Computing L-series coefficients of hyperelliptic curves

Kiran S. Kedlaya and Andrew V. Sutherland

Massachusetts Institute of Technology
May 19, 2008

Demonstration

The distribution of Frobenius traces

Let C be a genus g curve defined over \mathbb{Q}. We may compute

$$
\# C / \mathbb{F}_{p}=p-a_{p}+1
$$

for each $p \leq N$ where C has good reduction, and plot the distribution of a_{p} / \sqrt{p} over the interval $[-2 g, 2 g]$.

What does the picture look like for increasing values of N ?
http://math.mit.edu/~drew

The object of interest

The numerator of the zeta function

$$
Z\left(C / \mathbb{F}_{p} ; T\right)=\exp \left(\sum_{k=1}^{\infty} c_{k} T^{k} / k\right)=\frac{\mathbf{L}_{\mathbf{p}}(\mathbf{T})}{(1-T)(1-p T)}
$$

The polynomial $L_{p}(T)$ has integer coefficients

$$
L_{p}(T)=p^{g} T^{2 g}+a_{1} p^{g-1} T^{2 g-1}+\cdots+a_{g} T^{g}+\cdots+a_{1} T+1
$$

$L_{p}(t)$ determines the order of the Jacobian $\# J(C / \mathbb{F})_{p}=L_{p}(1)$, the trace of Frobenius $a_{p}=-a_{1}$, and $L(C, s)=\prod L_{p}\left(p^{-s}\right)^{-1}$.

A computational challenge

The task at hand

Compute $L_{p}(T)$ for all $p \leq N$ where C has good reduction.
We will assume C is hyperelliptic, genus $g \leq 3$, of the form

$$
y^{2}=f(x)
$$

where $f(x) \in \mathbb{Q}[x]$ has degree $2 g+1$ (one point at ∞).

Some questions

- Which algorithm should we use? (all of them)
- How big can we make N, in practice? $\left(10^{12}, 10^{8}, 10^{7}\right)$

The complexity is necessarily exponential in N.
We expect to compute many $L_{p}(T)$ for reasonably small p.

Algorithms

Point counting
Compute $\# C / F_{p}, \# C / F_{p^{2}}, \ldots, \# C / F_{p^{g}}$.
Time: $O(p), O\left(p^{2}\right), O\left(p^{3}\right)$.

Algorithms

Point counting

Compute $\# C / F_{p}, \# C / F_{p^{2}}, \ldots, \# C / F_{p^{g}}$.
Time: $O(p), O\left(p^{2}\right), O\left(p^{3}\right)$.

Generic group algorithms

Compute $\# J\left(C / F_{p}\right)=L_{p}(1)$ and $\# J\left(\tilde{C} / \mathbb{F}_{p}\right)=L_{p}(-1)$. Time: $O\left(p^{1 / 4}\right), O\left(p^{3 / 4}\right), O\left(p^{5 / 4}\right)$.

Algorithms

Point counting

Compute $\# C / F_{p}, \# C / F_{p^{2}}, \ldots, \# C / F_{p^{g}}$.
Time: $O(p), O\left(p^{2}\right), O\left(p^{3}\right)$.

Generic group algorithms

Compute $\# J\left(C / F_{p}\right)=L_{p}(1)$ and $\# J\left(\tilde{C} / \mathbb{F}_{p}\right)=L_{p}(-1)$. Time: $O\left(p^{1 / 4}\right), O\left(p^{3 / 4}\right), O\left(p^{5 / 4}\right)$.

p-adic methods

Compute Frobenius charpoly $\chi(T)=T^{-2 g} L_{p}(T) \bmod p^{k}$.
Time: $\tilde{O}\left(p^{1 / 2}\right)$.

Algorithms

Point counting

Compute $\# C / F_{p}, \# C / F_{p^{2}}, \ldots, \# C / F_{p^{g}}$.
Time: $O(p), O\left(p^{2}\right), O\left(p^{3}\right)$.

Generic group algorithms

Compute $\# J\left(C / F_{p}\right)=L_{p}(1)$ and $\# J\left(\tilde{C} / \mathbb{F}_{p}\right)=L_{p}(-1)$. Time: $O\left(p^{1 / 4}\right), O\left(p^{3 / 4}\right), O\left(p^{5 / 4}\right)$.

p-adic methods

Compute Frobenius charpoly $\chi(T)=T^{-2 g} L_{p}(T) \bmod p^{k}$.
Time: $\tilde{O}\left(p^{1 / 2}\right)$.
Polynomial-time algorithms exist (Schoof-Pila) but are impractical.*

Strategy

Genus 1

Use $O\left(p^{1 / 4}\right)$ generic group algorithm.

Genus 2

Use $O(p)$ point counting plus $O\left(p^{1 / 2}\right)$ group operations.
Switch to $O\left(p^{3 / 4}\right)$ group algorithm for $p>10^{6}$.

Genus 3

Use $O(p)$ point counting plus $O(p)$ group operations. Switch to $\tilde{O}\left(p^{1 / 2}\right) p$-adic plus $O\left(p^{1 / 4}\right)$ group ops for $p>10^{5}$.
"Elliptic and modular curves over finite fields and related computational issues", (Elkies 1997).

Point counting

Enumerating polynomials over \mathbb{F}_{p}

Define $\Delta f(x)=f(x+1)-f(x)$. Enumerate $f(x)$ from $f(0)$ via

$$
f(x+1)=f(x)+\Delta f(x)
$$

Enumerate $\Delta^{k} f(n)$ in parallel starting from $\Delta^{k} f(0)$.

Complexity

Requires only d additions per enumerated value, versus d multiplications and d additions using Horner's method. Total for $y^{2}=f(x)$ is $(d+1) p$ additions (no multiplications).

Generalizes to $\mathbb{F}_{p^{n}}$. Efficiently enumerates similar curves in parallel.

$p \approx$	Polynomial Evaluation		Finite Differences		Finite Differences $\times 32$	
	Genus 2	Genus 3	Genus 2	Genus 3	Genus 2	Genus 3
2^{18}	192.4	259.8	6.0	6.8	1.1	1.1
2^{19}	186.3	251.1	6.0	6.8	1.1	1.1
2^{20}	187.3	244.1	7.2	8.0	1.1	1.3
2^{21}	172.3	240.8	8.8	9.4	1.2	1.3
2^{22}	197.9	233.9	12.1	13.4	1.2	1.3
2^{23}	229.2	285.8	12.8	14.6	2.6	2.7
2^{24}	258.1	331.8	41.2	44.0	3.5	4.7
2^{25}	304.8	350.4	53.6	55.7	4.8	4.9
2^{26}	308.0	366.9	65.4	67.8	4.8	4.6
2^{27}	318.4	376.8	70.5	73.1	4.9	5.0
2^{28}	332.2	387.8	74.6	76.5	5.1	5.2

Point counting $y^{2}=f(x)$ over \mathbb{F}_{p} (CPU nanoseconds/point)

Generic group algorithms

High speed group operation

- Single-word Montgomery representation for \mathbb{F}_{p}.
- Explicit Jacobian arithmetic using affine coordinates. (unique representation of group elements)
- Modify generic algorithms to perform group operations "in parallel" to achieve $I \approx 3 M$.

Randomization issues

The fastest/simplest algorithms are probabilistic.
Monte Carlo algorithms should be made Las Vegas algorithms to obtain provably correct results and better performance.

Non-group operations also need to be fast (e.g., table lookup).

		Standard				Montgomery		
g	p	$\times 1$	$\times 10$	$\times 100$		$\times 1$	$\times 10$	$\times 100$
1	$2^{20}+7$	501	245	215		239	89	69
1	$2^{25}+35$	592	255	216		286	93	69
1	$2^{30}+3$	683	264	217		333	98	69
2	$2^{20}+7$	1178	933	902		362	216	196
2	$2^{25}+35$	1269	942	900		409	220	197
2	$2^{30}+3$	1357	949	902		455	225	196
3	$2^{20}+7$	2804	2556	2526		642	498	478
3	$2^{25}+35$	2896	2562	2528		690	502	476
3	$2^{30}+3$	2986	2574	2526		736	506	478

Black box performance (CPU nanoseconds/group operation).

Computing the order of a generic abelian group

Computing the structure of G
Decompose G as a product of cyclic groups:
(1) Compute $|\alpha|$ for random $\alpha \in G$ to obtain $\lambda(G)=\operatorname{lcm}|\alpha|$.
(2) Using $\lambda(G)$, compute a basis for each Sylow p-subgroup, via discrete logarithms.
See Sutherland thesis (2007) for details (avoids SNF).

Benefits of working in Jacobians

Step 1 is aided by bounds on $|G|$ and knowledge of $|G| \bmod \ell$. Given $M \leq|G|<2 M$, step 2 takes $O\left(|G|^{1 / 4}\right)$ group operations. If $\lambda(G)>M$, step 2 is unnecessary (often the case).

In genus 1, structure is not required, but it is necessary for $g>1$.

Optimizing for distribution

Generalized Sato-Tate conjecture (Katz-Sarnak)

The distribution of $L_{p}\left(p^{-1 / 2} T\right)$ for a "typical" genus g curve is equal to the distribution of the characteristic polynomial of a random matrix in $U S p(2 g)$ (according to the Haar measure μ).

Optimized BSGS search

Using μ, we can compute the expected distance of a_{1} (or better, a_{2} given a_{1}) from its median value, and then choose an appropriate number of baby steps.

In genus 3 this reduces the expected search interval by a factor of 10 .

$$
y^{2}=x^{7}+314159 x^{5}+271828 x^{4}+1644934 x^{3}+57721566 x^{2}+1618034 x+141421
$$

Actual a_{2} distribution

Predicted a_{2} distribution

p-adic methods

Kedlaya's algorithm over a prime field

Approximates the $(2 g \times 2 g)$ matrix of the Frobenius action on the Monsky-Washnitzer cohomology, accurate modulo p^{k} :

$$
\tilde{O}\left(p g^{2} k^{2}\right)=\tilde{O}(p)
$$

Harvey's improvements

Apply BGS fast linear recurrence reduction to obtain:

$$
\tilde{O}\left(p^{1 / 2} g^{3} k^{5 / 2}+g^{4} k^{4} \log p\right)=\tilde{O}\left(p^{1 / 2}\right)
$$

Multipoint Kronecker substitution (Harvey 2007) improves polynomial multiplication by a factor of 3.

	Genus 2		Genus 3	
N	$\times 1$	$\times 8$	$\times 1$	$\times 8$
2^{16}	1	<1	43	13
2^{17}	4	2	$1: 49$	18
2^{18}	12	3	$4: 42$	41
2^{19}	40	7	$12: 43$	$1: 47$
2^{20}	$2: 32$	24	$36: 14$	$4: 52$
2^{21}	$10: 46$	$1: 38$	$1: 45: 36$	$13: 40$
2^{22}	$40: 20$	$5: 38$	$5: 23: 31$	$41: 07$
2^{23}	$2: 23: 56$	$19: 04$	$16: 38: 11$	$2: 05: 40$
2^{24}	$8: 00: 09$	$1: 16: 47$		$6: 28: 25$
2^{25}	$26: 51: 27$	$3: 24: 40$		$20: 35: 16$
2^{26}		$11: 07: 28$		
2^{27}	$36: 48: 52$			

L-series computations in genus 2 and 3 (elapsed times)

N	PARI	Magma	smalljac v1	smalljac v2
2^{16}	0.26	0.29	0.07	0.04
2^{17}	0.55	0.59	0.15	0.08
2^{18}	1.17	1.24	0.30	0.16
2^{19}	2.51	2.53	0.62	0.31
2^{20}	5.46	5.26	1.29	0.63
2^{21}	11.67	11.09	2.65	1.30
2^{22}	25.46	23.31	5.53	2.68
2^{23}	55.50	49.22	11.56	5.57
2^{24}	123.02	104.50	24.31	11.66
2^{25}	266.40	222.56	51.60	24.54
2^{26}	598.16	476.74	110.29	52.07
2^{27}	1367.46	1017.55	233.94	111.24
2^{28}	3152.91	2159.87	498.46	239.32
2^{29}	7317.01	4646.24	1065.28	518.16
2^{30}	17167.29	10141.28	2292.74	1130.85

L-series computations in Genus 1 (CPU seconds)

Conclusion

All source code freely available under GPL.

drew@math.mit.edu

