A local-global principle for rational isogenies of prime degree

Andrew V. Sutherland

Massachusetts Institute of Technology

July 13, 2010

http://arxiv.org/abs/1006.1782

1 of 14

Mazur's Theorem

Let E/\mathbb{Q} be an elliptic curve and let ℓ be a prime.

E can have a rational point of order ℓ only when

 $\ell \in \{2, 3, 5, 7\}.$

E can admit a rational isogeny of degree ℓ only when

 $\ell \in \{2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163\}.$

All permitted cases occur.

The local-global question for ℓ -torsion

Suppose *E* has a rational point of order ℓ . Then *E* has a point of order ℓ locally everywhere.

Suppose *E* has a point of order ℓ locally everywhere. Must *E* have a rational point of order ℓ ?

No, but *E* is isogenous to such a curve (Katz 1981).

The local-global question for *l*-isogenies

Suppose *E* admits a rational ℓ -isogeny. Then *E* admits an ℓ -isogeny locally everywhere.

Suppose *E* admits an ℓ -isogeny locally everywhere. Must *E* admit a rational ℓ -isogeny?

No, the curve defined by

$$y^2 + xy = x^3 - x^2 - 107x - 379,$$

with j(E) = 2268945/128, is a counterexample for $\ell = 7$.

But up to isomorphism, this is the only counterexample.

Main result

Theorem

Let *E* be an elliptic curve over \mathbb{Q} , let ℓ be a prime, and assume that $(j(E), \ell) \neq (2268945/128, 7)$.

If *E* admits an ℓ -isogeny locally at a set of primes with density 1, then *E* admits an ℓ -isogeny over \mathbb{Q} .

Strategy of the proof

1. Reduce the problem to group theory.

The mod- ℓ Galois representation

Let *S* contain ℓ and the primes where *E* has bad reduction. Let $\overline{\mathbb{Q}}_S$ be the maximal algebraic extension of \mathbb{Q} unramified outside of *S*.

The action of $Gal(\overline{\mathbb{Q}}_S/\mathbb{Q})$ on $E[\ell]$ yields a representation

 $\rho \colon \operatorname{Gal}(\overline{\mathbb{Q}}_{\mathcal{S}}/\mathbb{Q}) \to \operatorname{Aut}(E[\ell]) \cong \operatorname{GL}_2(\mathbb{F}_{\ell}),$

which maps φ_p to a conjugacy class $\varphi_{p,\ell}$ of $\operatorname{GL}_2(\mathbb{F}_\ell)$ with

 $\det(\varphi_{p,\ell}) \equiv p \mod \ell, \qquad \operatorname{tr}(\varphi_{p,\ell}) \equiv p + 1 - |E(\mathbb{F}_p)| \mod \ell.$

Every $\varphi_{p,\ell}$ arises for a set of *p* with positive density.

Invariant subspaces of $E[\ell]$

Let *G* be the image of ρ in $\operatorname{GL}_2(\mathbb{F}_\ell)$. Let Ω be the set of one dimensional subspaces of \mathbb{F}_ℓ^2 . *G* acts on Ω via the Galois action on $E[\ell]$.

If *E* admits a rational ℓ -isogeny, then *G* fixes some element of Ω .

If *E* admits an ℓ -isogeny locally everywhere, then every element of *G* fixes an element of Ω .

A group-theoretic question

We are interested in subgroups $G \subset GL_2(\mathbb{F}_\ell)$ such that

- (i) the determinant map from G to \mathbb{F}_{ℓ}^* is surjective;
- (ii) every element of G fixes some element of Ω ;
- (iii) no element of Ω is fixed by every element of *G*.

Do any such G actually exist?

If $\ell < 7$ or if $\ell \equiv 1 \mod 4$, the answer is no.

Otherwise, the answer is yes.

Subgroups of $GL_2(\mathbb{F}_\ell)$

A Cartan subgroup *C* is a semisimple maximal abelian subgroup, either split ($C \cong \mathbb{F}_{\ell}^* \times \mathbb{F}_{\ell}^*$) or nonsplit ($C \cong \mathbb{F}_{\ell^2}^*$).

Let *G* be a subgroup of $GL_2(\mathbb{F}_{\ell})$ with image *H* in $PGL_2(\mathbb{F}_{\ell})$. If |G| is prime to ℓ then exactly one of the following holds:

(a) H is cyclic and G is contained in a Cartan subgroup.

- (b) *H* is dihedral and *G* is contained in the normalizer of a Cartan subgroup but not in a Cartan subgroup.
- (c) *H* is isomorphic to A_4 , S_4 , or A_5 .

(this is a standard result, see Serre or Lang)

The main lemma

Let *G* be a subgroup of $GL_2(\mathbb{F}_{\ell})$ satisfying (i), (ii) and (iii). Then the following also hold:

- (iv) *G* is properly contained in the normalizer of a split Cartan subgroup, but not in the Cartan subgroup;
- (v) $\ell \geq 7$ and $\ell \equiv 3 \mod 4$;
- (vi) Ω contains a *G*-orbit of size 2.

The proof is essentially combinatorial.

Strategy of the proof

- 1. Reduce the problem to group theory.
- 2. Apply a result of Parent (and some CM theory).

The modular curve $X_{\text{split}}(\ell)$

 $X_{\text{split}}(\ell)$ parametrizes elliptic curves whose mod- ℓ Galois image lies in the normalizer of a split Cartan subgroup.

Theorem (Parent 2005)

Assume $\ell \ge 11$, $\ell \ne 13$ and $\ell \notin A$. The only non-cuspidal rational points of $X_{\text{split}}(\ell)(\mathbb{Q})$ are CM points.

The excluded set of primes \mathcal{A} is infinite, but happily it only contains primes congruent to 1 mod 4.

Ruling out complex multiplication (CM)

If E/\mathbb{Q} has CM by \mathcal{O} then $h(\mathcal{O}) = 1$.

If the mod- ℓ Galois image of *E* satisfies (i), (ii), and (iii), then the main lemma implies that *E* is ℓ -isogenous to two curves defined over a quadratic extension of \mathbb{Q} .

These curves must have CM by \mathcal{O}' with $h(\mathcal{O}') = 2$.

CM theory requires $[\mathcal{O}:\mathcal{O}'] = \ell$.

Since $h(\mathcal{O}')/h(\mathcal{O}) = 2$, we must have $\ell \leq 7$.

Strategy of the proof

- 1. Reduce the problem to group theory.
- 2. Apply a result of Parent (and some CM theory).
- 3. Handle the case $\ell = 7$.

The case $\ell = 7$

We are interested in elliptic curves whose Galois image in $PGL_2(\mathbb{F}_7)$ is dihedral of order 6.

The modular curves that parametrize elliptic curves with a given level 7 structure have been classified by Elkies.

The corresponding modular curve *C* is a quotient of X(7) that corresponds to a twist of $X_0(49)$.

The curve *C* has exactly 2 rational points over \mathbb{Q} . They both correspond to the *j*-invariant 2268945/128 of

$$y^2 + xy = x^3 - x^2 - 107x - 379.$$

14 of 14

A local-global principle for rational isogenies of prime degree

Andrew V. Sutherland

Massachusetts Institute of Technology

July 13, 2010

http://arxiv.org/abs/1006.1782

1 of 14