A local-global principle for rational isogenies of prime degree

Andrew V. Sutherland

Massachusetts Institute of Technology

July 13, 2010

```
http://arxiv.org/abs/1006.1782
```


Mazur's Theorem

Let E / \mathbb{Q} be an elliptic curve and let ℓ be a prime.
E can have a rational point of order ℓ only when

$$
\ell \in\{2,3,5,7\} .
$$

E can admit a rational isogeny of degree ℓ only when

$$
\ell \in\{2,3,5,7,11,13,17,19,37,43,67,163\} .
$$

All permitted cases occur.

The local-global question for ℓ-torsion

Suppose E has a rational point of order ℓ.
Then E has a point of order ℓ locally everywhere.

Suppose E has a point of order ℓ locally everywhere. Must E have a rational point of order ℓ ?

No, but E is isogenous to such a curve (Katz 1981).

The local-global question for ℓ-isogenies

Suppose E admits a rational ℓ-isogeny. Then E admits an ℓ-isogeny locally everywhere.

Suppose E admits an ℓ-isogeny locally everywhere. Must E admit a rational ℓ-isogeny?

No, the curve defined by

$$
y^{2}+x y=x^{3}-x^{2}-107 x-379,
$$

with $j(E)=2268945 / 128$, is a counterexample for $\ell=7$.
But up to isomorphism, this is the only counterexample.

Main result

Theorem
Let E be an elliptic curve over \mathbb{Q}, let ℓ be a prime, and assume that $(j(E), \ell) \neq(2268945 / 128,7)$.
If E admits an ℓ-isogeny locally at a set of primes with density 1, then E admits an ℓ-isogeny over \mathbb{Q}.

Strategy of the proof

1. Reduce the problem to group theory.

The mod- ℓ Galois representation

Let S contain ℓ and the primes where E has bad reduction. Let $\overline{\mathbb{Q}}_{S}$ be the maximal algebraic extension of \mathbb{Q} unramified outside of S.

The action of $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{s} / \mathbb{Q}\right)$ on $E[\ell]$ yields a representation

$$
\rho: \operatorname{Gal}\left(\overline{\mathbb{Q}}_{s} / \mathbb{Q}\right) \rightarrow \operatorname{Aut}(E[\ell]) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right),
$$

which maps φ_{p} to a conjugacy class $\varphi_{p, \ell}$ of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ with

$$
\operatorname{det}\left(\varphi_{p, \ell}\right) \equiv p \bmod \ell, \quad \operatorname{tr}\left(\varphi_{p, \ell}\right) \equiv p+1-\left|E\left(\mathbb{F}_{p}\right)\right| \bmod \ell .
$$

Every $\varphi_{p, \ell}$ arises for a set of p with positive density.

Invariant subspaces of $E[\ell]$

Let G be the image of ρ in $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$.
Let Ω be the set of one dimensional subspaces of \mathbb{F}_{ℓ}^{2}.
G acts on Ω via the Galois action on $E[\ell]$.
If E admits a rational ℓ-isogeny, then G fixes some element of Ω.

If E admits an ℓ-isogeny locally everywhere, then every element of G fixes an element of Ω.

A group-theoretic question

We are interested in subgroups $G \subset \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ such that
(i) the determinant map from G to \mathbb{F}_{ℓ}^{*} is surjective;
(ii) every element of G fixes some element of Ω;
(iii) no element of Ω is fixed by every element of G.

Do any such G actually exist?
If $\ell<7$ or if $\ell \equiv 1 \bmod 4$, the answer is no.
Otherwise, the answer is yes.

Subgroups of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$

A Cartan subgroup C is a semisimple maximal abelian subgroup, either split ($C \cong \mathbb{F}_{\ell}^{*} \times \mathbb{F}_{\ell}^{*}$) or nonsplit ($C \cong \mathbb{F}_{\ell^{2}}^{*}$).

Let G be a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ with image H in $\mathrm{PGL}_{2}\left(\mathbb{F}_{\ell}\right)$. If $|G|$ is prime to ℓ then exactly one of the following holds:
(a) H is cyclic and G is contained in a Cartan subgroup.
(b) H is dihedral and G is contained in the normalizer of a Cartan subgroup but not in a Cartan subgroup.
(c) H is isomorphic to A_{4}, S_{4}, or A_{5}.
(this is a standard result, see Serre or Lang)

The main lemma

Let G be a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ satisfying (i), (ii) and (iii). Then the following also hold:
(iv) G is properly contained in the normalizer of a split Cartan subgroup, but not in the Cartan subgroup;
(v) $\ell \geq 7$ and $\ell \equiv 3 \bmod 4$;
(vi) Ω contains a G-orbit of size 2 .

The proof is essentially combinatorial.

Strategy of the proof

1. Reduce the problem to group theory.
2. Apply a result of Parent (and some CM theory).

The modular curve $X_{\text {split }}(\ell)$

$X_{\text {split }}(\ell)$ parametrizes elliptic curves whose mod- ℓ Galois image lies in the normalizer of a split Cartan subgroup.

Theorem (Parent 2005)
Assume $\ell \geq 11, \ell \neq 13$ and $\ell \notin \mathcal{A}$. The only non-cuspidal rational points of $X_{\text {split }}(\ell)(\mathbb{Q})$ are CM points.

The excluded set of primes \mathcal{A} is infinite, but happily it only contains primes congruent to $1 \bmod 4$.

Ruling out complex multiplication (CM)

If E / \mathbb{Q} has CM by \mathcal{O} then $h(\mathcal{O})=1$.
If the mod- ℓ Galois image of E satisfies (i), (ii), and (iii), then the main lemma implies that E is ℓ-isogenous to two curves defined over a quadratic extension of \mathbb{Q}.

These curves must have CM by \mathcal{O}^{\prime} with $h\left(\mathcal{O}^{\prime}\right)=2$.
CM theory requires $\left[\mathcal{O}: \mathcal{O}^{\prime}\right]=\ell$.
Since $h\left(\mathcal{O}^{\prime}\right) / h(\mathcal{O})=2$, we must have $\ell \leq 7$.

Strategy of the proof

1. Reduce the problem to group theory.
2. Apply a result of Parent (and some CM theory).
3. Handle the case $\ell=7$.

The case $\ell=7$

We are interested in elliptic curves whose Galois image in $\mathrm{PGL}_{2}\left(\mathbb{F}_{7}\right)$ is dihedral of order 6.

The modular curves that parametrize elliptic curves with a given level 7 structure have been classified by Elkies.

The corresponding modular curve C is a quotient of $X(7)$ that corresponds to a twist of $X_{0}(49)$.

The curve C has exactly 2 rational points over \mathbb{Q}. They both correspond to the j-invariant 2268945/128 of

$$
y^{2}+x y=x^{3}-x^{2}-107 x-379 .
$$

A local-global principle for rational isogenies of prime degree

Andrew V. Sutherland

Massachusetts Institute of Technology

July 13, 2010

```
http://arxiv.org/abs/1006.1782
```

