Computing Hasse-Witt matrices of hyperelliptic curves in average polynomial time

David Harvey and Andrew Sutherland

ANTS XI — August 9, 2014

Motivation

Let C / \mathbb{Q} be a smooth projective curve of genus g.
For each prime p of good reduction we have the trace of Frobenius

$$
t_{p}=p+1-N_{p} \in[-2 g \sqrt{p}, 2 g \sqrt{p}],
$$

where $N_{p}=\# C\left(\mathbb{F}_{p}\right)$, and the normalized trace

$$
x_{p}=t_{p} / \sqrt{p} \in[-2 g, 2 g] .
$$

What is the distribution of x_{p} ?

Exceptional trace distributions of genus 2 curves C / \mathbb{Q}

L-polynomial distributions

For a smooth projective curve C / \mathbb{Q} of genus g and a prime p of good reduction for C we have the zeta function

$$
Z_{p}(T):=\exp \left(\sum_{k=1}^{\infty} N_{k} T^{k} / k\right)=\frac{L_{p}(T)}{(1-T)(1-p T)},
$$

where $L_{p} \in \mathbb{Z}[T]$ has degree $2 g$. The normalized L-polynomial

$$
\bar{L}_{p}(T):=L_{p}(T / \sqrt{p})=\sum_{i=0}^{2 g} a_{i} T^{i} \in \mathbb{R}[T]
$$

is monic, reciprocal ($a_{i}=a_{2 g-i}$), and unitary (roots on the unit circle). The coefficients a_{i} satisfy the Weil bounds $\left|a_{i}\right| \leq\binom{ 2 g}{i}$.

We may now consider the distribution of $a_{1}, a_{2}, \ldots, a_{g}$ as p varies.

Computing zeta functions

Algorithms to compute $L_{p}(T)$ for low genus hyperelliptic curves

	complexity (ignoring factors of $O(\log \log p))$		
algorithm	$g=1$	$g=2$	$g=3$
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3} \log p$
group computation	$p^{1 / 4} \log p$	$p^{3 / 4} \log p$	$p^{5 / 4} \log p$
p-adic cohomology	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$
CRT (Schoof-Pila)	$\log ^{5} p$	$\log ^{8} p$	$\log ^{12} p$

Computing zeta functions

Algorithms to compute $L_{p}(T)$ for low genus hyperelliptic curves

	complexity (ignoring factors of $O(\log \log p))$		
algorithm	$g=1$	$g=2$	$g=3$
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3} \log p$
group computation	$p^{1 / 4} \log p$	$p^{3 / 4} \log p$	$p^{5 / 4} \log p$
p-adic cohomology	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$
CRT (Schoof-Pila)	$\log ^{5} p$	$\log ^{8} p$	$\log ^{12} p$

(see [Kedlaya-S, ANTS VIII]).

An average polynomial-time algorithm

All of these methods perform separate computations for each p. But we want to compute $L_{p}(T)$ for all good $p \leq N$ using reductions of the same curve in each case. Can we take advantage of this?

An average polynomial-time algorithm

All of these methods perform separate computations for each p. But we want to compute $L_{p}(T)$ for all good $p \leq N$ using reductions of the same curve in each case. Can we take advantage of this?

Theorem (H 2012)

There exists a deterministic algorithm that, given a hyperelliptic curve $y^{2}=f(x)$ of genus g with a rational Weierstrass point and an integer N, computes $L_{p}(T)$ for all good primes $p \leq N$ in time

$$
O\left(g^{8+\epsilon} N \log ^{3+\epsilon} N\right)
$$

assuming the coefficients of $f \in \mathbb{Z}[x]$ have size bounded by $O(\log N)$.

Average time is $O\left(g^{8+\epsilon} \log ^{4+\epsilon} N\right)$ per prime, polynomial in g and $\log p$.

An average polynomial-time algorithm

	complexity (ignoring factors of $O(\log \log p))$		
algorithm	$g=1$	$g=2$	$g=3$
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3} \log p$
group computation	$p^{1 / 4} \log p$	$p^{3 / 4} \log p$	$p^{5 / 4} \log p$
p-adic cohomology	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$
CRT (Schoof-Pila)	$\log ^{5} p$	$\log ^{8} p$	$\log ^{12} p$
Average polytime	$\log ^{4} p$	$\log ^{4} p$	$\log ^{4} p$

But is it practical?

N	smalljac	paper	current	hypellfrob	paper	current
2^{14}	0.2	0.4	0.1	6.8	2.0	0.3
2^{15}	0.6	1.1	0.3	15.6	5.5	1.0
2^{16}	1.7	2.8	0.8	37.6	13.6	2.7
2^{17}	5.6	6.8	1.8	95.0	33.3	7.0
2^{18}	20.2	16.8	4.7	250	80.4	16.3
2^{19}	76.4	39.7	11.1	681	192	38.7
2^{20}	257	94.4	26.0	1920	459	91.7
2^{21}	828	227	61.4	5460	1090	212
2^{22}	2630	534	142	16300	2540	489
2^{23}	8570	1240	321	49400	5940	1120
2^{24}	28000	2920	729	152000	13800	2540
2^{25}	92300	6740	1660	467000	31800	6510
2^{26}	316000	15800	3800	1490000	72900	16600

Comparison of average polynomial time algorithm (as in the paper and currently) to smalljac in genus 2 and hypellfrob in genus 3 .
(Intel Xeon E5-2670 2.6 GHz CPU seconds).

The algorithm in genus 1

The Hasse invariant h_{p} of an elliptic curve $y^{2}=f(x)=x^{3}+a x+b$ over \mathbb{F}_{p} is the coefficient of x^{p-1} in the polynomial $f(x)^{(p-1) / 2}$.

We have $h_{p} \equiv t_{p} \bmod p$, which uniquely determines t_{p} for $p>13$.
Naïve approach: iteratively compute $f, f^{2}, f^{3}, \ldots, f^{(N-1) / 2}$ in $\mathbb{Z}[x]$ and reduce the x^{p-1} coefficient of $f(x)^{(p-1) / 2} \bmod p$ for each prime $p \leq N$.

The algorithm in genus 1

The Hasse invariant h_{p} of an elliptic curve $y^{2}=f(x)=x^{3}+a x+b$ over \mathbb{F}_{p} is the coefficient of x^{p-1} in the polynomial $f(x)^{(p-1) / 2}$.

We have $h_{p} \equiv t_{p} \bmod p$, which uniquely determines t_{p} for $p>13$.
Naïve approach: iteratively compute $f, f^{2}, f^{3}, \ldots, f^{(N-1) / 2}$ in $\mathbb{Z}[x]$ and reduce the x^{p-1} coefficient of $f(x)^{(p-1) / 2} \bmod p$ for each prime $p \leq N$.

But the polynomials f^{n} are huge, each has $\Omega\left(n^{2}\right)$ bits. It would take $\Omega\left(N^{3}\right)$ time to compute $f, \ldots, f^{(N-1) / 2}$ in $\mathbb{Z}[x]$.

So this is a terrible idea...

The algorithm in genus 1

The Hasse invariant h_{p} of an elliptic curve $y^{2}=f(x)=x^{3}+a x+b$ over \mathbb{F}_{p} is the coefficient of x^{p-1} in the polynomial $f(x)^{(p-1) / 2}$.

We have $h_{p} \equiv t_{p} \bmod p$, which uniquely determines t_{p} for $p>13$.
Naïve approach: iteratively compute $f, f^{2}, f^{3}, \ldots, f^{(N-1) / 2}$ in $\mathbb{Z}[x]$ and reduce the x^{p-1} coefficient of $f(x)^{(p-1) / 2} \bmod p$ for each prime $p \leq N$.

But the polynomials f^{n} are huge, each has $\Omega\left(n^{2}\right)$ bits. It would take $\Omega\left(N^{3}\right)$ time to compute $f, \ldots, f^{(N-1) / 2}$ in $\mathbb{Z}[x]$.

So this is a terrible idea...
But we don't need all the coefficients of f^{n}, we only need one, and we only need to know its value modulo $p=2 n+1$.

A better approach

Let $f(x)=x^{3}+a x+b$, and let f_{k}^{n} denote the coefficient of x^{k} in $f(x)^{n}$.
Using $f^{n}=f \cdot f^{n-1}$ and $\left(f^{n}\right)^{\prime}=n f^{\prime} f^{n-1}$, one obtains linear relations

$$
\begin{aligned}
(n+2) f_{2 n-2}^{n} & =n\left(2 a f_{2 n-3}^{n-1}+3 b f_{2 n-2}^{n-1}\right) \\
(2 n-1) f_{2 n-1}^{n} & =n\left(3 f_{2 n-4}^{n-1}+a f_{2 n-2}^{n-1}\right) \\
2(2 n-1) b f_{2 n}^{n} & =(n+1) a f_{2 n-4}^{n-1}+3(2 n-1) b f_{2 n-3}^{n-1}-(n-1) a^{2} f_{2 n-2}^{n-1}
\end{aligned}
$$

These allow us to compute the vector $v_{n}=\left[f_{2 n-2}^{n}, f_{2 n-1}^{n}, f_{2 n}^{n}\right]$ from the vector $v_{n-1}=\left[f_{2 n-4}^{n-1}, f_{2 n-3}^{n-1}, f_{2 n-2}^{n-1}\right]$ via multiplication by a 3×3 matrix M_{n} :

$$
v_{n}=v_{0} M_{1} M_{2} \cdots M_{n}
$$

For $n=(p-1) / 2$, the Hasse invariant of the elliptic curve $y^{2}=f(x)$ over \mathbb{F}_{p} is obtained by reducing the third entry $f_{n}^{2 n}$ of v_{n} modulo p.

Computing $t_{p} \bmod p$

To compute $t_{p} \bmod p$ for all odd primes $p \leq N$ it suffices to compute
$M_{1} \bmod 3$
$M_{1} M_{2} \bmod 5$
$M_{1} M_{2} M_{3} \bmod 7$

$$
M_{1} M_{2} M_{3} \cdots M_{(N-1) / 2} \bmod N
$$

Doing this naïvely would take $O\left(N^{2+\epsilon}\right)$ time.
But it can be done in $O\left(N^{1+\epsilon}\right)$ time using a remainder tree.
For best results, use a remainder forest.

The algorithm in genus g.

The Hasse-Witt matrix of a hyperelliptic curve $y^{2}=f(x)$ over \mathbb{F}_{p} of genus g is the $g \times g$ matrix $W_{p}=\left[w_{i j}\right]$ with entries

$$
w_{i j}=f_{p i-j}^{(p-1) / 2} \bmod p \quad(1 \leq i, j \leq g) .
$$

The $w_{i j}$ can each be computed using recurrence relations between the coefficients of f^{n} and those of f^{n-1}, as in genus 1.

The algorithm in genus g.

The Hasse-Witt matrix of a hyperelliptic curve $y^{2}=f(x)$ over \mathbb{F}_{p} of genus g is the $g \times g$ matrix $W_{p}=\left[w_{i j}\right]$ with entries

$$
w_{i j}=f_{p i-j}^{(p-1) / 2} \bmod p \quad(1 \leq i, j \leq g)
$$

The $w_{i j}$ can each be computed using recurrence relations between the coefficients of f^{n} and those of f^{n-1}, as in genus 1.

The congruence

$$
L_{P}(T) \equiv \operatorname{det}\left(I-T W_{p}\right) \bmod p
$$

allows us to determine the coefficients a_{1}, \ldots, a_{g} of $L_{p}(T)$ modulo p.
The algorithm can be extended to compute $L_{p}(T)$ modulo higher powers of p (and thereby obtain $L_{p} \in \mathbb{Z}[T]$), but for $g \leq 3$ it is faster in practice to derive $L_{p}(T)$ from $L_{p}(T) \bmod p$ using computations in $\operatorname{Jac}(C)$.

Complexity

Theorem (HS 2014)

Given a hyperelliptic curve $y^{2}=f(x)$ of genus g, and an integer N, one can compute the Hasse-Witt matrices W_{p} for all good primes $p \leq N$ in

$$
O\left(g^{2+\epsilon} N \log ^{3+\epsilon} N\right) \text { time and } \quad O\left(g^{2} N\right) \text { space, }
$$

provided that g and $\log \|f\|$ are sufficiently small relative to N.

The time bound has improved by a factor of $g^{3-\epsilon}$ since the paper. The complexity is quasi-linear in the output size.

This should extend to computing $L_{p} \in \mathbb{Z}[T]$ in $O\left(g^{4+\epsilon} N \log ^{3+\epsilon} N\right)$ time.
In progress: generalize to non-hyperelliptic curves.

