Computing Hilbert class polynomials with the CRT method

Andrew V. Sutherland

Massachusetts Institute of Technology

September 23, 2008

Three algorithms

- Complex analytic
- p-adic
- Ohinese Remainder Theorem (CRT)

Computing $H_D(x)$

Three algorithms

- Complex analytic
- p-adic
- 3 Chinese Remainder Theorem (CRT)

Comparison

Heuristically, all have complexity $O(|D|\log^{3+\epsilon}|D|)$ [BBEL].

Computing $H_D(x)$

Three algorithms

- Complex analytic
- p-adic
- Ohinese Remainder Theorem (CRT)

Comparison

Heuristically, all have complexity $O(|D| \log^{3+\epsilon} |D|)$ [BBEL].

Practically, the complex analytic method is much faster ($\approx 50x$)

Computing $H_D(x)$

Three algorithms

- Complex analytic
- p-adic
- Ohinese Remainder Theorem (CRT)

Comparison

Heuristically, all have complexity $O(|D|\log^{3+\epsilon}|D|)$ [BBEL].

Practically, the complex analytic method is much faster ($\approx 50x$) ... and it can use much smaller class polynomials ($\approx 30x$).

Constructing elliptic curves of known order

Using complex multiplication (CM method)

Given p and $t \neq 0$, let D < 0 be a discriminant satisfying

$$4p=t^2-v^2D.$$

We wish to find an elliptic curve E/\mathbb{F}_p with $N=p+1\pm t$ points.

Hilbert class polynomials modulo p

Given a root j of $H_D(x)$ over \mathbb{F}_p , let k = j/(1728 - j). The curve

$$y^2 = x^3 + 3kx + 2k$$

has trace $\pm t$ (twist to choose the sign).

Not all curves with trace $\pm t$ necessarily have $H_D(j) = 0$.

Hilbert class polynomials

The Hilbert class polynomial $H_D(x)$

 $H_D(x) \in \mathbb{Z}[x]$ is the minimal polynomial of the j-invariant of the complex elliptic curve \mathbb{C}/\mathcal{O}_D , where \mathcal{O}_D is the imaginary quadratic order with discriminant D.

$H_D(x)$ modulo a (totally) split prime p

The polynomial $H_D(x)$ splits completely over \mathbb{F}_p , and its roots are precisely the j-invariants of the elliptic curves E whose endomorphism ring is isomorphic to \mathcal{O}_D ($\mathcal{O}_E = \mathcal{O}_D$).

Practical considerations

We need |D| to be small

Any ordinary elliptic curve can, in principle, be constructed via the CM method. A random curve will have $|D| \approx p$.

We can only handle small |D|, say $|D| < 10^{10}$.

Why small |D|?

The polynomial $H_D(x)$ is big.

We typically need $O(|D| \log |D|)$ bits to represent $H_D(x)$.

If $|D| \approx p$ that might be a lot of bits...

Visible Universe

D	h	hlg B	D	h	hlg B
$10^{6} + 3$	105	113KB	$10^6 + 20$	320	909KB
$10^7 + 3$	706	5MB	$10^7 + 4$	1648	26MB
$10^8 + 3$	1702	33MB	$10^8 + 20$	5056	240MB
$10^9 + 3$	3680	184MB	$10^9 + 20$	12672	2GB
$10^{10} + 3$	10538	2GB	$10^{10} + 4$	40944	23GB
$10^{11} + 3$	31057	16GB	$10^{11} + 4$	150192	323GB
$10^{12} + 3$	124568	265GB	$10^{12} + 4$	569376	5TB
$10^{13} + 3$	497056	4TB	$10^{13} + 4$	2100400	71TB
$10^{14} + 3$	1425472	39TB	$10^{14} + 4$	4927264	446TB

Size estimates for $H_D(x)$

$$B = \begin{pmatrix} h \\ \lfloor h/2 \rfloor \end{pmatrix} \exp \left(\pi \sqrt{|D|} \sum_{i=1}^h \frac{1}{a_i} \right)$$

More practical considerations

We don't want |D| to be too small

Some security standards require $h(D) \ge 200$.

This is easily accomplished with $|D| \approx 10^6$.

Do we ever need to use larger values of |D|?

"Because we need to factor $H_D(x)$, it makes no sense to choose larger class numbers (than 5000) because $deg(H_D) = h(D)$."

Handbook of Elliptic and Hyperelliptic Curve Cryptography.

Pairing-based cryptography

Pairing-friendly curves

The most desirable curves for pairing-based cryptography have near-prime order and embedding degree *k* between 6 and 24.

Choosing p and k

We should choose the size of \mathbb{F}_p to balance the difficulty of the discrete logarithm problems in E/\mathbb{F}_p and \mathbb{F}_{p^k} . For example

- 80-bit security: k = 6 and $170 < \lg p < 192$.
- 110-bit security: k = 10 and $220 < \lg p < 256$.

FST, "A taxonomy of pairing-friendly elliptic curves," 2006.

Such curves are very rare...

k	b_0	b_1	L =	10 ⁶	10 ⁷	10 ⁸	10 ⁹	10 ¹⁰	10 ¹¹	10 ¹²
6	170	192		0	0	1	11	33	149	493
10	220	256		0	0	0	0	8	29	81

Number of prime-order elliptic curves over \mathbb{F}_p with $b_0 < \lg p < b_1$, embedding degree k, and |D| < L.

Karabina and Teske, "On prime-order elliptic curves with embedding degrees k = 3, 4, and 6," ANTS VIII (2008).

Freeman, "Constructing pairing-friendly elliptic curves with embedding degree 10," ANTS VII (2006).

Pairing-friendly curves

Bisson-Satoh construction

Given a pairing-friendly curve E with small discriminant D, find a pairing-friendly curve E' with larger discriminant $D' = n^2 D$, while preserving the values of ρ and k.

For example: D = -3, $\rho = 1$, and k = 12.

Requires large |D'|

To make it impractical to compute an isogeny from E' to E, we want prime $n > 10^5$, yielding $|D'| > 10^{10}$.

Bisson and Satoh, "More discriminants with the Brezing-Weng method".

New results

Algorithm to compute $H_D(x) \mod p$ based on [ALV+BBEL]

- Repairs a technical defect in the algorithm of [BBEL].
- Much better constant factors.
- Heuristic complexity $O(|D|\log^{2+\epsilon}|D|)$ for most D.
- Requires only $O(|D|^{1/2+\epsilon})$ space.
- Faster than the complex analytic method for large D.

Practical achievements

Records to date: $|D| > 10^{12}$ and $h(D) \approx 400,000$.

Constructed many pairing-friendly curves with $|D| > 10^{10}$.

See http://math.mit.edu/~drew for examples.

Plus, breaking news (joint work with Andreas Enge).

Basic CRT method (using split primes)

Step 1: Pick split primes

Find p_1, \ldots, p_n of the form $4p_i = u^2 - v^2D$ with $\prod p_i > B$.

Step 2: Compute $H_D(x) \mod p_i$

Determine the roots j_1, \ldots, j_h of $H_D(x)$ over \mathbb{F}_{p_i} .

Compute $H_D(x) = \prod (x - j_k) \mod p_i$.

Step 3: Apply CRT to compute $H_D(x)$

Compute $H_D(x)$ by applying the CRT to each coefficient. Better, compute $H_D(x)$ mod P via the *explicit* CRT [MS 1990].

First proposed by Chao, Nakamura, Sobataka, and Tsujii (1998). Agashe, Lauter, and Venkatesan (2004) suggested explicit CRT.

Running time of the CRT method

Time complexity

As originally proposed, Step 2 tests every element of \mathbb{F}_p to see if it is the *j*-invariant of a curve with endomorphism ring \mathcal{O}_D . The total complexity is then $\Omega(|D|^{3/2})$. This is not competitive.

Modified Step 2 [BBEL 2008]

Find a single root of $H_D(x)$ in \mathbb{F}_p , then enumerate conjugates via the action of Cl(D), using an isogeny walk.

Improved time complexity

The complexity is now $O(|D|^{1+\epsilon})$. This is potentially competitive. However, preliminary results are disappointing.

Space required to compute $H_D(x) \mod P$

Online version of the explicit CRT

Explicit CRT computes each coefficient c of $H_D(x)$ mod P as

$$c = \left(\sum a_i M_i c_i - rM\right) \bmod P$$

where r is the closest integer to $\sum a_i c_i/M_i$. The values a_i , M_i , and M are the same for each c.

We can forget c_i once we compute its terms in c and r.

Space required to compute $H_D(x) \mod P$

Online version of the explicit CRT

Explicit CRT computes each coefficient c of $H_D(x)$ mod P as

$$c = \left(\sum a_i M_i c_i - rM\right) \bmod P$$

where r is the closest integer to $\sum a_i c_i/M_i$. The values a_i , M_i , and M are the same for each c.

We can forget c_i once we compute its terms in c and r.

Space complexity

The total space is then $O(|D|^{1/2+\epsilon} \log P)$.

This is interesting, but only if the time can be improved.

See Bernstein for more details on the explicit CRT.

CRT algorithm (split primes)

Given a fundamental discriminant D < -4 and a prime P with $4P = t^2 - v^2D$, determine j(E) for all E/\mathbb{F}_P with $\mathcal{O}_E = \mathcal{O}_D$:

- ① Compute the norm-minimal rep. S of Cl(D) and $b = \lg B$. Pick split primes p_1, \ldots, p_n with $\sum \lg p_i > b + 1$. Perform CRT precomputation.
- 2 Repeat for each p_i :
 - **a** Find E/\mathbb{F}_{p_i} such that $\mathcal{O}_E = \mathcal{O}_D$.
 - **6** Compute the orbit j_1, \ldots, j_h of j(E) under $\langle S \rangle$.
 - **o** Compute $H_D(x) = \prod (x j_k) \mod p_i$.
 - **1** Update CRT sums for each coefficient of $H_D(x)$ mod p_i .
- **3** Perform CRT postcomputation to obtain $H_D(x)$ mod P.
- If Φ Find a root of $H_D(x)$ mod P and compute its orbit.

Under GRH: Step 2 is repeated $n = O(|D|^{1/2} \log \log |D|)$ times and every step has complexity $O(|D|^{1/2+\epsilon})$ (assume $\log P = O(\log |D|)$).

Step 2a: Finding a curve with trace $\pm t$

First test

Find *E* and a random $\alpha \in E$ for which $(p + 1 \pm t)\alpha = 0$.

- If both signs of t are possible, test whether $(p+1)\alpha$ and $t\alpha$ have the same x coordinate [BBEL].
- 2 Don't test random curves. Search a parameterized family [Kubert] with suitable torsion (up to 15x faster).
- Multiply in parallel using affine coordinates.

Second test

Apply a generic algorithm to compute the group exponent of E (or its twist) using an expected $O(\log^{1+\epsilon} p)$ group operations. For p > 229 this determines #E.

Step 2a: Finding a curve with $\mathcal{O}_E = \mathcal{O}_D$

Which curves over \mathbb{F}_p have trace $\pm t$?

There are $H(4p - t^2) = H(-v^2D)$ distinct *j*-invariants of curves with trace $\pm t$ over \mathbb{F}_p [Duering]. For D < -4 we have

$$H(-v^2D) = \sum_{u|v} h(u^2D).$$

The term $h(u^2D)$ counts curves with $D(\mathcal{O}_E) = u^2D$.

What does this tell us?

If v = 1 then E has trace $\pm t$ if and only if $\mathcal{O}_E = \mathcal{O}_D$ (easy).

If v > 1 then we have $H(4p - t^2) > h(D)$ (harder).

This is a good thing!

Step 1: Pick your primes with care

The problem

There are only h(D) curves over \mathbb{F}_p with $\mathcal{O}_E = \mathcal{O}_D$. As p grows, they get harder and harder to find: O(p/h(D)). Especially when h(D) is *small*.

The solution [BBEL]

Use a curve with trace $\pm t$ to find a curve with $\mathcal{O}_E = \mathcal{O}_D$ by climbing isogeny volcanoes.

Improvement

We should pick our primes based on the ratio $p/H(4p-t^2)$. We want $p/H(4p-t^2) \ll 2\sqrt{p}$. Easy to do when h(D) is big.

Step 2a: Finding a curve with $\mathcal{O}_E = \mathcal{O}_D$

Classical modular polynomials $\Phi_{\ell}(X, Y)$

There is an ℓ -isogeny between E and E' iff $\Phi_{\ell}(j(E), j(E')) = 0$. To find ℓ -isogenies from E, factor $\Phi_{\ell}(X, j(E))$.

Isogeny volcanoes [Kohel 1996, Fouquet-Morain 2002]

The isogenies of degree ℓ among curves with trace $\pm t$ form a directed graph consisting of a cycle (the surface) with trees of height k rooted at each surface node ($\ell^k || v$).

For surface nodes, ℓ^2 does not divide $D(\mathcal{O}_E)$.

How to find a curve with $\mathcal{O}_E = \mathcal{O}_D$

Starting from a curve with trace $\pm t$, climb to the surface of every ℓ -volcano for $\ell | v$.

Step 2b: Computing the orbit of j(E)

The group action of Cl(D) on j(E)

An ideal α in $\mathcal{O}_{\mathcal{E}} \cong End_{\mathbb{C}}(\mathcal{E})$ defines an ℓ -isogeny

$$E \to E/E[\alpha] = E',$$

with $\mathcal{O}_{E'} = \mathcal{O}_E$ and $\ell = N(\alpha)$. This gives an action on the set $\{j(E) : \mathcal{O}_E = \mathcal{O}_D\}$ which factors through Cl(D) and reduces mod p for split primes (**but** ℓ **depends on** α).

Touring the rim

We compute this action explicitly by walking along the surface of the volcano of ℓ -isogenies. For $\ell \nmid v$, set $j_1 = j(E)$, pick a root j_2 of $\Phi(X, j_1)$, then let j_{k+1} be the root of $\Phi(X, j_k)/(x - j_{k-1})$.

We can handle $\ell|\nu$, but this is efficient only for very small ℓ .

Step 2b: Computing the orbit of j(E)

Walking the entire orbit

Given a basis $\alpha_s, \ldots, \alpha_1$ for $Cl(D) = \langle \alpha_s \rangle \times \cdots \times \langle \alpha_1 \rangle$, we compute the orbit of j = j(E) by computing $\beta(j)$ for every $\beta = \alpha_k^{e_k} \cdots \alpha_1^{e_1}$ with $0 \le e_i < |\alpha_i|$ in a lexicographic ordering of (e_k, \ldots, e_1) (one isogeny per step).

Complexity

Each step involves $O(\ell_i^2)$ operations in \mathbb{F}_p , where $\ell_i = N(\alpha_i)$. We need the ℓ_i to be small.

But this may not be possible using a basis!

Representation by a sequence of generators

Cyclic composition series

Let $\alpha_1, \ldots, \alpha_s$ generate a finite group G and suppose

$$G = \langle \alpha_1, \dots, \alpha_s \rangle \longrightarrow \langle \alpha_1, \dots, \alpha_{s-1} \rangle \longrightarrow \dots \longrightarrow \langle \alpha_1 \rangle \longrightarrow 1$$

is a cyclic composition series. Let $n_1 = |\alpha_1|$ and define

$$n_i = |\langle \alpha_1, \ldots, \alpha_i \rangle| / |\langle \alpha_1, \ldots, \alpha_{i-1} \rangle|.$$

Each n_i divides (but need not equal) $|\alpha_i|$, and $\prod n_i = |G|$.

Unique representation

Every $\beta \in G$ can be written uniquely as $\beta = \alpha_1^{e_1} \cdots \alpha_s^{e_s}$, with $0 \le e_i < n_i$ (we may omit α_i for which $n_i = 1$).

Step 1: The norm-minimal representation of CI(D)

Generators for Cl(D)

Represent CI(D) with reduced binary quadratic forms $(ax^2 + bxy + cy^2)$. The reduced primeforms of discriminant D generate CI(D) ($a \le \sqrt{|D|/3}$ or $a \le 6 \log^2 |D|$ under GRH).

Norm-minimal representation

Let $\alpha_1, \ldots, \alpha_s$ be the sequence of primeforms of discriminant D ordered by a and define n_1, \ldots, n_s as above. The subsequence of α_i with $n_i > 1$ is the norm-minimal representation of Cl(D).

Computing the n_i

We can compute the n_i using either O(|G|) or $O(|G|^{1/2+\epsilon}|S|)$ group operations with a generic group algorithm.

Step 2c: Computing $H_D(x) = \prod (x - j_k) \mod p_i$

Building a polynomial from its roots

Standard problem with a simple solution: build a product tree. Using FFT, complexity is $O(h \log^2 h)$ operations in \mathbb{F}_{p_i} .

Harvey's experimental znpoly library

Fast polynomial multiplication in $\mathbb{Z}/n\mathbb{Z}$ for $n < 2^{64}$, via multipoint Kronecker substitution. Two to three times faster than NTL for polynomials of degree 10^3 to 10^6 .

http://cims.nyu.edu/~harvey/

CRT algorithm (split primes)

Given a fundamental discriminant D < -4 and a prime P with $4P = t^2 - v^2D$, determine j(E) for all E/\mathbb{F}_P with $\mathcal{O}_E = \mathcal{O}_D$:

- ① Compute the norm-minimal rep. S of Cl(D) and $b = \lg B$. Pick split primes p_1, \ldots, p_n with $\sum \lg p_i > b + 1$. Perform CRT precomputation.
- 2 Repeat for each p_i :
 - **a** Find E/\mathbb{F}_{p_i} such that $\mathcal{O}_E = \mathcal{O}_D$.
 - **o** Compute the orbit j_1, \ldots, j_h of j(E) under $\langle S \rangle$.
 - **o** Compute $H_D(x) = \prod (x j_k) \mod p_i$.
 - **1** Update CRT sums for each coefficient of $H_D(x)$ mod p_i .
- **3** Perform CRT postcomputation to obtain $H_D(x)$ mod P.
- **1** Find a root of $H_D(x)$ mod P and compute its orbit.

Under GRH: Step 2 is repeated $n = O(|D|^{1/2} \log \log |D|)$ times and every step has complexity $O(|D|^{1/2+\epsilon})$ (assume $\log P = O(\log |D|)$).

A back-of-the-envelope complexity discussion

Some useful facts and heuristics

- $h(D) \approx 0.28 |D|^{1/2}$ on average.
- 2 $\max p_i = O(|D| \log^{1+\epsilon} |D|)$ heuristically $(p_i \ll 2^{64})$.
- 3 $\max \ell = O(\log^{1+\epsilon} |D|)$ conjecturally, and for most D, $\max \ell = O(\log \log |D|)$ heuristically.

Which step is asymptotically dominant?

If \mathbb{F}_{p_i} adds/mults cost O(1), for most D we expect:

- Step 2a has complexity $O(|D|^{1/2} \log^{1.5+\epsilon} |D|)$.
- ② Step 2b has complexity $O(|D|^{1/2} \log^{1+\epsilon} |D|)$.
- 3 Step 2c has complexity $O(|D|^{1/2} \log^{2+\epsilon} |D|)$.

For exceptionally bad D, Step 2b is $\Omega(|D|^{1/2} \log^2 |D|)$.

Summary

Key improvements to [BBEL]

- $O(|D|^{1/2+\epsilon})$ space via online explicit CRT.
- Pick primes and curves carefully!
- Don't be afraid to climb volcanoes.
- Norm-minimal representation of CI(D).

Key constant factors

- Elliptic curve arithmetic.
- Finding roots of small polynomials.
- Building large polynomials from roots.

-D	12,901,800,539	13, 977, 210, 083	17, 237, 858, 107
h(D)	54,706	20,944	14,064
[lg <i>B</i>]	5,597,125	2,520,162	1,737,687
ℓ_1	3	3	11
ℓ_2	5		23
CI(D) time	0.1	0.3	0.2
n	144,301	70,403	50,098
$\lceil \lg(\max p_i) \rceil$	41	38	38
prime time	3.4	1.5	1.0
CRT pre time	2.8	0.9	0.6
CRT post time	0.9	0.9	0.6
(a,b,c) splits Step 2 time	(61,17,22) 98,000	(82,8,10) 34,700	(54,44,2) 59,400
root time	347	171	67
roots time	220	132	130

CRT method computing $H_D \mod P$ (MNT curves, k = 6) (2.8GHz AMD Athlon CPU times in seconds)

-D	h(D)	ℓ	[lg <i>B</i>]	time	split
28, 894, 627	724	7	66k	57	(64,35,1)
116, 799, 691	2,112	5	196k	309	(64, 32, 4)
228, 099, 523	1,296	17	143k	1,300	(32,67,0)
615, 602, 347	5,509	7	514k	2,540	(49,47,4)
1, 218, 951, 379	6,320	5	659k	3,270	(66,29,5)
2, 302, 080, 411	10,152	3/5	1.0m	8,200	(69,25,7)
4,508,791,627	7,867	11	0.9m	16,400	(53,46,1)
9, 177, 974, 187	16,600	3/11	1.8m	46,400	(55,40,5)
17, 237, 858, 107	14,064	11	1.7m	62,900	(57,41,2)
35, 586, 455, 227	18,481	19	2.3m	232,000	(32,67,1)
69, 623, 892, 083	56,760	3	6.8m	212,000	(79,9,12)
137, 472, 195, 531	129,520	3/5	15m	1,170,000	(57,30,12)
275,022,600,899	247,002	3	27m	2,400,000	(58, 16, 26)
553, 555, 955, 779	122,992	5	16m	1,890,000	(68,24,8)
1,006,819,828,491	180,616	3	25m	4,430,000	(71,18,11)

CRT method computing $H_D \mod P$ (MNT curves, k = 6)

(2.8 GHz AMD Athlon CPU seconds)

time	-D/200,000	-D
57	140	28, 894, 627
309	580	116, 799, 691
1,300	1,100	228, 099, 523
2,540	3,100	615,602,347
3,270	6,100	1, 218, 951, 379
8,200	11,500	2,302,080,411
16,400	22,500	4,508,791,627
46,400	45,900	9, 177, 974, 187
62,900	86,200	17, 237, 858, 107
232,000	178,000	35,586,455,227
212,000	348,000	69, 623, 892, 083
1,170,000	687,000	137, 472, 195, 531
2,400,000	1,380,000	275, 022, 600, 899
1,890,000	2,770,000	553, 555, 955, 779
4,430,000	5,040,000	1,006,819,828,491

CRT method computing $H_D \mod P$ (MNT curves, k = 6)

(2.8 GHz AMD Athlon CPU seconds)

Scalability

Distributed computation

Large tests were run on 14 PCs in parallel (2 cores each). Elapsed times:

- D = -1,006,819,828,491, h(D) = 181,616 1.8 days
- D = -905, 270, 581, 331, h(D) = 391, 652 1.1 days*

Minimal space requirements

Largest test used less than 300MB memory (per core). Total disk storage under 1GB.

Plenty of headroom

For |D| in the range 10⁸ to 10¹² the observed running time is essentially linear in |D|. Larger computations are feasible.

			Compl	ex Analytic	CRT	Γ Method	
	-D	h(D)	bits	time	bits	time	ratio
	6961631	5000	9.5k	28	269k	190	0.15
2	3512271	10000	20k	210	573k	840	0.25
9	8016239	20000	45k	1,800	1.3m	4,200	0.43
35	7116231	40000	97k	14,000	2.7m	20,000	0.70
209	3236031	100000	265k	260,000	7.4m	140,000	1.86

Complex Analytic (double η quotient) vs. CRT method (j) (2.4 GHz AMD Opteron CPU seconds)

Enge, "The complexity of class polynomial computations via floating point approximations" (2008)

What about other class invariants?

Theoretical obstructions [BBEL]

In general, one cannot uniquely determine class invariants other than j over \mathbb{F}_p .

What about other class invariants?

Theoretical obstructions [BBEL]

In general, one cannot uniquely determine class invariants other than j over \mathbb{F}_p .

Breaking news (joint with Andreas Enge)

The CRT method *can* use other class invariants in many cases. For example:

- If D is not divisible by 3, we achieve a 3x improvement using the invariant γ_2 .
- If D is also congruent to 1 mod 8, we achieve up to a 9x improvement using the invariant f⁸.

This is work in progress, further improvements are expected. Ideally, we would use f whenever possible (potential 24x).

Alternative class invariants with the CRT method

The class invariants: f, j, and γ_2 [Weber]

Define the complex function f(z) by

$$f(z) = e^{-\pi i/24} \frac{\eta((z+1)/2)}{\eta(z)}$$

where $\eta(z)$ is the Dedekind η -function. We then have

$$j(z) = \frac{(f^{24}(z) - 16)^3}{f^{24}(z)}; \qquad \gamma_2(z) = \frac{f^{24}(z) - 16}{f^8(z)}.$$

Note that $j = (\gamma_2)^3$.

Alternative class invariants with the CRT method

Modified CRT method using γ_2

Provided that D is not divisible by 3:

- Reduce height estimate by a factor of 3.
- Restrict to $p_i \equiv 2 \mod 3$ so that cube roots are unique.
- Compute $\gamma_2 = \sqrt[3]{j}$ for each j enumerated in Step 2b.
- Form $W_{\gamma_2}(x) = \prod (x \gamma_2)$ instead of $H_D(x)$ in Step 2c.
- Cube a root of $W_{\gamma_2}(x)$ mod P to get desired j at the end.

Further Improvement

Using suitable modular polynomials, enumerate γ_2 values directly rather than taking the cube root of each j.

-D	12,901,800,539	13,977,210,083	17, 237, 858, 107
h(D)	54,706	20,944	14,064
ℓ_1	3	3	11
ℓ_2	5		23
[lg <i>B</i>]	5,597,125	2,520,162	1,737,687
n	144,301	70,403	50,098
(a,b,c) splits	(61,17,22)	(82,8,10)	(54,44,2)
Step 2 time	98,000	34,700	59,400
[lg <i>B</i>]	1,814,367	883,076	574,545
n	49,122	24,279	17,196
(a,b,c) splits	(59,13,28)	(78,7,14)	(55,43,2)
Step 2 time	28,400	9,100	20,400

CRT method j vs. γ_2 (MNT curves, k=6) (2.8GHz AMD Athlon CPU times in seconds)

time (γ_2)	time (j)	h(D)	-D
21	57	724	28, 894, 627
94	309	2,112	116, 799, 691
404	1300	1,296	228, 099, 523
895	2,540	5,509	615, 602, 347
1,000	3,270	6,320	1,218,951,379
5,400	16,400	7,867	4,508,791,627
20,400	62,900	14,064	17, 237, 858, 107
74,600	232,000	18,481	35, 586, 455, 227
55,600	212,000	56,760	69, 623, 892, 083
690,000	2,400,000	247,002	275, 022, 600, 899
480,000	1,890,000	122,992	553, 555, 955, 779
2,200,000	7,860,000	391,652	905, 270, 581, 331

CRT method j vs. γ_2 (MNT curves, k = 6)

(2.8 GHz AMD Athlon CPU seconds)

	Method	CRT	ex Analytic	Comp		
ratio	time	bits	time	bits	h(D)	-D
0.82	34	30k	28	9.5k	5000	6961631
1.4	150	64k	210	20k	10000	23512271
2.5	710	141k	1,800	45k	20000	98016239
4.4	3,200	302k	14,000	97k	40000	357116231
12	22,000	827k	260,000	265k	100000	2093236031

Complex Analytic (double η quotient) vs. CRT method (f⁸)

(2.4 GHz AMD Opteron CPU seconds)

Areas for future work

To do list

- Continue to improve constant factors.
- Expand and refine the use of other class invariants.
- Post more pairing-friendly curves at

Requests welcome.

Source code will be available under GPL.

Open question

Is there an $O(p^{1/2+\epsilon})$ algorithm to compute $H_D(x)$ mod p for an inert prime p?