659 k	3,270	$(66,29,5)$
$2,302,080,411$	10,152	$3 / 5$	1.0 m	8,200	$(69,25,7)$
$4,508,791,627$	7,867	11	0.9 m	16,400	$(53,46,1)$
$9,177,974,187$	16,600	$3 / 11$	1.8 m	46,400	$(55,40,5)$
$17,237,858,107$	14,064	11	1.7 m	62,900	$(57,41,2)$
$35,586,455,227$	18,481	19	2.3 m	232,000	$(32,67,1)$
$69,623,892,083$	56,760	3	6.8 m	212,000	$(79,9,12)$
$137,472,195,531$	129,520	$3 / 5$	15 m	$1,170,000$	$(57,30,12)$
$275,022,600,899$	247,002	3	27 m	$2,400,000$	$(58,16,26)$
$553,555,955,779$	122,992	5	16 m	$1,890,000$	$(68,24,8)$
$1,006,819,828,491$	180,616	3	25 m	$4,430,000$	$(71,18,11)$

CRT method computing H_{D} mod P (MNT curves, $k=6$)
(2.8 GHz AMD Athlon CPU seconds)

$-D$	$-D / 200,000$	time
$28,894,627$	140	57
$116,799,691$	580	309
$228,099,523$	1,100	1,300
$615,602,347$	3,100	2,540
$1,218,951,379$	6,100	3,270
$2,302,080,411$	11,500	8,200
$4,508,791,627$	22,500	16,400
$9,177,974,187$	45,900	46,400
$17,237,858,107$	86,200	62,900
$35,586,455,227$	178,000	232,000
$69,623,892,083$	348,000	212,000
$137,472,195,531$	687,000	$1,170,000$
$275,022,600,899$	$1,380,000$	$2,400,000$
$553,555,955,779$	$2,770,000$	$1,890,000$
$1,006,819,828,491$	$5,040,000$	$4,430,000$

CRT method computing $H_{D} \bmod P$ (MNT curves, $k=6$)
(2.8 GHz AMD Athlon CPU seconds)

Scalability

Distributed computation

Large tests were run on 14 PCs in parallel (2 cores each). Elapsed times:

- $D=-1,006,819,828,491, h(D)=181,616$
- $D=-905,270,581,331, h(D)=391,652$
1.1 days*

Minimal space requirements

Largest test used less than 300MB memory (per core). Total disk storage under 1GB.

Plenty of headroom

For $|D|$ in the range 10^{8} to 10^{12} the observed running time is essentially linear in $|D|$. Larger computations are feasible.

-D	$h(D)$	Complex Analytic		CRT Method		ratio
		bits	time	bits	time	
6961631	5000	9.5k	28	269k	190	0.15
23512271	10000	20k	210	573k	840	0.25
98016239	20000	45k	1,800	1.3 m	4,200	0.43
357116231	40000	97k	14,000	2.7 m	20,000	0.70
2093236031	100000	265k	260,000	7.4 m	140,000	1.86

Complex Analytic (double η quotient) vs.
CRT method (j)
(2.4 GHz AMD Opteron CPU seconds)

Enge, "The complexity of class polynomial computations via floating point approximations" (2008)

What about other class invariants?

Theoretical obstructions [BBEL]

In general, one cannot uniquely determine class invariants other than j over \mathbb{F}_{p}.

What about other class invariants?

Theoretical obstructions [BBEL]

In general, one cannot uniquely determine class invariants other than j over \mathbb{F}_{p}.

Breaking news (joint with Andreas Enge)

The CRT method can use other class invariants in many cases.
For example:

- If D is not divisible by 3 , we achieve a $3 x$ improvement using the invariant γ_{2}.
- If D is also congruent to $1 \bmod 8$, we achieve up to a $9 x$ improvement using the invariant f^{8}.
This is work in progress, further improvements are expected. Ideally, we would use f whenever possible (potential 24 x).

Alternative class invariants with the CRT method

The class invariants: f, j, and γ_{2} [Weber]

Define the complex function $f(z)$ by

$$
f(z)=e^{-\pi i / 24} \frac{\eta((z+1) / 2)}{\eta(z)}
$$

where $\eta(z)$ is the Dedekind η-function. We then have

$$
j(z)=\frac{\left(f^{24}(z)-16\right)^{3}}{f^{24}(z)} ; \quad \gamma_{2}(z)=\frac{f^{24}(z)-16}{f^{8}(z)}
$$

Note that $j=\left(\gamma_{2}\right)^{3}$.

Alternative class invariants with the CRT method

Modified CRT method using γ_{2}

Provided that D is not divisible by 3 :

- Reduce height estimate by a factor of 3.
- Restrict to $p_{i} \equiv 2 \bmod 3$ so that cube roots are unique.
- Compute $\gamma_{2}=\sqrt[3]{j}$ for each j enumerated in Step 2b.
- Form $W_{\gamma_{2}}(x)=\Pi\left(x-\gamma_{2}\right)$ instead of $H_{D}(x)$ in Step 2c.
- Cube a root of $W_{\gamma_{2}}(x) \bmod P$ to get desired j at the end.

Further Improvement

Using suitable modular polynomials, enumerate γ_{2} values directly rather than taking the cube root of each j.

$-D$	$12,901,800,539$	$13,977,210,083$	$17,237,858,107$
$h(D)$	54,706	20,944	14,064
ℓ_{1}	3	3	11
ℓ_{2}	5		23
$\lceil\lg B\rceil$	$5,597,125$	$2,520,162$	$1,737,687$
n	144,301	70,403	50,098
$($ a,b,c) splits	$(61,17,22)$	$(82,8,10)$	$(54,44,2)$
Step 2 time	98,000	34,700	59,400
$\lceil\lg B\rceil$	$\mathbf{1 , 8 1 4 , 3 6 7}$	$\mathbf{8 8 3 , 0 7 6}$	$\mathbf{5 7 4 , 5 4 5}$
\boldsymbol{n}	$\mathbf{4 9 , 1 2 2}$	$\mathbf{2 4 , 2 7 9}$	$\mathbf{1 7 , 1 9 6}$
(a,b,c) splits	$\mathbf{(5 9 , 1 3 , 2 8}$	$\mathbf{7 8 , 7 , 1 4)}$	$\mathbf{(5 5 , 4 3 , 2)}$
Step 2 time	$\mathbf{2 8 , 4 0 0}$	$\mathbf{9 , 1 0 0}$	$\mathbf{2 0 , 4 0 0}$

CRT method j vs. γ_{2} (MNT curves, $k=6$)
(2.8GHz AMD Athlon CPU times in seconds)

$-D$	$h(D)$	time (j)	time $\left(\gamma_{2}\right)$
$28,894,627$	724	57	$\mathbf{2 1}$
$116,799,691$	2,112	309	$\mathbf{9 4}$
$228,099,523$	1,296	1300	$\mathbf{4 0 4}$
$615,602,347$	5,509	2,540	$\mathbf{8 9 5}$
$1,218,951,379$	6,320	3,270	$\mathbf{1 , 0 0 0}$
$4,508,791,627$	7,867	16,400	$\mathbf{5 , 4 0 0}$
$17,237,858,107$	14,064	62,900	$\mathbf{2 0 , 4 0 0}$
$35,586,455,227$	18,481	232,000	$\mathbf{7 4 , 6 0 0}$
$69,623,892,083$	56,760	212,000	55,600
$275,022,600,899$	247,002	$2,400,000$	$\mathbf{6 9 0}, \mathbf{0 0 0}$
$553,555,955,779$	122,992	$1,890,000$	$\mathbf{4 8 0}, \mathbf{0 0 0}$
$905,270,581,331$	391,652	$7,860,000$	$\mathbf{2 , 2 0 0 , 0 0 0}$

CRT method j vs. γ_{2} (MNT curves, $k=6$)
(2.8 GHz AMD Athlon CPU seconds)

-D	$h(D)$	Complex Analytic		CRT Method		ratio
		bits	time	bits	time	
6961631	5000	9.5k	28	30k	34	0.82
23512271	10000	20k	210	64k	150	1.4
98016239	20000	45k	1,800	141k	710	2.5
357116231	40000	97k	14,000	302k	3,200	4.4
2093236031	100000	265k	260,000	827k	22,000	12

Complex Analytic (double η quotient) vs.
CRT method (f^{8})
(2.4 GHz AMD Opteron CPU seconds)

Areas for future work

To do list

- Continue to improve constant factors.
- Expand and refine the use of other class invariants.
- Post more pairing-friendly curves at
http://math.mit.edu/~drew

Requests welcome.

- Source code will be available under GPL.

Open question

Is there an $O\left(p^{1 / 2+\epsilon}\right)$ algorithm to compute $H_{D}(x) \bmod p$ for an inert prime p ?

