Sato-Tate distributions of abelian varieties

Andrew V. Sutherland

Massachusetts Institute of Technology

January 12, 2016

Mikio Sato

John Tate

Joint work with F. Fité, K.S. Kedlaya, and V. Rotger, and with D. Harvey.

Andrew V. Sutherland (MIT)

Sato-Tate groups

Sato-Tate in dimension 1

Let E/\mathbb{Q} be an elliptic curve, which we can write in the form

$$y^2 = x^3 + ax + b,$$

and let *p* be a prime of good reduction $(4a^3 + 27b^2 \not\equiv 0 \mod p)$.

The number of \mathbb{F}_p -points on the reduction E_p of E modulo p is

$$#E_p(\mathbb{F}_p) = p + 1 - t_p,$$

where the trace of Frobenius t_p is an integer in $[-2\sqrt{p}, 2\sqrt{p}]$.

We are interested in the limiting distribution of $x_p = -t_p/\sqrt{p} \in [-2, 2]$, as *p* varies over primes of good reduction up to *N*, as $N \to \infty$.

Example: $y^2 = x^3 + x + 1$

р	t_p	x_p	p	t_p	x_p	p	t_p	x_p
3	0	0.000000	71	13	-1.542816	157	-13	1.037513
5	-3	1.341641	73	2	-0.234082	163	-25	1.958151
7	3	-1.133893	79	-6	0.675053	167	24	-1.857176
11	-2	0.603023	83	-6	0.658586	173	2	-0.152057
13	-4	1.109400	89	-10	1.059998	179	0	0.000000
17	0	0.000000	97	1	-0.101535	181	-8	0.594635
19	-1	0.229416	101	-3	0.298511	191	-25	1.808937
23	-4	0.834058	103	17	-1.675060	193	-7	0.503871
29	-6	1.114172	107	3	-0.290021	197	-24	1.709929
37	-10	1.643990	109	-13	1.245174	199	-18	1.275986
41	7	-1.093216	113	-11	1.034793	211	-11	0.757271
43	10	-1.524986	127	2	-0.177471	223	-20	1.339299
47	-12	1.750380	131	4	-0.349482	227	0	0.000000
53	-4	0.549442	137	12	-1.025229	229	$^{-2}$	0.132164
59	-3	0.390567	139	14	-1.187465	233	-3	0.196537
61	12	-1.536443	149	14	-1.146925	239	-22	1.423062
67	12	-1.466033	151	$^{-2}$	0.162758	241	22	-1.417145

http://math.mit.edu/~drew/glSatoTateDistributions.html

Sato-Tate distributions in dimension 1

1. Typical case (no CM)

Elliptic curves E/\mathbb{Q} w/o CM have the semi-circular trace distribution. (This is also known for E/k, where k is a totally real number field).

[Barnet-Lamb, Clozel, Geraghty, Harris, Shepherd-Barron, Taylor]

2. Exceptional cases (CM)

Elliptic curves E/k with CM have one of two distinct trace distributions, depending on whether k contains the CM field or not.

[classical (Hecke, Deuring)]

The *Sato-Tate group* of *E* is a closed subgroup *G* of SU(2) = USp(2) derived from the ℓ -adic Galois representation attached to *E*.

The refined Sato-Tate conjecture implies that the distribution of normalized traces of E_p converges to the distribution of traces in the Sato-Tate group of *G*, under the Haar measure.

G
$$G/G^0$$
Ek $E[a_1^0], E[a_1^2], E[a_1^4] \dots$ $U(1)$ C_1 $y^2 = x^3 + 1$ $\mathbb{Q}(\sqrt{-3})$ $1, 2, 6, 20, 70, 252, \dots$ $N(U(1))$ C_2 $y^2 = x^3 + 1$ \mathbb{Q} $1, 1, 3, 10, 35, 126, \dots$ $SU(2)$ C_1 $y^2 = x^3 + x + 1$ \mathbb{Q} $1, 1, 2, 5, 14, 42, \dots$

In dimension 1 there are three possible Sato-Tate groups, two of which arise for elliptic curves defined over \mathbb{Q} .

Zeta functions and *L*-polynomials

For a smooth projective curve C/\mathbb{Q} of genus g and each prime p of good redution for C we have the *zeta function*

$$Z(C_p/\mathbb{F}_p;T) := \exp\left(\sum_{k=1}^{\infty} N_k T^k/k\right),$$

where $N_k = \#C_p(\mathbb{F}_{p^k})$. This is a rational function of the form

$$Z(C_p/\mathbb{F}_p;T) = \frac{L_p(T)}{(1-T)(1-pT)},$$

where $L_p(T)$ is an integer polynomial of degree 2g.

For
$$g = 1$$
 we have $L_p(t) = pT^2 + c_1T + 1$, and for $g = 2$,

$$L_p(T) = p^2 T^4 + c_1 p T^3 + c_2 T^2 + c_1 T + 1.$$

Normalized L-polynomials

The normalized polynomial

$$\bar{L}_p(T) := L_p(T/\sqrt{p}) = \sum_{i=0}^{2g} a_i T^i \in \mathbb{R}[T]$$

is monic, reciprocal ($a_i = a_{2g-i}$), and unitary (roots on the unit circle). The coefficients a_i necessarily satisfy $|a_i| \leq \binom{2g}{i}$.

We now consider the limiting distribution of a_1, a_2, \ldots, a_g over all primes $p \le N$ of good reduction, as $N \to \infty$.

http://math.mit.edu/~drew/g2SatoTateDistributions.html

Exceptional distributions for abelian surfaces over \mathbb{Q} :

Andrew V. Sutherland (MIT)

Sato-Tate groups

Andrew V. Sutherland (MIT)

Sato-Tate groups

January 12, 2016 9 / 20

L-polynomials of Abelian varieties

Let *A* be an abelian variety of dimension $g \ge 1$ over a number field *k* and fix a prime ℓ .

Let $\rho_{\ell} \colon G_k \to \operatorname{Aut}_{\mathbb{Q}_{\ell}}(V_{\ell}(A)) \simeq \operatorname{GSp}_{2g}(\mathbb{Q}_{\ell})$ be the Galois representation arising from the action of $G_k := \operatorname{Gal}(\bar{k}/k)$ on the ℓ -adic Tate module

 $V_{\ell}(A) := \lim_{\longleftarrow} A[\ell^n] \otimes \mathbb{Q}.$

For each prime p of good reduction for A we have the L-polynomial

$$L_{\mathfrak{p}}(T) := \det(1 - \rho_{\ell}(\operatorname{Frob}_{\mathfrak{p}})T),$$

$$\bar{L}_{\mathfrak{p}}(T) := L_{\mathfrak{p}}(T/\sqrt{\|\mathfrak{p}\|}) = \sum a_{i}T^{i}.$$

In the case that *A* is the Jacobian of a genus *g* curve *C*, this agrees with our earlier definition of $L_{\mathfrak{p}}(T)$ as the numerator of the zeta function of *C*.

The Sato-Tate problem for an abelian variety

The polynomials $\bar{L}_{p} \in \mathbb{R}[T]$ are monic, symmetric, unitary, and have degree 2g.

Every such polynomial arises as the characteristic polynomial of a conjugacy class in the unitary symplectic group USp(2g).

Each probability measure on USp(2g) determines a distribution of conjugacy classes (hence a distribution of characteristic polynomials).

The *Sato-Tate problem*, in its simplest form, is to find a measure for which these classes are equidistributed.

Conjecturally, such a measure arises as the Haar measure of a compact subgroup ST_A of USp(2g).

The Sato-Tate group

Recall that the action of G_k on $V_{\ell}(A)$ induces the representation

$$\rho_{\ell} \colon G_k \to \operatorname{Aut}_{\mathbb{Q}_{\ell}}(V_{\ell}(A)) \simeq \operatorname{GSp}_{2g}(\mathbb{Q}_{\ell}).$$

Fixing an embedding $\iota \colon \mathbb{Q}_{\ell} \hookrightarrow \mathbb{C}$, we now apply

$$\ker(G_k \xrightarrow{\chi_\ell} \mathbb{Q}_\ell^{\times}) \xrightarrow{\overline{\rho_\ell}} \operatorname{Sp}_{2g}(\mathbb{Q}_\ell) \xrightarrow{\otimes_\iota \mathbb{C}} \operatorname{Sp}_{2g}(\mathbb{C}),$$

and define ST_A to be a maximal compact subgroup of the image.

Conjecturally, ST_A does not depend on ℓ or ι ; this is known for $g \leq 3$.

Definition [Serre] ST_A \subseteq USp(2g) is the Sato-Tate group of A.

The refined Sato-Tate conjecture

Let $s(\mathfrak{p})$ denote the conjugacy class of the image of $\operatorname{Frob}_{\mathfrak{p}}$ in ST_A . Let $\mu_{\operatorname{ST}_A}$ denote the image of the Haar measure on $\operatorname{Conj}(\operatorname{ST}_A)$, which does not depend on the choice of ℓ or ι .

Conjecture

The conjugacy classes s(p) are equidistributed with respect to μ_{ST_A} .

In particular, the distribution of $\bar{L}_{p}(T)$ matches the distribution of characteristic polynomials of random matrices in ST_{A} .

We can test this numerically by comparing statistics of the coefficients a_1, \ldots, a_g of $\bar{L}_{\mathfrak{p}}(T)$ over $\|\mathfrak{p}\| \leq N$ to the predictions given by μ_{ST_A} .

```
https://hensel.mit.edu:8000/home/pub/6
```

The Sato-Tate axioms

The Sato-Tate axioms for abelian varieties (weight-1 motives):

- *G* is closed subgroup of USp(2g).
- Hodge condition: G contains a Hodge circle¹ whose conjugates generate a dense subset of G.
- Solution Rationality condition: for each component *H* of *G* and each irreducible character χ of $\operatorname{GL}_{2g}(\mathbb{C})$ we have $\operatorname{E}[\chi(\gamma) : \gamma \in H] \in \mathbb{Z}$.

For any fixed g, the set of subgroups $G \subseteq USp(2g)$ that satisfy the *Sato-Tate axioms* is **finite** up to conjugacy (3 for g = 1, 55 for g = 2).

¹An embedding θ : U(1) \rightarrow G⁰ where $\theta(u)$ has eigenvalues u and u^{-1} each with multiplicity g.

The Sato-Tate axioms

The Sato-Tate axioms for abelian varieties (weight-1 motives):

- *G* is closed subgroup of USp(2g).
- Hodge condition: G contains a Hodge circle¹ whose conjugates generate a dense subset of G.
- Solution Rationality condition: for each component *H* of *G* and each irreducible character χ of $\operatorname{GL}_{2g}(\mathbb{C})$ we have $\operatorname{E}[\chi(\gamma) : \gamma \in H] \in \mathbb{Z}$.

For any fixed g, the set of subgroups $G \subseteq USp(2g)$ that satisfy the *Sato-Tate axioms* is **finite** up to conjugacy (3 for g = 1, 55 for g = 2).

Theorem

For $g \leq 3$, the group ST_A satisfies the Sato-Tate axioms.

This is expected to hold for all g.

¹An embedding θ : U(1) \rightarrow G^0 where $\theta(u)$ has eigenvalues u and u^{-1} each with multiplicity g.

Galois endomorphism modules

Let *A* be an abelian variety defined over a number field *k*. Let *K* be the minimal extension of *k* for which $\operatorname{End}(A_K) = \operatorname{End}(A_{\overline{\mathbb{Q}}})$. $\operatorname{Gal}(K/k)$ acts on the \mathbb{R} -algebra $\operatorname{End}(A_K)_{\mathbb{R}} = \operatorname{End}(A_K) \otimes_{\mathbb{Z}} \mathbb{R}$.

Definition

The *Galois endomorphism type* of *A* is the isomorphism class of $[Gal(K/k), End(A_K)_{\mathbb{R}}]$, where $[G, E] \simeq [G', E']$ iff there are isomorphisms $G \simeq G'$ and $E \simeq E'$ that are compatible with the Galois action.

Galois endomorphism modules

Let *A* be an abelian variety defined over a number field *k*. Let *K* be the minimal extension of *k* for which $\operatorname{End}(A_K) = \operatorname{End}(A_{\overline{\mathbb{Q}}})$. $\operatorname{Gal}(K/k)$ acts on the \mathbb{R} -algebra $\operatorname{End}(A_K)_{\mathbb{R}} = \operatorname{End}(A_K) \otimes_{\mathbb{Z}} \mathbb{R}$.

Definition

The *Galois endomorphism type* of *A* is the isomorphism class of $[Gal(K/k), End(A_K)_{\mathbb{R}}]$, where $[G, E] \simeq [G', E']$ iff there are isomorphisms $G \simeq G'$ and $E \simeq E'$ that are compatible with the Galois action.

Theorem [FKRS 2012]

For abelian varieties A/k of dimension $g \le 3$ there is a one-to-one correspondence between Sato-Tate groups and Galois types.

More precisely, the identity component G^0 is uniquely determined by $\operatorname{End}(A_k)_{\mathbb{R}}$ and $G/G^0 \simeq \operatorname{Gal}(K/k)$ (with corresponding actions).

Real endomorphism algebras of abelian surfaces

abelian surface	$\operatorname{End}(A_K)_{\mathbb{R}}$	ST^0_A
square of CM elliptic curve	$M_2(\mathbb{C})$	U(1) ₂
QM abelian surface	$M_2(\mathbb{R})$	$SU(2)_2$
• square of non-CM elliptic curve		
CM abelian surface	$\mathbb{C}\times\mathbb{C}$	$\mathrm{U}(1) imes \mathrm{U}(1)$
 product of CM elliptic curves 		
product of CM and non-CM elliptic curves	$\mathbb{C} imes \mathbb{R}$	$\mathrm{U}(1) imes \mathrm{SU}(2)$
RM abelian surface	$\mathbb{R} imes \mathbb{R}$	$\mathrm{SU}(2) imes \mathrm{SU}(2)$
 product of non-CM elliptic curves 		
generic abelian surface	\mathbb{R}	USp(4)

(factors in products are assumed to be non-isogenous)

Theorem [FKRS 2012]

Up to conjugacy, 55 subgroups of USp(4) satisfy the Sato-Tate axioms:

$C_1, C_2, C_3, C_4, C_6, D_2, D_3, D_4, D_6, T, O,$
$J(C_1), J(C_2), J(C_3), J(C_4), J(C_6),$
$J(D_2), J(D_3), J(D_4), J(D_6), J(T), J(O),$
$C_{2,1}, C_{4,1}, C_{6,1}, D_{2,1}, D_{3,2}, D_{4,1}, D_{4,2}, D_{6,1}, D_{6,2}, O_1$
$E_1, E_2, E_3, E_4, E_6, J(E_1), J(E_2), J(E_3), J(E_4), J(E_6)$
$F, F_a, F_c, F_{a,b}, F_{ab}, F_{ac}, F_{ab,c}, F_{a,b,c}$
$U(1) \times SU(2), N(U(1) \times SU(2))$
$SU(2) \times SU(2), N(SU(2) \times SU(2))$
USp(4)

U(1 U(1) SU(2)

Theorem [FKRS 2012]

Up to conjugacy, 55 subgroups of USp(4) satisfy the Sato-Tate axioms:

U(1):	$C_1, C_2, C_3, C_4, C_6, D_2, D_3, D_4, D_6, T, O,$
	$J(C_1), J(C_2), J(C_3), J(C_4), J(C_6),$
	$J(D_2), J(D_3), J(D_4), J(D_6), J(T), J(O),$
	$C_{2,1}, C_{4,1}, C_{6,1}, D_{2,1}, D_{3,2}, D_{4,1}, D_{4,2}, D_{6,1}, D_{6,2}, O_1$
SU(2):	$E_1, E_2, E_3, E_4, E_6, J(E_1), J(E_2), J(E_3), J(E_4), J(E_6)$
$U(1) \times U(1)$:	$F, F_a, F_c, F_{a,b}, F_{ab}, F_{ac}, F_{ab,c}, F_{a,b,c}$
$U(1) \times SU(2)$:	$U(1) \times SU(2), N(U(1) \times SU(2))$
$SU(2) \times SU(2)$:	$SU(2) \times SU(2), N(SU(2) \times SU(2))$
USp(4):	USp(4)

Of these, exactly 52 arise as ST_A for an abelian surface A (34 over \mathbb{Q}).

Theorem [FKRS 2012]

Up to conjugacy, 55 subgroups of USp(4) satisfy the Sato-Tate axioms:

U(1):	$C_1, C_2, C_3, C_4, C_6, D_2, D_3, D_4, D_6, T, O,$
	$J(C_1), J(C_2), J(C_3), J(C_4), J(C_6),$
	$J(D_2), J(D_3), J(D_4), J(D_6), J(T), J(O),$
	$C_{2,1}, C_{4,1}, C_{6,1}, D_{2,1}, D_{3,2}, D_{4,1}, D_{4,2}, D_{6,1}, D_{6,2}, O_1$
SU(2):	$E_1, E_2, E_3, E_4, E_6, J(E_1), J(E_2), J(E_3), J(E_4), J(E_6)$
$U(1) \times U(1)$:	$F, F_a, F_c, F_{a,b}, F_{ab}, F_{ac}, F_{ab,c}, F_{a,b,c}$
$U(1) \times SU(2)$:	$U(1) \times SU(2), N(U(1) \times SU(2))$
$SU(2) \times SU(2)$:	$SU(2) \times SU(2), N(SU(2) \times SU(2))$
USp(4):	USp(4)

Of these, exactly 52 arise as ST_A for an abelian surface A (34 over \mathbb{Q}).

This theorem says nothing about equidistribution, however this is now known in many special cases [FS 2012, Johansson 2013].

Andrew V. Sutherland (MIT)

Sato-Tate groups

Sato-Tate groups in dimension 2 with $G^0 = U(1)_2$.

d	С	G	G/G^0	z_1	z2	$M[a_1^2]$	$M[a_2]$
1	1	C_1	C1	0	0, 0, 0, 0, 0	8, 96, 1280, 17920	4, 18, 88, 454
1	2	C_2	C ₂	1	0, 0, 0, 0, 0	4, 48, 640, 8960	2, 10, 44, 230
1	3	C_3	C3	0	0, 0, 0, 0, 0, 0	4, 36, 440, 6020	2, 8, 34, 164
1	4	C_4	C_4	1	0, 0, 0, 0, 0, 0	4, 36, 400, 5040	2, 8, 32, 150
1	6	C_6	C ₆	1	0, 0, 0, 0, 0	4, 36, 400, 4900	2, 8, 32, 148
1	4	D_2	D ₂	3	0, 0, 0, 0, 0	2, 24, 320, 4480	1, 6, 22, 118
1	6	D_3	D ₃	3	0, 0, 0, 0, 0	2, 18, 220, 3010	1, 5, 17, 85
1	8	D_4	D_4	5	0, 0, 0, 0, 0	2, 18, 200, 2520	1, 5, 16, 78
1	12	D_6	D ₆	7	0, 0, 0, 0, 0	2, 18, 200, 2450	1, 5, 16, 77
1	2	$J(C_1)$	C ₂	1	1, 0, 0, 0, 0	4, 48, 640, 8960	1, 11, 40, 235
1	4	$J(C_2)$	D ₂	3	1, 0, 0, 0, 1	2, 24, 320, 4480	1, 7, 22, 123
1	6	$J(C_3)$	C ₆	3	1, 0, 0, 2, 0	2, 18, 220, 3010	1, 5, 16, 85
1	8	$J(C_4)$	$C_4 \times C_2$	5	1, 0, 2, 0, 1	2, 18, 200, 2520	1, 5, 16, 79
1	12	$J(C_6)$	$C_6 \times C_2$	7	1, 2, 0, 2, 1	2, 18, 200, 2450	1, 5, 16, 77
1	8	$J(D_2)$	$D_2 \times C_2$	7	1, 0, 0, 0, 3	1, 12, 160, 2240	1, 5, 13, 67
1	12	$J(D_3)$	D ₆	9	1, 0, 0, 2, 3	1, 9, 110, 1505	1, 4, 10, 48
1	16	$J(D_4)$	$D_4 \times C_2$	13	1, 0, 2, 0, 5	1, 9, 100, 1260	1, 4, 10, 45
1	24	$J(D_6)$	$D_6 \times C_2$	19	1, 2, 0, 2, 7	1, 9, 100, 1225	1, 4, 10, 44
1	2	$C_{2,1}$	C2	1	0, 0, 0, 0, 1	4, 48, 640, 8960	3, 11, 48, 235
1	4	$C_{4,1}$	C_4	3	0, 0, 2, 0, 0	2, 24, 320, 4480	1, 5, 22, 115
1	6	$C_{6,1}$	C ₆	3	0, 2, 0, 0, 1	2, 18, 220, 3010	1, 5, 18, 85
1	4	$D_{2,1}$	D ₂	3	0, 0, 0, 0, 2	2, 24, 320, 4480	2, 7, 26, 123
1	8	$D_{4,1}$	D_4	7	0, 0, 2, 0, 2	1, 12, 160, 2240	1, 4, 13, 63
1	12	$D_{6,1}$	D ₆	9	0, 2, 0, 0, 4	1, 9, 110, 1505	1, 4, 11, 48
1	6	$D_{3,2}$	D ₃	3	0, 0, 0, 0, 3	2, 18, 220, 3010	2, 6, 21, 90
1	8	$D_{4,2}$	D_4	5	0, 0, 0, 0, 4	2, 18, 200, 2520	2, 6, 20, 83
1	12	$D_{6,2}$	D ₆	7	0, 0, 0, 0, 6	2, 18, 200, 2450	2, 6, 20, 82
1	12	T	A ₄	3	0, 0, 0, 0, 0	2, 12, 120, 1540	1, 4, 12, 52
1	24	0	S ₄	9	0, 0, 0, 0, 0, 0	2, 12, 100, 1050	1, 4, 11, 45
1	24	O_1	S ₄	15	0, 0, 6, 0, 6	1, 6, 60, 770	1, 3, 8, 30
1	24	J(T)	$A_4 \times C_2$	15	1, 0, 0, 8, 3	1, 6, 60, 770	1, 3, 7, 29
1	48	J(O)	$S_4 \times C_2$	33	1, 0, 6, 8, 9	1, 6, 50, 525	1, 3, 7, 26

d	С	G	G/G^0	z_1	z2	$M[a_1^2]$	$M[a_2]$
3	1	E_1	C1	0	0, 0, 0, 0, 0, 0	4, 32, 320, 3584	3, 10, 37, 150
3	2	E_2	C_2	1	0, 0, 0, 0, 0, 0	2, 16, 160, 1792	1, 6, 17, 78
3	3	E_3	C3	0	0, 0, 0, 0, 0, 0	2, 12, 110, 1204	1, 4, 13, 52
3	4	E_4	C_4	1	0, 0, 0, 0, 0, 0	2, 12, 100, 1008	1, 4, 11, 46
3	6	E_6	C ₆	1	0, 0, 0, 0, 0, 0	2, 12, 100, 980	1, 4, 11, 44
3	2	$J(E_1)$	C ₂	1	0, 0, 0, 0, 0, 0	2, 16, 160, 1792	2, 6, 20, 78
3	4	$J(E_2)$	D ₂	3	0, 0, 0, 0, 0, 0	1, 8, 80, 896	1, 4, 10, 42
3	6	$J(E_3)$	D ₃	3	0, 0, 0, 0, 0, 0	1, 6, 55, 602	1, 3, 8, 29
3	8	$J(E_4)$	D_4	5	0, 0, 0, 0, 0, 0	1, 6, 50, 504	1, 3, 7, 26
3	12	$J(E_6)$	D ₆	7	0, 0, 0, 0, 0, 0	1, 6, 50, 490	1, 3, 7, 25
2	1	F	C1	0	0, 0, 0, 0, 0, 0	4, 36, 400, 4900	2, 8, 32, 148
2	2	F_a	C_2	0	0, 0, 0, 0, 1	3, 21, 210, 2485	2, 6, 20, 82
2	2	F_c	C_2	1	0, 0, 0, 0, 0, 0	2, 18, 200, 2450	1, 5, 16, 77
2	2	Fab	C ₂	1	0, 0, 0, 0, 1	2, 18, 200, 2450	2, 6, 20, 82
2	4	Fac	C_4	3	0, 0, 2, 0, 1	1, 9, 100, 1225	1, 3, 10, 41
2	4	$F_{a,b}$	D ₂	1	0, 0, 0, 0, 3	2, 12, 110, 1260	2, 5, 14, 49
2	4	$F_{ab,c}$	D ₂	3	0, 0, 0, 0, 1	1, 9, 100, 1225	1, 4, 10, 44
2	8	$F_{a,b,c}$	D_4	5	0, 0, 2, 0, 3	1, 6, 55, 630	1, 3, 7, 26
4	1	G_4	C1	0	0, 0, 0, 0, 0	3, 20, 175, 1764	2, 6, 20, 76
4	2	$N(G_4)$	C ₂	0	0, 0, 0, 0, 1	2, 11, 90, 889	2, 5, 14, 46
6	1	G_6	C1	0	0, 0, 0, 0, 0, 0	2, 10, 70, 588	2, 5, 14, 44
6	2	$N(G_6)$	C_2	1	0, 0, 0, 0, 0, 0	1, 5, 35, 294	1, 3, 7, 23
10	1	USp(4)	C1	0	0, 0, 0, 0, 0, 0	1, 3, 14, 84	1, 2, 4, 10

Sato-Tate groups in dimension 2 with $G^0 \neq U(1)_2$.

Group	Curve $y^2 = f(x)$	k	Κ
C1	$x^{6} + 1$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3})$
C_2	$x^{5} - x$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(i, \sqrt{2})$
C_3	$x^{6} + 4$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3},\sqrt[3]{2})$
C_4	$x^6 + x^5 - 5x^4 - 5x^2 - x + 1$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(\sqrt{-2}, a); a^4 + 17a^2 + 68 = 0$
C_6	$x^{6} + 2$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{2})$
D_2	$x^5 + 9x$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(i,\sqrt{2},\sqrt{3})$
D_3	$x^6 + 10x^3 - 2$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(\sqrt{-3},\sqrt[6]{-2})$
D_4	$x^{5} + 3x$	$\mathbb{Q}(\sqrt{-2})$	$Q(i, \sqrt{2}, \sqrt[4]{3})$
D_6	$x^6 + 3x^5 + 10x^3 - 15x^2 + 15x - 6$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(i, \sqrt{2}, \sqrt{3}, a); a^3 + 3a - 2 = 0$
Т	$x^6 + 6x^5 - 20x^4 + 20x^3 - 20x^2 - 8x + 8$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(\sqrt{-2}, a, b);$
			$a^{3} - 7a + 7 = b^{4} + 4b^{2} + 8b + 8 = 0$
0	$x^6 - 5x^4 + 10x^3 - 5x^2 + 2x - 1$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(\sqrt{-2},\sqrt{-11},a,b);$
			$a^{3} - 4a + 4 = b^{4} + 22b + 22 = 0$
$J(C_1)$	$x^{5} - x$	$\mathbb{Q}(i)$	$\mathbb{Q}(i, \sqrt{2})$
$J(C_2)$	$x^{5} - x$	Q	$\mathbb{Q}(i,\sqrt{2})$
$J(C_3)$	$x^{0} + 10x^{3} - 2$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3},\sqrt[n]{-2})$
$J(C_4)$	$x^{0} + x^{3} - 5x^{4} - 5x^{2} - x + 1$	Q	see entry for C_4
$J(C_6)$	$x^{0} - 15x^{*} - 20x^{3} + 6x + 1$	Q	$\mathbb{Q}(i, \sqrt{3}, a); a^3 + 3a^2 - 1 = 0$
$J(D_2)$	$x^{3} + 9x$	Q	$\mathbb{Q}(i,\sqrt{2},\sqrt{3})$
$J(D_3)$	$x^{0} + 10x^{3} - 2$	Q	$\mathbb{Q}(\sqrt{-3},\sqrt[3]{-2})$
$J(D_4)$	$x^{3} + 3x$	Q	$\mathbb{Q}(i,\sqrt{2},\sqrt{3})$
$J(D_6)$	$x^{0} + 3x^{3} + 10x^{3} - 15x^{2} + 15x - 6$	Q	see entry for D ₆
J(T)	$x^{0} + 6x^{3} - 20x^{4} + 20x^{3} - 20x^{2} - 8x + 8$	Q	see entry for T
J(O)	$x^{5} - 5x^{4} + 10x^{5} - 5x^{2} + 2x - 1$	Q	see entry for O
$C_{2,1}$	x" + 1	Q	$\mathbb{Q}(\sqrt{-3})$
$C_{4.1}$	$x^{2} + 2x$	$\mathbb{Q}(i)$	$\mathbb{Q}(i,\sqrt{2})$
$C_{6,1}$	$x^{3} + 6x^{2} - 30x^{4} + 20x^{2} + 15x^{2} - 12x + 1$	Q	$\mathbb{Q}(\sqrt{-3}, a); a^3 - 3a + 1 = 0$
$D_{2,1}$	$x^{2} + x$	Q	$\mathbb{Q}(i,\sqrt{2})$
$D_{4,1}$	$x^{3} + 2x$	Q	$\mathbb{Q}(i, \sqrt[3]{2})$
$D_{6,1}$	$x^6 + 6x^5 - 30x^4 - 40x^3 + 60x^2 + 24x - 8$	Q	$\mathbb{Q}(\sqrt{-2}, \sqrt{-3}, a); a^3 - 9a + 6 = 0$
$D_{3,2}$	$x^{6} + 4$	Q	$\mathbb{Q}(\sqrt{-3},\sqrt[3]{2})$
$D_{4,2}$	$x^6 + x^5 + 10x^3 + 5x^2 + x - 2$	Q	$\mathbb{Q}(\sqrt{-2}, a); a^4 - 14a^2 + 28a - 14 = 0$
D _{6,2}	$x^{6} + 2$	Q	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{2})$
O_1	$x^{6} + 7x^{5} + 10x^{4} + 10x^{3} + 15x^{2} + 17x + 4$	Q	$\mathbb{Q}(\sqrt{-2}, a, b);$
			$a^3 + 5a + 10 = b^4 + 4b^2 + 8b + 2 = 0$

Genus 2 curves realizing Sato-Tate groups with $G^0 = U(1)$

Group	Curve $y^2 = f(x)$	k	Κ
F	$x^6 + 3x^4 + x^2 - 1$	$\mathbb{Q}(i,\sqrt{2})$	$\mathbb{Q}(i,\sqrt{2})$
F_a	$x^6 + 3x^4 + x^2 - 1$	$\mathbb{Q}(i)$	$\mathbb{Q}(i,\sqrt{2})$
F_{ab}	$x^6 + 3x^4 + x^2 - 1$	$\mathbb{Q}(\sqrt{2})$	$\mathbb{Q}(i,\sqrt{2})$
Fac	$x^{5} + 1$	Q	$\mathbb{Q}(a); a^4 + 5a^2 + 5 = 0$
$F_{a,b}$	$x^6 + 3x^4 + x^2 - 1$	Q	$\mathbb{Q}(i,\sqrt{2})$
E_1	$x^{6} + x^{4} + x^{2} + 1$	Q	Q
E_2	$x^6 + x^5 + 3x^4 + 3x^2 - x + 1$	Q	$\mathbb{Q}(\sqrt{2})$
E_3	$x^5 + x^4 - 3x^3 - 4x^2 - x$	Q	$\mathbb{Q}(a); a^3 - 3a + 1 = 0$
E_4	$x^5 + x^4 + x^2 - x$	Q	$\mathbb{Q}(a); a^4 - 5a^2 + 5 = 0$
E_6	$x^5 + 2x^4 - x^3 - 3x^2 - x$	Q	$\mathbb{Q}(\sqrt{7},a);a^3-7a-7=0$
$J(E_1)$	$x^5 + x^3 + x$	Q	$\mathbb{Q}(i)$
$J(E_2)$	$x^5 + x^3 - x$	Q	$\mathbb{Q}(i,\sqrt{2})$
$J(E_3)$	$x^6 + x^3 + 4$	Q	$\mathbb{Q}(\sqrt{-3}, \sqrt[3]{2})$
$J(E_4)$	$x^5 + x^3 + 2x$	Q	$\mathbb{Q}(i, \sqrt[4]{2})$
$J(E_6)$	$x^6 + x^3 - 2$	Q	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{-2})$
$G_{1,3}$	$x^6 + 3x^4 - 2$	$\mathbb{Q}(i)$	$\mathbb{Q}(i)$
$N(G_{1,3})$	$x^6 + 3x^4 - 2$	Q	$\mathbb{Q}(i)$
G _{3,3}	$x^6 + x^2 + 1$	Q	Q
$N(G_{3,3})$	$x^6 + x^5 + x - 1$	Q	$\mathbb{Q}(i)$
USp(4)	$x^5 - x + 1$	Q	Q

Genus 2 curves realizing Sato-Tate groups with $G^0 \neq \mathrm{U}(1)$

Real endomorphism algebras of abelian threefolds

abelian threefold	$\operatorname{End}(A_K)_{\mathbb{R}}$	ST_A^0
cube of a CM elliptic curve	$M_3(\mathbb{C})$	U(1) ₃
cube of a non-CM elliptic curve	$M_3(\mathbb{R})$	SU(2)3
product of CM elliptic curve and square of CM elliptic curve	$\mathbb{C} \times M_2(\mathbb{C})$	$U(1) \times U(1)_2$
 product of CM elliptic curve and QM abelian surface 	$\mathbb{C}\times M_2(\mathbb{R})$	$U(1) \times SU(2)_2$
 product of CM elliptic curve and square of non-CM elliptic curve 		
product of non-CM elliptic curve and square of CM elliptic curve	$\mathbb{R}\times M_2(\mathbb{C})$	$SU(2) \times U(1)_2$
 product of non-CM elliptic curve and QM abelian surface 	$\mathbb{R}\times M_2(\mathbb{R})$	$SU(2) \times SU(2)_2$
 product of non-CM elliptic curve and square of non-CM elliptic curve 		
CM abelian threefold	$\mathbb{C}\times\mathbb{C}\times\mathbb{C}$	$U(1) \times U(1) \times U(1)$
 product of CM elliptic curve and CM abelian surface 		
 product of three CM elliptic curves 		
 product of non-CM elliptic curve and CM abelian surface 	$\mathbb{C}\times\mathbb{C}\times\mathbb{R}$	$U(1) \times U(1) \times SU(2)$
 product of non-CM elliptic curve and two CM elliptic curves 		
 product of CM elliptic curve and RM abelian surface 	$\mathbb{C}\times\mathbb{R}\times\mathbb{R}$	$U(1) \times SU(2) \times SU(2)$
 product of CM elliptic curve and two non-CM elliptic curves 		
RM abelian threefold	$\mathbb{R} \times \mathbb{R} \times \mathbb{R}$	$SU(2) \times SU(2) \times SU(2)$
 product of non-CM elliptic curve and RM abelian surface 		
 product of 3 non-CM elliptic curves 		
product of CM elliptic curve and abelian surface	$\mathbb{C}\times\mathbb{R}$	$U(1) \times USp(4)$
product of non-CM elliptic curve and abelian surface	$\mathbb{R} \times \mathbb{R}$	$SU(2) \times USp(4)$
quadratic CM abelian threefold	C	U(3)
generic abelian threefold	R	USp(6)

Connected Sato-Tate groups of abelian threefolds:

Partial classification of component groups

G_0	$G/G_0 \hookrightarrow$	$ G/G_0 $ divides
USp(6)	C_1	1
U(3)	C_2	2
$SU(2) \times USp(4)$	\mathbf{C}_1	1
$U(1) \times USp(4)$	C_2	2
$SU(2) \times SU(2) \times SU(2)$	S_3	6
$U(1) \times SU(2) \times SU(2)$	D_2	4
$U(1) \times U(1) \times SU(2)$	D_4	8
$U(1) \times U(1) \times U(1)$	$C_2 \wr S_3$	48
$SU(2) \times SU(2)_2$	D_4, D_6	8, 12
$SU(2) \times U(1)_2$	$D_6 \times C_2, \ S_4 \times C_2$	48
$\mathrm{U}(1) imes \mathrm{SU}(2)_2$	$D_4 \times C_2, \ D_6 \times C_2$	16, 24
$U(1) \times U(1)_2$	$D_6 \times C_2 \times C_2, \ S_4 \times C_2 \times C_2$	96
$SU(2)_3$	D_6, S_4	24
$U(1)_{3}$		336, 1728

(disclaimer: this is work in progress subject to verification)

Algorithms to compute zeta functions

Given a curve C/\mathbb{Q} , we want to compute its normalized *L*-polynomials $\overline{L}_p(T)$ at all good primes $p \leq N$.

complexity per prime

(ignoring factors of $O(\log \log p)$)

algorithm	g = 1	g = 2	g = 3
point enumeration	$p\log p$	$p^2 \log p$	$p^3 \log p$
group computation	$p^{1/4}\log p$	$p^{3/4}\log p$	$p^{5/4}\log p$
<i>p</i> -adic cohomology	$p^{1/2}\log^2 p$	$p^{1/2}\log^2 p$	$p^{1/2}\log^2 p$
CRT (Schoof-Pila)	$\log^5 p$	$\log^8 p$	$\log^{12} p$
average polytime	$\log^4 p$	$\log^4 p$	$\log^4 p$

	genus 2		genus	genus 3	
Ν	smalljac	hwlpoly	hypellfrob	hwlpoly	
2 ¹⁴	0.2	0.1	7.2	0.4	
2^{15}	0.6	0.3	16.3	1.0	
2 ¹⁶	1.7	0.9	39.1	2.9	
2^{17}	5.5	2.2	98.3	7.8	
2^{18}	19.2	5.3	255	18.3	
2 ¹⁹	78.4	12.5	695	43.2	
2^{20}	271	27.8	1950	98.8	
2^{21}	1120	64.5	5600	229	
2^{22}	2820	155	16700	537	
2^{23}	9840	357	51200	1240	
2^{24}	31900	823	158000	2800	
2^{25}	105000	1890	501000	6280	
2^{26}	349000	4250	1480000	13900	
2^{27}	1210000	9590	4360000	31100	
2^{28}	4010000	21200	12500000	69700	
2^{29}	13200000	48300	39500000	155000	
2^{30}	45500000	108000	120000000	344000	

(Intel Xeon E5-2697v2 2.7 GHz CPU seconds).

Andrew V. Sutherland (MIT)