Sato-Tate distributions of abelian varieties

Andrew V. Sutherland

Massachusetts Institute of Technology

January 12, 2016

Mikio Sato

John Tate

Joint work with F. Fité, K.S. Kedlaya, and V. Rotger, and with D. Harvey.

Sato-Tate in dimension 1

Let E / \mathbb{Q} be an elliptic curve, which we can write in the form

$$
y^{2}=x^{3}+a x+b,
$$

and let p be a prime of good reduction $\left(4 a^{3}+27 b^{2} \not \equiv 0 \bmod p\right)$.
The number of \mathbb{F}_{p}-points on the reduction E_{p} of E modulo p is

$$
\# E_{p}\left(\mathbb{F}_{p}\right)=p+1-t_{p}
$$

where the trace of Frobenius t_{p} is an integer in $[-2 \sqrt{p}, 2 \sqrt{p}]$.
We are interested in the limiting distribution of $x_{p}=-t_{p} / \sqrt{p} \in[-2,2]$, as p varies over primes of good reduction up to N, as $N \rightarrow \infty$.

Example: $y^{2}=x^{3}+x+1$

p	t_{p}	x_{p}	p	t_{p}	x_{p}	p	t_{p}	x_{p}
3	0	$\mathbf{0 . 0 0 0 0 0 0}$	71	13	$-\mathbf{1 . 5 4 2 8 1 6}$	157	-13	$\mathbf{1 . 0 3 7 5 1 3}$
5	-3	$\mathbf{1 . 3 4 1 6 4 1}$	73	2	$\mathbf{- 0 . 2 3 4 0 8 2}$	163	-25	$\mathbf{1 . 9 5 8 1 5 1}$
7	3	$\mathbf{- 1 . 1 3 3 8 9 3}$	79	-6	$\mathbf{0 . 6 7 5 0 5 3}$	167	24	$\mathbf{- 1 . 8 5 7 1 7 6}$
11	-2	$\mathbf{0 . 6 0 3 0 2 3}$	83	-6	$\mathbf{0 . 6 5 8 5 8 6}$	173	2	$\mathbf{- 0 . 1 5 2 0 5 7}$
13	-4	$\mathbf{1 . 1 0 9 4 0 0}$	89	-10	$\mathbf{1 . 0 5 9 9 9 8}$	179	0	$\mathbf{0 . 0 0 0 0 0 0}$
17	0	$\mathbf{0 . 0 0 0 0 0 0}$	97	1	$\mathbf{- 0 . 1 0 1 5 3 5}$	181	-8	$\mathbf{0 . 5 9 4 6 3 5}$
19	-1	$\mathbf{0 . 2 2 9 4 1 6}$	101	-3	$\mathbf{0 . 2 9 8 5 1 1}$	191	-25	$\mathbf{1 . 8 0 8 9 3 7}$
23	-4	$\mathbf{0 . 8 3 4 0 5 8}$	103	17	$\mathbf{- 1 . 6 7 5 0 6 0}$	193	-7	$\mathbf{0 . 5 0 3 8 7 1}$
29	-6	$\mathbf{1 . 1 1 4 1 7 2}$	107	3	$-\mathbf{0 . 2 9 0 0 2 1}$	197	-24	$\mathbf{1 . 7 0 9 9 2 9}$
37	-10	$\mathbf{1 . 6 4 3 9 9 0}$	109	-13	$\mathbf{1 . 2 4 5 1 7 4}$	199	-18	$\mathbf{1 . 2 7 5 9 8 6}$
41	7	$\mathbf{- 1 . 0 9 3 2 1 6}$	113	-11	$\mathbf{1 . 0 3 4 7 9 3}$	211	-11	$\mathbf{0 . 7 5 7 2 7 1}$
43	10	$\mathbf{- 1 . 5 2 4 9 8 6}$	127	2	$\mathbf{- 0 . 1 7 7 4 7 1}$	223	-20	$\mathbf{1 . 3 3 9 2 9 9}$
47	-12	$\mathbf{1 . 7 5 0 3 8 0}$	131	4	$\mathbf{- 0 . 3 4 9 4 8 2}$	227	0	$\mathbf{0 . 0 0 0 0 0 0}$
53	-4	$\mathbf{0 . 5 4 9 4 4 2}$	137	12	$\mathbf{- 1 . 0 2 5 2 2 9}$	229	-2	$\mathbf{0 . 1 3 2 1 6 4}$
59	-3	$\mathbf{0 . 3 9 0 5 6 7}$	139	14	$\mathbf{- 1 . 1 8 7 4 6 5}$	233	-3	$\mathbf{0 . 1 9 6 5 3 7}$
61	12	$\mathbf{- 1 . 5 3 6 4 4 3}$	149	14	$\mathbf{- 1 . 1 4 6 9 2 5}$	239	-22	$\mathbf{1 . 4 2 3 0 6 2}$
67	12	$\mathbf{- 1 . 4 6 6 0 3 3}$	151	-2	$\mathbf{0 . 1 6 2 7 5 8}$	241	22	$\mathbf{- 1 . 4 1 7 1 4 5}$

http://math.mit.edu/~drew/g1SatoTateDistributions.html

al histogram of $y^{\wedge} 2+x y+y=x^{\wedge} 3-x^{\wedge} 2-20067762415575526585033208209338542750930230312178956502 x$
+34481611795030556467032985690390720374855944359319180361266008296291939448732243429 for $p<=2^{\wedge} 10$ 172 data points in 13 buckets, $z 1=0.023$, out of range data has area 0.250

click histogram to animate (requires adobe reader)

click histogram to animate (requires adobe reader)

Sato-Tate distributions in dimension 1

1. Typical case (no CM)

Elliptic curves E / \mathbb{Q} w/o CM have the semi-circular trace distribution. (This is also known for E / k, where k is a totally real number field). [Barnet-Lamb, Clozel, Geraghty, Harris, Shepherd-Barron, Taylor]

2. Exceptional cases (CM)

Elliptic curves E / k with CM have one of two distinct trace distributions, depending on whether k contains the CM field or not.
[classical (Hecke, Deuring)]

Sato-Tate groups in dimension 1

The Sato-Tate group of E is a closed subgroup G of $\mathrm{SU}(2)=\mathrm{USp}(2)$ derived from the ℓ-adic Galois representation attached to E.

The refined Sato-Tate conjecture implies that the distribution of normalized traces of E_{p} converges to the distribution of traces in the Sato-Tate group of G, under the Haar measure.

G	G / G^{0}	E	k	$\mathrm{E}\left[a_{1}^{0}\right], \mathrm{E}\left[a_{1}^{2}\right], \mathrm{E}\left[a_{1}^{4}\right] \ldots$
$\mathrm{U}(1)$	C_{1}	$y^{2}=x^{3}+1$	$\mathbb{Q}(\sqrt{-3})$	$1,2,6,20,70,252, \ldots$
$N(\mathrm{U}(1))$	C_{2}	$y^{2}=x^{3}+1$	\mathbb{Q}	$1,1,3,10,35,126, \ldots$
$\mathrm{SU}(2)$	C_{1}	$y^{2}=x^{3}+x+1$	\mathbb{Q}	$1,1,2,5,14,42, \ldots$

In dimension 1 there are three possible Sato-Tate groups, two of which arise for elliptic curves defined over \mathbb{Q}.

Zeta functions and L-polynomials

For a smooth projective curve C / \mathbb{Q} of genus g and each prime p of good redution for C we have the zeta function

$$
Z\left(C_{p} / \mathbb{F}_{p} ; T\right):=\exp \left(\sum_{k=1}^{\infty} N_{k} T^{k} / k\right),
$$

where $N_{k}=\# C_{p}\left(\mathbb{F}_{p^{k}}\right)$. This is a rational function of the form

$$
Z\left(C_{p} / \mathbb{F}_{p} ; T\right)=\frac{L_{p}(T)}{(1-T)(1-p T)},
$$

where $L_{p}(T)$ is an integer polynomial of degree $2 g$.
For $g=1$ we have $L_{p}(t)=p T^{2}+c_{1} T+1$, and for $g=2$,

$$
L_{p}(T)=p^{2} T^{4}+c_{1} p T^{3}+c_{2} T^{2}+c_{1} T+1 .
$$

Normalized L-polynomials

The normalized polynomial

$$
\bar{L}_{p}(T):=L_{p}(T / \sqrt{p})=\sum_{i=0}^{2 g} a_{i} T^{i} \in \mathbb{R}[T]
$$

is monic, reciprocal ($a_{i}=a_{2 g-i}$), and unitary (roots on the unit circle). The coefficients a_{i} necessarily satisfy $\left|a_{i}\right| \leq\binom{ 2 g}{i}$.

We now consider the limiting distribution of $a_{1}, a_{2}, \ldots, a_{g}$ over all primes $p \leq N$ of good reduction, as $N \rightarrow \infty$.

```
http://math.mit.edu/~drew/g2SatoTateDistributions.html
```


click histogram to animate (requires adobe reader)

click histogram to animate (requires adobe reader)

click histogram to animate (requires adobe reader)

Exceptional distributions for abelian surfaces over \mathbb{Q} :

L-polynomials of Abelian varieties

Let A be an abelian variety of dimension $g \geq 1$ over a number field k and fix a prime ℓ.

Let $\rho_{\ell}: G_{k} \rightarrow \operatorname{Aut}_{\mathbb{Q}_{\ell}}\left(V_{\ell}(A)\right) \simeq \operatorname{GSp}_{2_{g}}\left(\mathbb{Q}_{\ell}\right)$ be the Galois representation arising from the action of $G_{k}:=\operatorname{Gal}(\bar{k} / k)$ on the ℓ-adic Tate module

$$
V_{\ell}(A):=\lim _{\leftrightarrows} A\left[\ell^{n}\right] \otimes \mathbb{Q} .
$$

For each prime \mathfrak{p} of good reduction for A we have the L-polynomial

$$
\begin{aligned}
L_{\mathfrak{p}}(T) & :=\operatorname{det}\left(1-\rho_{\ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right) T\right), \\
\bar{L}_{\mathfrak{p}}(T) & :=L_{\mathfrak{p}}(T / \sqrt{\|\mathfrak{p}\|})=\sum a_{i} T^{i} .
\end{aligned}
$$

In the case that A is the Jacobian of a genus g curve C, this agrees with our earlier definition of $L_{\mathrm{p}}(T)$ as the numerator of the zeta function of C.

The Sato-Tate problem for an abelian variety

The polynomials $\bar{L}_{\mathfrak{p}} \in \mathbb{R}[T]$ are monic, symmetric, unitary, and have degree $2 g$.

Every such polynomial arises as the characteristic polynomial of a conjugacy class in the unitary symplectic group $\operatorname{USp}(2 g)$.

Each probability measure on $\operatorname{USp}(2 g)$ determines a distribution of conjugacy classes (hence a distribution of characteristic polynomials).

The Sato-Tate problem, in its simplest form, is to find a measure for which these classes are equidistributed.

Conjecturally, such a measure arises as the Haar measure of a compact subgroup ST_{A} of $\mathrm{USp}(2 g)$.

The Sato-Tate group

Recall that the action of G_{k} on $V_{\ell}(A)$ induces the representation

$$
\rho_{\ell}: G_{k} \rightarrow \operatorname{Aut}_{\mathbb{Q}_{\ell}}\left(V_{\ell}(A)\right) \simeq \operatorname{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right) .
$$

Fixing an embedding $\iota: \mathbb{Q} \ell \hookrightarrow \mathbb{C}$, we now apply

$$
\operatorname{ker}\left(G_{k} \xrightarrow{\chi_{\ell}} \mathbb{Q}_{\ell}^{\times}\right) \xrightarrow{\overline{\rho_{\ell}}} \mathrm{Sp}_{2 g}\left(\mathbb{Q}_{\ell}\right) \xrightarrow{\otimes_{\mathbb{C}}^{C}} \mathrm{Sp}_{2 g}(\mathbb{C}),
$$

and define ST_{A} to be a maximal compact subgroup of the image.
Conjecturally, ST_{A} does not depend on ℓ or ι; this is known for $g \leq 3$.

Definition [Serre]

$\mathrm{ST}_{A} \subseteq \mathrm{USp}(2 g)$ is the Sato-Tate group of A.

The refined Sato-Tate conjecture

Let $s(\mathfrak{p})$ denote the conjugacy class of the image of $\mathrm{Frob}_{\mathfrak{p}}$ in ST_{A}. Let $\mu_{\mathrm{ST}_{A}}$ denote the image of the Haar measure on $\operatorname{Conj}\left(\mathrm{ST}_{A}\right)$, which does not depend on the choice of ℓ or ℓ.

Conjecture

The conjugacy classes $s(\mathfrak{p})$ are equidistributed with respect to $\mu_{\mathrm{ST}_{A}}$.

In particular, the distribution of $\bar{L}_{\mathfrak{p}}(T)$ matches the distribution of characteristic polynomials of random matrices in ST_{A}.

We can test this numerically by comparing statistics of the coefficients a_{1}, \ldots, a_{g} of $\bar{L}_{\mathfrak{p}}(T)$ over $\|\mathfrak{p}\| \leq N$ to the predictions given by $\mu_{\mathrm{ST}_{A}}$.

$$
\text { https://hensel.mit.edu:8000/home/pub/ } 6
$$

The Sato-Tate axioms

The Sato-Tate axioms for abelian varieties (weight-1 motives):
(1) G is closed subgroup of $\operatorname{USp}(2 g)$.
(2) Hodge condition: G contains a Hodge circle ${ }^{1}$ whose conjugates generate a dense subset of G.
(3) Rationality condition: for each component H of G and each irreducible character χ of $\mathrm{GL}_{2 g}(\mathbb{C})$ we have $\mathrm{E}[\chi(\gamma): \gamma \in H] \in \mathbb{Z}$.
For any fixed g, the set of subgroups $G \subseteq \operatorname{USp}(2 g)$ that satisfy the Sato-Tate axioms is finite up to conjugacy (3 for $g=1,55$ for $g=2$).

[^0]
The Sato-Tate axioms

The Sato-Tate axioms for abelian varieties (weight-1 motives):
(1) G is closed subgroup of $\operatorname{USp}(2 g)$.
(2) Hodge condition: G contains a Hodge circle ${ }^{1}$ whose conjugates generate a dense subset of G.
(3) Rationality condition: for each component H of G and each irreducible character χ of $\mathrm{GL}_{2 g}(\mathbb{C})$ we have $\mathrm{E}[\chi(\gamma): \gamma \in H] \in \mathbb{Z}$.

For any fixed g, the set of subgroups $G \subseteq \operatorname{USp}(2 g)$ that satisfy the Sato-Tate axioms is finite up to conjugacy (3 for $g=1,55$ for $g=2$).

Theorem
For $g \leq 3$, the group ST_{A} satisfies the Sato-Tate axioms.
This is expected to hold for all g.

[^1]
Galois endomorphism modules

Let A be an abelian variety defined over a number field k. Let K be the minimal extension of k for which $\operatorname{End}\left(A_{K}\right)=\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)$. $\operatorname{Gal}(K / k)$ acts on the \mathbb{R}-algebra $\operatorname{End}\left(A_{K}\right)_{\mathbb{R}}=\operatorname{End}\left(A_{K}\right) \otimes_{\mathbb{Z}} \mathbb{R}$.

Definition

The Galois endomorphism type of A is the isomorphism class of $\left[\operatorname{Gal}(K / k), \operatorname{End}\left(A_{K}\right)_{\mathbb{R}}\right]$, where $[G, E] \simeq\left[G^{\prime}, E^{\prime}\right]$ iff there are isomorphisms $G \simeq G^{\prime}$ and $E \simeq E^{\prime}$ that are compatible with the Galois action.

Galois endomorphism modules

Let A be an abelian variety defined over a number field k.
Let K be the minimal extension of k for which $\operatorname{End}\left(A_{K}\right)=\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)$. $\operatorname{Gal}(K / k)$ acts on the \mathbb{R}-algebra $\operatorname{End}\left(A_{K}\right)_{\mathbb{R}}=\operatorname{End}\left(A_{K}\right) \otimes_{\mathbb{Z}} \mathbb{R}$.

Definition

The Galois endomorphism type of A is the isomorphism class of $\left[\operatorname{Gal}(K / k), \operatorname{End}\left(A_{K}\right)_{\mathbb{R}}\right]$, where $[G, E] \simeq\left[G^{\prime}, E^{\prime}\right]$ iff there are isomorphisms $G \simeq G^{\prime}$ and $E \simeq E^{\prime}$ that are compatible with the Galois action.

Theorem [FKRS 2012]

For abelian varieties A / k of dimension $g \leq 3$ there is a one-to-one correspondence between Sato-Tate groups and Galois types.

More precisely, the identity component G^{0} is uniquely determined by $\operatorname{End}\left(A_{k}\right)_{\mathbb{R}}$ and $G / G^{0} \simeq \operatorname{Gal}(K / k)$ (with corresponding actions).

Real endomorphism algebras of abelian surfaces

abelian surface	$\mathbf{E n d}\left(\boldsymbol{A}_{\boldsymbol{K}}\right)_{\mathbb{R}}$	$\mathbf{S T}_{\boldsymbol{A}}^{\mathbf{0}}$
square of CM elliptic curve	$\mathrm{M}_{2}(\mathbb{C})$	$\mathrm{U}(1)_{2}$
\bullet QM abelian surface - square of non-CM elliptic curve	$\mathrm{M}_{2}(\mathbb{R})$	$\mathrm{SU}(2)_{2}$
- CM abelian surface - product of CM elliptic curves	$\mathbb{C} \times \mathbb{C}$	$\mathrm{U}(1) \times \mathrm{U}(1)$
product of CM and non-CM elliptic curves	$\mathbb{C} \times \mathbb{R}$	$\mathrm{U}(1) \times \mathrm{SU}(2)$
- RM abelian surface - product of non-CM elliptic curves	$\mathbb{R} \times \mathbb{R}$	$\mathrm{SU}(2) \times \mathrm{SU}(2)$
generic abelian surface	\mathbb{R}	$\mathrm{USp}(4)$

(factors in products are assumed to be non-isogenous)

Sato-Tate groups in dimension 2

Theorem [FKRS 2012]

Up to conjugacy, 55 subgroups of $\operatorname{USp}(4)$ satisfy the Sato-Tate axioms:

$$
\begin{aligned}
\mathrm{U}(1)_{2}: & C_{1}, C_{2}, C_{3}, C_{4}, C_{6}, D_{2}, D_{3}, D_{4}, D_{6}, T, O, \\
& J\left(C_{1}\right), J\left(C_{2}\right), J\left(C_{3}\right), J\left(C_{4}\right), J\left(C_{6}\right), \\
& J\left(D_{2}\right), J\left(D_{3}\right), J\left(D_{4}\right), J\left(D_{6}\right), J(T), J(O), \\
& C_{2,1}, C_{4,1}, C_{6,1}, D_{2,1}, D_{3,2}, D_{4,1}, D_{4,2}, D_{6,1}, D_{6,2}, O_{1} \\
\mathrm{SU}(2)_{2}: & E_{1}, E_{2}, E_{3}, E_{4}, E_{6}, J\left(E_{1}\right), J\left(E_{2}\right), J\left(E_{3}\right), J\left(E_{4}\right), J\left(E_{6}\right) \\
\mathrm{U}(1) \times \mathrm{U}(1): & F, F_{a}, F_{c}, F_{a, b}, F_{a b}, F_{a c}, F_{a b, c}, F_{a, b, c} \\
\mathrm{U}(1) \times \mathrm{SU}(2): & \mathrm{U}(1) \times \mathrm{SU}(2), N(\mathrm{U}(1) \times \mathrm{SU}(2)) \\
\mathrm{SU}(2) \times \mathrm{SU}(2): & \mathrm{SU}(2) \times \mathrm{SU}(2), N(\mathrm{SU}(2) \times \mathrm{SU}(2)) \\
\mathrm{USp}(4): & \mathrm{USp}(4)
\end{aligned}
$$

Sato-Tate groups in dimension 2

Theorem [FKRS 2012]

Up to conjugacy, 55 subgroups of $\operatorname{USp}(4)$ satisfy the Sato-Tate axioms:

$$
\begin{aligned}
\mathrm{U}(1): & C_{1}, C_{2}, C_{3}, C_{4}, C_{6}, D_{2}, D_{3}, D_{4}, D_{6}, T, O, \\
& J\left(C_{1}\right), J\left(C_{2}\right), J\left(C_{3}\right), J\left(C_{4}\right), J\left(C_{6}\right), \\
& J\left(D_{2}\right), J\left(D_{3}\right), J\left(D_{4}\right), J\left(D_{6}\right), J(T), J(O), \\
& C_{2,1}, C_{4,1}, C_{6,1}, D_{2,1}, D_{3,2}, D_{4,1}, D_{4,2}, D_{6,1}, D_{6,2}, O_{1} \\
\mathrm{SU}(2): & E_{1}, E_{2}, E_{3}, E_{4}, E_{6}, J\left(E_{1}\right), J\left(E_{2}\right), J\left(E_{3}\right), J\left(E_{4}\right), J\left(E_{6}\right) \\
\mathrm{U}(1) \times \mathrm{U}(1): & F, F_{a}, F_{c}, F_{a, b}, F_{a b}, F_{a c}, F_{a b, c}, F_{a, b, c} \\
\mathrm{U}(1) \times \mathrm{SU}(2): & \mathrm{U}(1) \times \mathrm{SU}(2), N(\mathrm{U}(1) \times \mathrm{SU}(2)) \\
\mathrm{SU}(2) \times \mathrm{SU}(2): & \mathrm{SU}(2) \times \mathrm{SU}(2), N(\mathrm{SU}(2) \times \mathrm{SU}(2)) \\
\mathrm{USp}(4): & \mathrm{USp}(4)
\end{aligned}
$$

Of these, exactly 52 arise as ST_{A} for an abelian surface $A(34$ over $\mathbb{Q})$.

Sato-Tate groups in dimension 2

Theorem [FKRS 2012]

Up to conjugacy, 55 subgroups of $\operatorname{USp}(4)$ satisfy the Sato-Tate axioms:

$$
\begin{aligned}
\mathrm{U}(1): & C_{1}, C_{2}, C_{3}, C_{4}, C_{6}, D_{2}, D_{3}, D_{4}, D_{6}, T, O, \\
& J\left(C_{1}\right), J\left(C_{2}\right), J\left(C_{3}\right), J\left(C_{4}\right), J\left(C_{6}\right), \\
& J\left(D_{2}\right), J\left(D_{3}\right), J\left(D_{4}\right), J\left(D_{6}\right), J(T), J(O), \\
& C_{2,1}, C_{4,1}, C_{6,1}, D_{2,1}, D_{3,2}, D_{4,1}, D_{4,2}, D_{6,1}, D_{6,2}, O_{1} \\
\mathrm{SU}(2): & E_{1}, E_{2}, E_{3}, E_{4}, E_{6}, J\left(E_{1}\right), J\left(E_{2}\right), J\left(E_{3}\right), J\left(E_{4}\right), J\left(E_{6}\right) \\
\mathrm{U}(1) \times \mathrm{U}(1): & F, F_{a}, F_{c}, F_{a, b}, F_{a b}, F_{a c}, F_{a b, c}, F_{a, b, c} \\
\mathrm{U}(1) \times \mathrm{SU}(2): & \mathrm{U}(1) \times \mathrm{SU}(2), N(\mathrm{U}(1) \times \mathrm{SU}(2)) \\
\mathrm{SU}(2) \times \mathrm{SU}(2): & \mathrm{SU}(2) \times \mathrm{SU}(2), N(\mathrm{SU}(2) \times \mathrm{SU}(2)) \\
\mathrm{USp}(4): & \mathrm{USp}(4)
\end{aligned}
$$

Of these, exactly 52 arise as ST_{A} for an abelian surface $A(34$ over $\mathbb{Q})$.
This theorem says nothing about equidistribution, however this is now known in many special cases [FS 2012, Johansson 2013].

Sato-Tate groups in dimension 2 with $G^{0}=\mathrm{U}(1)_{2}$.

d	c	G	G / G^{0}	z_{1}	z_{2}	$M\left[a_{1}^{2}\right]$	$M\left[a_{2}\right]$
1	1	C_{1}	C_{1}	0	$0,0,0,0,0$	$8,96,1280,17920$	$4,18,88,454$
1	2	C_{2}	C_{2}	1	$0,0,0,0,0$	$4,48,640,8960$	$2,10,44,230$
1	3	C_{3}	C_{3}	0	$0,0,0,0,0$	$4,36,440,6020$	$2,8,34,164$
1	4	C_{4}	C_{4}	1	$0,0,0,0,0$	$4,36,400,5040$	$2,8,32,150$
1	6	C_{6}	C_{6}	1	$0,0,0,0,0$	$4,36,400,4900$	$2,8,32,148$
1	4	D_{2}	D_{2}	3	$0,0,0,0,0$	$2,24,320,4480$	$1,6,22,118$
1	6	D_{3}	D_{3}	3	$0,0,0,0,0$	$2,18,220,3010$	$1,5,17,85$
1	8	D_{4}	D_{4}	5	$0,0,0,0,0$	$2,18,200,2520$	$1,5,16,78$
1	12	D_{6}	D_{6}	7	$0,0,0,0,0$	$2,18,200,2450$	$1,5,16,77$
1	2	$J\left(C_{1}\right)$	C_{2}	1	$1,0,0,0,0$	$4,48,640,8960$	$1,11,40,235$
1	4	$J\left(C_{2}\right)$	D_{2}	3	$1,0,0,0,1$	$2,24,320,4480$	$1,7,22,123$
1	6	$J\left(C_{3}\right)$	C_{6}	3	$1,0,0,2,0$	$2,18,220,3010$	$1,5,16,85$
1	8	$J\left(C_{4}\right)$	$\mathrm{C}_{4} \times \mathrm{C}_{2}$	5	$1,0,2,0,1$	$2,18,200,2520$	$1,5,16,79$
1	12	$J\left(C_{6}\right)$	$\mathrm{C}_{6} \times \mathrm{C}_{2}$	7	$1,2,0,2,1$	$2,18,200,2450$	$1,5,16,77$
1	8	$J\left(D_{2}\right)$	$\mathrm{D}_{2} \times \mathrm{C}_{2}$	7	$1,0,0,0,3$	$1,12,160,2240$	$1,5,13,67$
1	12	$J\left(D_{3}\right)$	D_{6}	9	$1,0,0,2,3$	$1,9,110,1505$	$1,4,10,48$
1	16	$J\left(D_{4}\right)$	$\mathrm{D}_{4} \times \mathrm{C}_{2}$	13	$1,0,2,0,5$	$1,9,100,1260$	$1,4,10,45$
1	24	$J\left(D_{6}\right)$	$\mathrm{D}_{6} \times \mathrm{C}_{2}$	19	$1,2,0,2,7$	$1,9,100,1225$	$1,4,10,44$
1	2	$C_{2,1}$	C_{2}	1	$0,0,0,0,1$	$4,48,640,8960$	$3,11,48,235$
1	4	$C_{4,1}$	C_{4}	3	$0,0,2,0,0$	$2,24,320,4480$	$1,5,22,115$
1	6	$C_{6,1}$	C_{6}	3	$0,2,0,0,1$	$2,18,220,3010$	$1,5,18,85$
1	4	$D_{2,1}$	D_{2}	3	$0,0,0,2,2$	$2,24,320,4480$	$2,7,26,123$
1	8	$D_{4,1}$	D_{4}	7	$0,0,2,0,2$	$1,12,160,2240$	$1,4,13,63$
1	12	$D_{6,1}$	D_{6}	9	$0,2,0,0,4$	$1,9,110,1505$	$1,4,11,48$
1	6	$D_{3,2}$	D_{3}	3	$0,0,0,0,3$	$2,18,220,3010$	$2,6,21,90$
1	8	$D_{4,2}$	D_{4}	5	$0,0,0,0,4$	$2,18,200,2520$	$2,6,20,83$
1	12	$D_{6,2}$	D_{6}	7	$0,0,0,0,6$	$2,18,200,2450$	$2,6,20,82$
1	12	T	$\mathrm{~A}_{4}$	3	$0,0,0,0,0$	$2,12,120,1540$	$1,4,12,52$
1	24	O	$\mathrm{~S}_{4}$	9	$0,0,0,0,0$	$2,12,100,1050$	$1,4,11,45$
1	24	O_{1}	$\mathrm{~S}_{4}$	15	$0,0,6,0,6$	$1,6,60,770$	$1,3,8,30$
1	24	$J(T)$	$\mathrm{A}_{4} \times \mathrm{C}_{2}$	15	$1,0,0,8,3$	$1,6,60,770$	$1,3,7,29$
1	48	$J(O)$	$\mathrm{S}_{4} \times \mathrm{C}_{2}$	33	$1,0,6,8,9$	$1,6,50,525$	$1,3,7,26$

Sato-Tate groups in dimension 2 with $G^{0} \neq \mathrm{U}(1)_{2}$.

d	c	G	G / G^{0}	z_{1}	z_{2}	$M\left[a_{1}^{2}\right]$	$M\left[a_{2}\right]$
3	1	E_{1}	C_{1}	0	$0,0,0,0,0$	$4,32,320,3584$	$3,10,37,150$
3	2	E_{2}	C_{2}	1	$0,0,0,0,0$	$2,16,160,1792$	$1,6,17,78$
3	3	E_{3}	C_{3}	0	$0,0,0,0,0$	$2,12,110,1204$	$1,4,13,52$
3	4	E_{4}	C_{4}	1	$0,0,0,0,0$	$2,12,100,1008$	$1,4,11,46$
3	6	E_{6}	C_{6}	1	$0,0,0,0,0$	$2,12,100,980$	$1,4,11,44$
3	2	$J\left(E_{1}\right)$	C_{2}	1	$0,0,0,0,0$	$2,16,160,1792$	$2,6,20,78$
3	4	$J\left(E_{2}\right)$	D_{2}	3	$0,0,0,0,0$	$1,8,80,896$	$1,4,10,42$
3	6	$J\left(E_{3}\right)$	D_{3}	3	$0,0,0,0,0$	$1,6,55,602$	$1,3,8,29$
3	8	$J\left(E_{4}\right)$	D_{4}	5	$0,0,0,0,0$	$1,6,50,504$	$1,3,7,26$
3	12	$J\left(E_{6}\right)$	D_{6}	7	$0,0,0,0,0$	$1,6,50,490$	$1,3,7,25$
2	1	F	C_{1}	0	$0,0,0,0,0$	$4,36,400,4900$	$2,8,32,148$
2	2	F_{a}	C_{2}	0	$0,0,0,0,1$	$3,21,210,2485$	$2,6,20,82$
2	2	F_{c}	C_{2}	1	$0,0,0,0,0$	$2,18,200,2450$	$1,5,16,77$
2	2	$F_{a b}$	C_{2}	1	$0,0,0,0,1$	$2,18,200,2450$	$2,6,20,82$
2	4	$F_{a c}$	C_{4}	3	$0,0,2,0,1$	$1,9,100,1225$	$1,3,10,41$
2	4	$F_{a, b}$	D_{2}	1	$0,0,0,0,3$	$2,12,110,1260$	$2,5,14,49$
2	4	$F_{a b, c}$	D_{2}	3	$0,0,0,0,1$	$1,9,100,1225$	$1,4,10,44$
2	8	$F_{a, b, c}$	D_{4}	5	$0,0,2,0,3$	$1,6,55,630$	$1,3,7,26$
4	1	G_{4}	C_{1}	0	$0,0,0,0,0$	$3,20,175,1764$	$2,6,20,76$
4	2	$N\left(G_{4}\right)$	C_{2}	0	$0,0,0,0,1$	$2,11,90,889$	$2,5,14,46$
6	1	G_{6}	C_{1}	0	$0,0,0,0,0$	$2,10,70,588$	$2,5,14,44$
6	2	$N\left(G_{6}\right)$	C_{2}	1	$0,0,0,0,0$	$1,5,35,294$	$1,3,7,23$
10	1	$\mathrm{USp}(4)$	C_{1}	0	$0,0,0,0,0$	$1,3,14,84$	$1,2,4,10$

Group	Curve $y^{2}=f(x)$	k	K
C_{1}	$x^{6}+1$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3})$
C_{2}	$x^{5}-x$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(i, \sqrt{2})$
C_{3}	$x^{6}+4$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3}, \sqrt[3]{2})$
C_{4}	$x^{6}+x^{5}-5 x^{4}-5 x^{2}-x+1$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(\sqrt{-2}, a) ; a^{4}+17 a^{2}+68=0$
C_{6}	$x^{6}+2$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{2})$
D_{2}	$x^{5}+9 x$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(i, \sqrt{2}, \sqrt{3})$
D_{3}	$x^{6}+10 x^{3}-2$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{-2})$
D_{4}	$x^{5}+3 x$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(i, \sqrt{2}, \sqrt[4]{3})$
D_{6}	$x^{6}+3 x^{5}+10 x^{3}-15 x^{2}+15 x-6$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(i, \sqrt{2}, \sqrt{3}, a) ; a^{3}+3 a-2=0$
T	$x^{6}+6 x^{5}-20 x^{4}+20 x^{3}-20 x^{2}-8 x+8$	$\mathbb{Q}(\sqrt{-2})$	$\begin{aligned} & \mathbb{Q}(\sqrt{-2}, a, b) ; \\ & \quad a^{3}-7 a+7=b^{4}+4 b^{2}+8 b+8=0 \end{aligned}$
O	$x^{6}-5 x^{4}+10 x^{3}-5 x^{2}+2 x-1$	$\mathbb{Q}(\sqrt{-2})$	$\begin{aligned} & \mathbb{Q}(\sqrt{-2}, \sqrt{-11}, a, b) \\ & \quad a^{3}-4 a+4=b^{4}+22 b+22=0 \end{aligned}$
$J\left(C_{1}\right)$	$x^{5}-x$	$\mathbb{Q}(i)$	$\mathbb{Q}(i, \sqrt{2})$
$J\left(C_{2}\right)$	$x^{5}-x$	Q	$\mathbb{Q}(i, \sqrt{2})$
$J\left(C_{3}\right)$	$x^{6}+10 x^{3}-2$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{-2})$
$J\left(C_{4}\right)$	$x^{6}+x^{5}-5 x^{4}-5 x^{2}-x+1$	Q	see entry for C_{4}
$J\left(C_{6}\right)$	$x^{6}-15 x^{4}-20 x^{3}+6 x+1$	Q	$\mathbb{Q}(i, \sqrt{3}, a) ; a^{3}+3 a^{2}-1=0$
$J\left(D_{2}\right)$	$x^{5}+9 x$	Q	$\mathbb{Q}(i, \sqrt{2}, \sqrt{3})$
$J\left(D_{3}\right)$	$x^{6}+10 x^{3}-2$	Q	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{-2})$
$J\left(D_{4}\right)$	$x^{5}+3 x$	Q	$\mathbb{Q}(i, \sqrt{2}, \sqrt[4]{3})$
$J\left(D_{6}\right)$	$x^{6}+3 x^{5}+10 x^{3}-15 x^{2}+15 x-6$	\mathbb{Q}	see entry for D_{6}
$J(T)$	$x^{6}+6 x^{5}-20 x^{4}+20 x^{3}-20 x^{2}-8 x+8$	Q	see entry for T
$J(O)$	$x^{6}-5 x^{4}+10 x^{3}-5 x^{2}+2 x-1$	Q	see entry for O
$C_{2,1}$	$x^{6}+1$	Q	$\mathbb{Q}(\sqrt{-3})$
$C_{4.1}$	$x^{5}+2 x$	$\mathbb{Q}($ i $)$	$\mathbb{Q}(i, \sqrt[4]{2})$
$C_{6,1}$	$x^{6}+6 x^{5}-30 x^{4}+20 x^{3}+15 x^{2}-12 x+1$	Q	$\mathbb{Q}(\sqrt{-3}, a) ; a^{3}-3 a+1=0$
$D_{2,1}$	$x^{5}+x$	\mathbb{Q}	$\mathbb{Q}(i, \sqrt{2})$
$D_{4,1}$	$x^{5}+2 x$	Q	$\mathbb{Q}(i, \sqrt[4]{2})$
$D_{6,1}$	$x^{6}+6 x^{5}-30 x^{4}-40 x^{3}+60 x^{2}+24 x-8$	Q	$\mathbb{Q}(\sqrt{-2}, \sqrt{-3}, a) ; a^{3}-9 a+6=0$
$D_{3,2}$	$x^{6}+4$	Q	$\mathbb{Q}(\sqrt{-3}, \sqrt[3]{2})$
$D_{4,2}$	$x^{6}+x^{5}+10 x^{3}+5 x^{2}+x-2$	\mathbb{Q}	$\mathbb{Q}(\sqrt{-2}, a) ; a^{4}-14 a^{2}+28 a-14=0$
$D_{6,2}$	$x^{6}+2$	Q	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{2})$
O_{1}	$x^{6}+7 x^{5}+10 x^{4}+10 x^{3}+15 x^{2}+17 x+4$	\mathbb{Q}	$\begin{aligned} & \mathbb{Q}(\sqrt{-2}, a, b) ; \\ & \quad a^{3}+5 a+10=b^{4}+4 b^{2}+8 b+2=0 \end{aligned}$

Genus 2 curves realizing Sato-Tate groups with $G^{0} \neq \mathrm{U}(1)$

Group	Curve $y^{2}=f(x)$	k	K
F	$x^{6}+3 x^{4}+x^{2}-1$	$\mathbb{Q}(i, \sqrt{2})$	$\mathbb{Q}(i, \sqrt{2})$
F_{a}	$x^{6}+3 x^{4}+x^{2}-1$	$\mathbb{Q}(i)$	$\mathbb{Q}(i, \sqrt{2})$
$F_{a b}$	$x^{6}+3 x^{4}+x^{2}-1$	$\mathbb{Q}(\sqrt{2})$	$\mathbb{Q}(i, \sqrt{2})$
$F_{a c}$	$x^{5}+1$	\mathbb{Q}	$\mathbb{Q}(a) ; a^{4}+5 a^{2}+5=0$
$F_{a, b}$	$x^{6}+3 x^{4}+x^{2}-1$	\mathbb{Q}	$\mathbb{Q}(i, \sqrt{2})$
E_{1}	$x^{6}+x^{4}+x^{2}+1$	\mathbb{Q}	\mathbb{Q}
E_{2}	$x^{6}+x^{5}+3 x^{4}+3 x^{2}-x+1$	\mathbb{Q}	$\mathbb{Q}(\sqrt{2})$
E_{3}	$x^{5}+x^{4}-3 x^{3}-4 x^{2}-x$	\mathbb{Q}	$\mathbb{Q}(a) ; a^{3}-3 a+1=0$
E_{4}	$x^{5}+x^{4}+x^{2}-x$	\mathbb{Q}	$\mathbb{Q}(a) ; a^{4}-5 a^{2}+5=0$
E_{6}	$x^{5}+2 x^{4}-x^{3}-3 x^{2}-x$	\mathbb{Q}	$\mathbb{Q}(\sqrt{7}, a) ; a^{3}-7 a-7=0$
$J\left(E_{1}\right)$	$x^{5}+x^{3}+x$	\mathbb{Q}	$\mathbb{Q}(i)$
$J\left(E_{2}\right)$	$x^{5}+x^{3}-x$	\mathbb{Q}	$\mathbb{Q}(i, \sqrt{2})$
$J\left(E_{3}\right)$	$x^{6}+x^{3}+4$	\mathbb{Q}	$\mathbb{Q}(\sqrt{-3}, \sqrt[3]{2})$
$J\left(E_{4}\right)$	$x^{5}+x^{3}+2 x$	\mathbb{Q}	$\mathbb{Q}(i, \sqrt[4]{2})$
$J\left(E_{6}\right)$	$x^{6}+x^{3}-2$	\mathbb{Q}	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{-2})$
$G_{1,3}$	$x^{6}+3 x^{4}-2$	$\mathbb{Q}(i)$	$\mathbb{Q}(i)$
$N\left(G_{1,3}\right)$	$x^{6}+3 x^{4}-2$	\mathbb{Q}	$\mathbb{Q}(i)$
$G_{3,3}$	$x^{6}+x^{2}+1$	\mathbb{Q}	\mathbb{Q}
$N\left(G_{3,3}\right)$	$x^{6}+x^{5}+x-1$	\mathbb{Q}	$\mathbb{Q}(i)$
$\operatorname{USp}(4)$	$x^{5}-x+1$	\mathbb{Q}	\mathbb{Q}

click histogram to animate (requires adobe reader)

Real endomorphism algebras of abelian threefolds

abelian threefold	$\operatorname{End}\left(A_{K}\right)_{\mathbb{R}}$	$\mathbf{S T}_{\boldsymbol{A}}^{\mathbf{0}}$
cube of a CM elliptic curve	$\mathrm{M}_{3}(\mathbb{C})$	$\mathrm{U}(1)_{3}$
cube of a non-CM elliptic curve	$\mathrm{M}_{3}(\mathbb{R})$	$\mathrm{SU}(2)_{3}$
product of CM elliptic curve and square of CM elliptic curve	$\mathbb{C} \times \mathrm{M}_{2}(\mathbb{C})$	$\mathrm{U}(1) \times \mathrm{U}(1)_{2}$
- product of CM elliptic curve and QM abelian surface - product of CM elliptic curve and square of non-CM elliptic curve	$\mathbb{C} \times \mathrm{M}_{2}(\mathbb{R})$	$\mathrm{U}(1) \times \mathrm{SU}(2)_{2}$
product of non-CM elliptic curve and square of CM elliptic curve	$\mathbb{R} \times \mathrm{M}_{2}(\mathbb{C})$	$\mathrm{SU}(2) \times \mathrm{U}(1)_{2}$
- product of non-CM elliptic curve and QM abelian surface - product of non-CM elliptic curve and square of non-CM elliptic curve	$\mathbb{R} \times \mathrm{M}_{2}(\mathbb{R})$	$\mathrm{SU}(2) \times \mathrm{SU}(2)_{2}$
- CM abelian threefold - product of CM elliptic curve and CM abelian surface - product of three CM elliptic curves	$\mathbb{C} \times \mathbb{C} \times \mathbb{C}$	$U(1) \times U(1) \times U(1)$
- product of non-CM elliptic curve and CM abelian surface - product of non-CM elliptic curve and two CM elliptic curves	$\mathbb{C} \times \mathbb{C} \times \mathbb{R}$	$\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{SU}(2)$
- product of CM elliptic curve and RM abelian surface - product of CM elliptic curve and two non-CM elliptic curves	$\mathbb{C} \times \mathbb{R} \times \mathbb{R}$	$\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(2)$
- RM abelian threefold - product of non-CM elliptic curve and RM abelian surface - product of 3 non-CM elliptic curves	$\mathbb{R} \times \mathbb{R} \times \mathbb{R}$	$\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{SU}(2)$
product of CM elliptic curve and abelian surface	$\mathbb{C} \times \mathbb{R}$	$\mathrm{U}(1) \times \mathrm{USp}(4)$
product of non-CM elliptic curve and abelian surface	$\mathbb{R} \times \mathbb{R}$	$\mathrm{SU}(2) \times \mathrm{USp}(4)$
quadratic CM abelian threefold	\mathbb{C}	$\mathrm{U}(3)$
generic abelian threefold	\mathbb{R}	USp(6)

Connected Sato-Tate groups of abelian threefolds:

Partial classification of component groups

G_{0}	$G / G_{0} \hookrightarrow$	$\left\|G / G_{0}\right\|$ divides
$\mathrm{USp}(6)$	C_{1}	1
$\mathrm{U}(3)$	C_{2}	2
$\mathrm{SU}(2) \times \mathrm{USp}(4)$	C_{1}	1
$\mathrm{U}(1) \times \mathrm{USp}(4)$	C_{2}	2
$\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{SU}(2)$	S_{3}	6
$\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(2)$	D_{2}	4
$\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{SU}(2)$	D_{4}	8
$\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)$	$\mathrm{C}_{2} 2 \mathrm{~S}_{3}$	48
$\mathrm{SU}(2) \times \mathrm{SU}(2)_{2}$	D_{4},	D_{6}
$\mathrm{SU}(2) \times \mathrm{U}(1)_{2}$	$\mathrm{D}_{6} \times \mathrm{C}_{2}$,	$\mathrm{S}_{4} \times \mathrm{C}_{2}$
$\mathrm{U}(1) \times \mathrm{SU}(2)_{2}$	$\mathrm{D}_{4} \times \mathrm{C}_{2}$,	$\mathrm{D}_{6} \times \mathrm{C}_{2}$
$\mathrm{U}(1) \times \mathrm{U}(1)_{2}$	$\mathrm{D}_{6} \times \mathrm{C}_{2} \times \mathrm{C}_{2}$,	$\mathrm{S}_{4} \times \mathrm{C}_{2} \times \mathrm{C}_{2}$
$\mathrm{SU}(2)_{3}$	D_{6},	S_{4}
$\mathrm{U}(1)_{3}$	$\ldots, 12$	

(disclaimer: this is work in progress subject to verification)

Algorithms to compute zeta functions

Given a curve C / \mathbb{Q}, we want to compute its normalized L-polynomials $\bar{L}_{p}(T)$ at all good primes $p \leq N$.
complexity per prime
(ignoring factors of $O(\log \log p)$)

algorithm	$g=1$	$g=2$	$g=3$
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3} \log p$
group computation	$p^{1 / 4} \log p$	$p^{3 / 4} \log p$	$p^{5 / 4} \log p$
p-adic cohomology	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$
CRT (Schoof-Pila)	$\log ^{5} p$	$\log ^{8} p$	$\log ^{12} p$
average polytime	$\log ^{4} p$	$\log ^{4} p$	$\log ^{4} p$

N	smalljac	hwlpoly		hypellfrob	hwlpoly
2^{14}	0.2	0.1		7.2	0.4
2^{15}	0.6	0.3		16.3	1.0
2^{16}	1.7	0.9		39.1	2.9
2^{17}	5.5	2.2		98.3	7.8
2^{18}	19.2	5.3		255	18.3
2^{19}	78.4	12.5		695	43.2
2^{20}	271	27.8		1950	98.8
2^{21}	1120	64.5		5600	229
2^{22}	2820	155	16700	537	
2^{23}	9840	357	51200	1240	
2^{24}	31900	823		158000	2800
2^{25}	105000	1890	501000	6280	
2^{26}	349000	4250		1480000	13900
2^{27}	1210000	9590		4360000	31100
2^{28}	4010000	21200		12500000	69700
2^{29}	13200000	48300		39500000	155000
2^{30}	45500000	108000	120000000	344000	

(Intel Xeon E5-2697v2 2.7 GHz CPU seconds).

[^0]: ${ }^{1}$ An embedding $\theta: \mathrm{U}(1) \rightarrow G^{0}$ where $\theta(u)$ has eigenvalues u and u^{-1} each with multiplicity g.

[^1]: ${ }^{1}$ An embedding $\theta: \mathrm{U}(1) \rightarrow G^{0}$ where $\theta(u)$ has eigenvalues u and u^{-1} each with multiplicity g.

