Computing Hasse-Witt matrices of hyperelliptic curves in average polynomial time

David Harvey and Andrew Sutherland

ANTS XI — August 9, 2014

Harvey (UNSW) and Sutherland (MIT)

Computing Hasse–Witt matrices

Motivation

Let C/\mathbb{Q} be a smooth projective curve of genus g.

For each prime *p* of good reduction we have the trace of Frobenius

$$t_p = p + 1 - N_p \in [-2g\sqrt{p}, 2g\sqrt{p}],$$

where $N_p = \#C(\mathbb{F}_p)$, and the normalized trace

$$x_p = t_p / \sqrt{p} \in [-2g, 2g].$$

What is the distribution of x_p ?

Exceptional trace distributions of genus 2 curves C/\mathbb{Q}

And a set of the set of the set of the set of the set of the

Harvey (UNSW) and Sutherland (MIT)

Computing Hasse–Witt matrices

L-polynomial distributions

For a smooth projective curve C/\mathbb{Q} of genus g and a prime p of good reduction for C we have the *zeta function*

$$Z_p(T) := \exp\left(\sum_{k=1}^{\infty} N_k T^k / k\right) = \frac{L_p(T)}{(1-T)(1-pT)},$$

where $L_p \in \mathbb{Z}[T]$ has degree 2g. The normalized *L*-polynomial

$$ar{L}_p(T) := L_p(T/\sqrt{p}) = \sum_{i=0}^{2g} a_i T^i \in \mathbb{R}[T]$$

is monic, reciprocal ($a_i = a_{2g-i}$), and unitary (roots on the unit circle). The coefficients a_i satisfy the Weil bounds $|a_i| \leq \binom{2g}{i}$.

We may now consider the distribution of a_1, a_2, \ldots, a_g as *p* varies.

Computing Hasse–Witt matrice

ANTS XI — August 9, 2014 9 / 21

Computing zeta functions

Algorithms to compute $L_p(T)$ for low genus hyperelliptic curves

	complexity (ignoring factors of $O(\log \log p)$)		
algorithm	g = 1	g = 2	<i>g</i> = 3
point enumeration group computation <i>p</i> -adic cohomology CRT (Schoof-Pila)	$p \log p$ $p^{1/4} \log p$ $p^{1/2} \log^2 p$ $\log^5 p$	$p^{2} \log p$ $p^{3/4} \log p$ $p^{1/2} \log^{2} p$ $\log^{8} p$	$p^{3} \log p$ $p^{5/4} \log p$ $p^{1/2} \log^{2} p$ $\log^{12} p$

Computing zeta functions

Algorithms to compute $L_p(T)$ for low genus hyperelliptic curves

	complexity (ignoring factors of $O(\log \log p)$)			
algorithm	g = 1	g = 2	$\frac{g}{g=3}$	
point enumeration group computation <i>p</i> -adic cohomology CRT (Schoof-Pila)	$p \log p$ $p^{1/4} \log p$ $p^{1/2} \log^2 p$ $\log^5 p$	$p^{2} \log p$ $p^{3/4} \log p$ $p^{1/2} \log^{2} p$ $\log^{8} p$	$p^{3} \log p$ $p^{5/4} \log p$ $p^{1/2} \log^{2} p$ $\log^{12} p$	

(see [Kedlaya-S, ANTS VIII]).

An average polynomial-time algorithm

All of these methods perform separate computations for each *p*. But we want to compute $L_p(T)$ for all good $p \le N$ using reductions of *the same curve* in each case. Can we take advantage of this?

An average polynomial-time algorithm

All of these methods perform separate computations for each *p*. But we want to compute $L_p(T)$ for all good $p \le N$ using reductions of *the same curve* in each case. Can we take advantage of this?

Theorem (H 2012)

There exists a deterministic algorithm that, given a hyperelliptic curve $y^2 = f(x)$ of genus g with a rational Weierstrass point and an integer N, computes $L_p(T)$ for all good primes $p \le N$ in time

$$O(g^{8+\epsilon}N\log^{3+\epsilon}N),$$

assuming the coefficients of $f \in \mathbb{Z}[x]$ have size bounded by $O(\log N)$.

Average time is $O(g^{8+\epsilon} \log^{4+\epsilon} N)$ per prime, polynomial in g and $\log p$.

An average polynomial-time algorithm

complexity

(ignoring factors of $O(\log \log p)$)

algorithm	g = 1	g = 2	<i>g</i> = 3
point enumeration group computation	$p \log p$ $p^{1/4} \log p$ $\frac{1}{2} p^{1/2} \log p$	$p^2 \log p$ $p^{3/4} \log p$ $\frac{1}{2} p^{2} p^{3/4} \log p$	$p^{3} \log p$ $p^{5/4} \log p$ $\frac{1}{2} p^{2}$
<i>p</i> -adic cohomology CRT (Schoof-Pila)	$\frac{p^{1/2}\log^2 p}{\log^5 p}$	$\frac{p^{1/2}\log^2 p}{\log^8 p}$	$\frac{p^{1/2}\log^2 p}{\log^{12} p}$
Average polytime	$\log^4 p$	$\log^4 p$	$\log^4 p$

But is it practical?

	genus 2			genus 3		
Ν	smalljac	paper	current	hypellfrob	paper	current
214	0.2	0.4	0.1	6.8	2.0	0.3
2^{15}	0.6	1.1	0.3	15.6	5.5	1.0
2^{16}	1.7	2.8	0.8	37.6	13.6	2.7
2^{17}	5.6	6.8	1.8	95.0	33.3	7.0
2^{18}	20.2	16.8	4.7	250	80.4	16.3
2^{19}	76.4	39.7	11.1	681	192	38.7
2^{20}	257	94.4	26.0	1920	459	91.7
2^{21}	828	227	61.4	5460	1090	212
2^{22}	2630	534	142	16300	2540	489
2^{23}	8570	1240	321	49400	5940	1120
2^{24}	28000	2920	729	152000	13800	2540
2^{25}	92300	6740	1660	467000	31800	6510
2^{26}	316000	15800	3800	1490000	72900	16600

Comparison of average polynomial time algorithm (as in the paper and currently) to smalljac in genus 2 and hypellfrob in genus 3.

(Intel Xeon E5-2670 2.6 GHz CPU seconds).

Computing Hasse–Witt matrices

ANTS XI — August 9, 2014 14 / 21

Computing Hasse–Witt matrices

ANTS XI — August 9, 2014 15 / 21

Computing Hasse–Witt matrices

ANTS XI — August 9, 2014 16 / 21

The algorithm in genus 1

The Hasse invariant h_p of an elliptic curve $y^2 = f(x) = x^3 + ax + b$ over \mathbb{F}_p is the coefficient of x^{p-1} in the polynomial $f(x)^{(p-1)/2}$.

We have $h_p \equiv t_p \mod p$, which uniquely determines t_p for p > 13.

Naïve approach: iteratively compute $f, f^2, f^3, \ldots, f^{(N-1)/2}$ in $\mathbb{Z}[x]$ and reduce the x^{p-1} coefficient of $f(x)^{(p-1)/2} \mod p$ for each prime $p \leq N$.

The algorithm in genus 1

The Hasse invariant h_p of an elliptic curve $y^2 = f(x) = x^3 + ax + b$ over \mathbb{F}_p is the coefficient of x^{p-1} in the polynomial $f(x)^{(p-1)/2}$.

We have $h_p \equiv t_p \mod p$, which uniquely determines t_p for p > 13.

Naïve approach: iteratively compute $f, f^2, f^3, \ldots, f^{(N-1)/2}$ in $\mathbb{Z}[x]$ and reduce the x^{p-1} coefficient of $f(x)^{(p-1)/2} \mod p$ for each prime $p \leq N$.

But the polynomials f^n are huge, each has $\Omega(n^2)$ bits. It would take $\Omega(N^3)$ time to compute $f, \ldots, f^{(N-1)/2}$ in $\mathbb{Z}[x]$.

So this is a terrible idea...

The algorithm in genus 1

The Hasse invariant h_p of an elliptic curve $y^2 = f(x) = x^3 + ax + b$ over \mathbb{F}_p is the coefficient of x^{p-1} in the polynomial $f(x)^{(p-1)/2}$.

We have $h_p \equiv t_p \mod p$, which uniquely determines t_p for p > 13.

Naïve approach: iteratively compute $f, f^2, f^3, \ldots, f^{(N-1)/2}$ in $\mathbb{Z}[x]$ and reduce the x^{p-1} coefficient of $f(x)^{(p-1)/2} \mod p$ for each prime $p \leq N$.

But the polynomials f^n are huge, each has $\Omega(n^2)$ bits. It would take $\Omega(N^3)$ time to compute $f, \ldots, f^{(N-1)/2}$ in $\mathbb{Z}[x]$.

So this is a terrible idea...

But we don't need all the coefficients of f^n , we only need one, and we only need to know its value modulo p = 2n + 1.

A better approach

Let $f(x) = x^3 + ax + b$, and let f_k^n denote the coefficient of x^k in $f(x)^n$. Using $f^n = f \cdot f^{n-1}$ and $(f^n)' = nf'f^{n-1}$, one obtains linear relations

$$(n+2)f_{2n-2}^{n} = n\left(2af_{2n-3}^{n-1} + 3bf_{2n-2}^{n-1}\right),$$

$$(2n-1)f_{2n-1}^{n} = n\left(3f_{2n-4}^{n-1} + af_{2n-2}^{n-1}\right),$$

$$2(2n-1)bf_{2n}^{n} = (n+1)af_{2n-4}^{n-1} + 3(2n-1)bf_{2n-3}^{n-1} - (n-1)a^{2}f_{2n-2}^{n-1}.$$

These allow us to compute the vector $v_n = [f_{2n-2}^n, f_{2n-1}^n, f_{2n}^n]$ from the vector $v_{n-1} = [f_{2n-4}^{n-1}, f_{2n-3}^{n-1}, f_{2n-2}^{n-1}]$ via multiplication by a 3 × 3 matrix M_n :

$$v_n = v_0 M_1 M_2 \cdots M_n.$$

For n = (p-1)/2, the Hasse invariant of the elliptic curve $y^2 = f(x)$ over \mathbb{F}_p is obtained by reducing the third entry f_n^{2n} of v_n modulo p.

Computing $t_p \mod p$

To compute $t_p \mod p$ for all odd primes $p \le N$ it suffices to compute

 $M_1 \mod 3$ $M_1M_2 \mod 5$ $M_1M_2M_3 \mod 7$ \vdots $M_1M_2M_3 \cdots M_{(N-1)/2} \mod N$

Doing this naïvely would take $O(N^{2+\epsilon})$ time.

But it can be done in $O(N^{1+\epsilon})$ time using a *remainder tree*. For best results, use a *remainder forest*.

The algorithm in genus g.

The *Hasse-Witt* matrix of a hyperelliptic curve $y^2 = f(x)$ over \mathbb{F}_p of genus *g* is the $g \times g$ matrix $W_p = [w_{ij}]$ with entries

$$w_{ij} = f_{pi-j}^{(p-1)/2} \mod p \qquad (1 \le i, j \le g).$$

The w_{ij} can each be computed using recurrence relations between the coefficients of f^n and those of f^{n-1} , as in genus 1.

The algorithm in genus g.

The *Hasse-Witt* matrix of a hyperelliptic curve $y^2 = f(x)$ over \mathbb{F}_p of genus *g* is the $g \times g$ matrix $W_p = [w_{ij}]$ with entries

$$w_{ij} = f_{pi-j}^{(p-1)/2} \mod p \qquad (1 \le i, j \le g).$$

The w_{ij} can each be computed using recurrence relations between the coefficients of f^n and those of f^{n-1} , as in genus 1.

The congruence

$$L_P(T) \equiv \det(I - TW_p) \mod p$$

allows us to determine the coefficients a_1, \ldots, a_g of $L_p(T)$ modulo p.

The algorithm can be extended to compute $L_p(T)$ modulo higher powers of p (and thereby obtain $L_p \in \mathbb{Z}[T]$), but for $g \leq 3$ it is faster in practice to derive $L_p(T)$ from $L_p(T) \mod p$ using computations in Jac(C).

Complexity

Theorem (HS 2014)

Given a hyperelliptic curve $y^2 = f(x)$ of genus g, and an integer N, one can compute the Hasse-Witt matrices W_p for all good primes $p \le N$ in

 $O(g^{2+\epsilon} N \log^{3+\epsilon} N)$ time and $O(g^2 N)$ space,

provided that g and $\log ||f||$ are sufficiently small relative to N.

The time bound has improved by a factor of $g^{3-\epsilon}$ since the paper. The complexity is quasi-linear in the output size.

This should extend to computing $L_p \in \mathbb{Z}[T]$ in $O(g^{4+\epsilon}N\log^{3+\epsilon}N)$ time.

In progress: generalize to non-hyperelliptic curves.