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Sato-Tate in dimension 1

Let E/Q be an elliptic curve, which we can write in the form

y2 = x3 + ax + b.

Let p be a prime of good reduction for E.
The number of Fp-points on the reduction of E modulo p is

#E(Fp) = p + 1− tp.

The trace of Frobenius tp is an integer in the interval [−2
√

p, 2
√

p].

We are interested in the limiting distribution of xp = −tp/
√

p ∈ [−2, 2],
as p varies over primes of good reduction.
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Example: y2 = x3 + x + 1
p tp xp p tp xp p tp xp

3 0 0.000000 71 13 −1.542816 157 −13 1.037513
5 −3 1.341641 73 2 −0.234082 163 −25 1.958151
7 3 −1.133893 79 −6 0.675053 167 24 −1.857176

11 −2 0.603023 83 −6 0.658586 173 2 −0.152057
13 −4 1.109400 89 −10 1.059998 179 0 0.000000
17 0 0.000000 97 1 −0.101535 181 −8 0.594635
19 −1 0.229416 101 −3 0.298511 191 −25 1.808937
23 −4 0.834058 103 17 −1.675060 193 −7 0.503871
29 −6 1.114172 107 3 −0.290021 197 −24 1.709929
37 −10 1.643990 109 −13 1.245174 199 −18 1.275986
41 7 −1.093216 113 −11 1.034793 211 −11 0.757271
43 10 −1.524986 127 2 −0.177471 223 −20 1.339299
47 −12 1.750380 131 4 −0.349482 227 0 0.000000
53 −4 0.549442 137 12 −1.025229 229 −2 0.132164
59 −3 0.390567 139 14 −1.187465 233 −3 0.196537
61 12 −1.536443 149 14 −1.146925 239 −22 1.423062
67 12 −1.466033 151 −2 0.162758 241 22 −1.417145

http://math.mit.edu/˜drew
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Sato-Tate distributions in dimension 1

1. Typical case (no CM)
Elliptic curves E/Q w/o CM have the semi-circular trace distribution.
(This is also known for E/k, where k is a totally real number field).

[Taylor et al.]

2. Exceptional cases (CM)
Elliptic curves E/k with CM have one of two distinct trace distributions,
depending on whether k contains the CM field or not.

[classical]
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Sato-Tate groups in dimension 1

The Sato-Tate group of E is a closed subgroup G of SU(2) = USp(2)
derived from the `-adic Galois representation attached to E.

The refined Sato-Tate conjecture implies that the normalized
trace distribution of E converges to the trace distribution of G under
the Haar measure (the unique translation-invariant measure).

G G/G0 Example curve k E[a0
1],E[a2

1],E[a4
1] . . .

U(1) C1 y2 = x3 + 1 Q(
√
−3) 1, 2, 6, 20, 70, 252, . . .

N(U(1)) C2 y2 = x3 + 1 Q 1, 1, 3, 10, 35, 126, . . .
SU(2) C1 y2 = x3 + x + 1 Q 1, 1, 2, 5, 14, 42, . . .

In dimension 1 there are three possible Sato-Tate groups, two of which
arise for elliptic curves defined over Q.
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Zeta functions and L-polynomials

For a smooth projective curve C/Q of genus g and a prime p define

Z(C/Fp; T) := exp

( ∞∑
k=1

NkTk/k

)
,

where Nk = #C(Fpk). This is a rational function of the form

Z(C/Fp; T) =
Lp(T)

(1− T)(1− pT)
,

where Lp(T) is an integer polynomial of degree 2g.

For g = 1 we have Lp(t) = pT2 + c1T + 1, and for g = 2,

Lp(T) = p2T4 + c1pT3 + c2T2 + c1T + 1.
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Normalized L-polynomials

The normalized polynomial

L̄p(T) := Lp(T/
√

p) =

2g∑
i=0

aiT i ∈ R[T]

is monic, symmetric (ai = a2g−i), and unitary (roots on the unit circle).
The coefficients ai necessarily satisfy |ai| ≤

(2g
i

)
.

We now consider the limiting distribution of a1, a2, . . . , ag over all
primes p ≤ N of good reduction, as N →∞.

In this talk we will focus primarily on genus g = 2.

http://math.mit.edu/˜drew
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L-polynomials of Abelian varieties

Let A be an abelian variety of dimension g ≥ 1 over a number field k.

Let ρ` : Gk → AutQ`
(V`(A)) ' GSp2g(Q`) be the Galois representation

arising from the action of Gk on the `-adic Tate module

V`(A) := lim
←−

A[`n].

For each prime p of good reduction for A, let q = ‖p‖ and define

Lp(T) := det(1− ρ`(Frobp)T),

L̄p(T) := Lp(T/
√

q) =
∑

aiT i.

In the case that A is the Jacobian of a genus g curve C, this agrees
with our earlier definition in terms of the zeta function of C.
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The Sato-Tate problem for an abelian variety

For each prime p of k where A has good reduction, the polynomial
L̄p ∈ R[T] is monic, symmetric, unitary, and of degree 2g.

Every such polynomial arises as the characteristic polynomial of
a conjugacy class in the unitary symplectic group USp(2g).

Each probability measure on USp(2g) determines a distribution of
conjugacy classes (hence a distribution of characteristic polynomials).

The Sato-Tate problem, in its simplest form, is to find a measure for
which these classes are equidistributed. Conjecturally, such a measure
arises as the Haar measure of a compact subgroup of USp(2g).
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The Sato-Tate group STA

Let ρ` : Gk → AutQ`
(V`(A)) ' GSp2g(Q`) be the `-adic Galois

representation arising from the action of Gk on V`(A) = T`(A)⊗Q.

Let G1
k be the kernel of the cyclotomic character χ` : Gk → Q×` .

Let G1,Zar
` be the Zariski closure of ρ`(G1

k) in GSp2g(Q`).
Choose an embedding ι : Q` ↪→ C and let G1 = G1,Zar

` ⊗ι C.

Definition [Serre]
STA ⊆ USp(2g) is a maximal compact subgroup of G1 ⊆ Sp2g(C).
For each prime p of good reduction for A, let s(p) denote the
conjugacy class of ‖p‖−1/2ρ`(Frobp) ∈ G1 in STA.

Conjecturally, STA does not depend on `; this is known for g ≤ 3.
In any case, the characteristic polynomial of s(p) is always L̄p(T).
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Equidistribution

Let µSTA denote the image of the Haar measure on Conj(STA)
(which does not depend on the choice of ` or the embedding ι).

Conjecture [Refined Sato-Tate]
The conjugacy classes s(p) are equidistributed with respect to µSTA .

In particular, the distribution of L̄p(T) matches the distribution of
characteristic polynomials of random matrices in STA.

We can test this numerically by comparing statistics of the coefficients
a1, . . . , ag of L̄p(T) over ‖p‖ ≤ N to the predictions given by µSTA .
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The Sato-Tate axioms (weight 1)
A subgroup G of USp(2g) satisfies the Sato-Tate axioms if:

1 G is closed.
2 (Hodge circles) There is a subgroup H that is the image of a

homomorphism θ : U(1)→ G0 such that θ(u) has eigenvalues u
and u−1 with multiplicity g, and H can be chosen so that its
conjugates generate a dense subset of G0.

3 (Rationality) For each component H of G and each irreducible
character χ of GL2g(C) we have E[χ(γ) : γ ∈ H] ∈ Z.

For any fixed g, the set of subgroups of USp(2g) that satisfy the
Sato-Tate axioms is finite up to conjugacy.

Theorem
For g ≤ 3, the group STA satisfies the Sato-Tate axioms.

Conjecturally, this holds for all g.
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Sato-Tate groups in genus 2
Theorem 1 [FKRS 2012]
Up to conjugacy, 55 subgroups of USp(4) satisfy the Sato-Tate axioms:

U(1) : C1,C2,C3,C4,C6,D2,D3,D4,D6,T,O,
J(C1), J(C2), J(C3), J(C4), J(C6),
J(D2), J(D3), J(D4), J(D6), J(T), J(O),
C2,1,C4,1,C6,1,D2,1,D3,2,D4,1,D4,2,D6,1,D6,2,O1

SU(2) : E1,E2,E3,E4,E6, J(E1), J(E2), J(E3), J(E4), J(E6)
U(1)× U(1) : F,Fa,Fc,Fa,b,Fab,Fac,Fab,c,Fa,b,c

U(1)× SU(2) : U(1)× SU(2), N(U(1)× SU(2))
SU(2)× SU(2) : SU(2)× SU(2), N(SU(2)× SU(2))

USp(4) : USp(4)

Of these, exactly 52 arise as STA for an abelian surface A (34 over Q).

Note that our theorem says nothing about equidistribution, which is
currently known only in special cases [FS 2012, Johansson 2013].
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Sato-Tate groups in dimension 2
Theorem 1 [FKRS 2012]
Up to conjugacy, 55 subgroups of USp(4) satisfy the Sato-Tate axioms:

U(1) : C1,C2,C3,C4,C6,D2,D3,D4,D6,T,O,
J(C1), J(C2), J(C3), J(C4), J(C6),
J(D2), J(D3), J(D4), J(D6), J(T), J(O),
C2,1,C4,1,C6,1,D2,1,D3,2,D4,1,D4,2,D6,1,D6,2,O1

SU(2) : E1,E2,E3,E4,E6, J(E1), J(E2), J(E3), J(E4), J(E6)
U(1)× U(1) : F,Fa,Fc,Fa,b,Fab,Fac,Fab,c,Fa,b,c

U(1)× SU(2) : U(1)× SU(2), N(U(1)× SU(2))
SU(2)× SU(2) : SU(2)× SU(2), N(SU(2)× SU(2))

USp(4) : USp(4)

Of these, exactly 52 arise as STA for an abelian surface A (34 over Q).

Note that our theorem says nothing about equidistribution, which is
currently known only in special cases [FS 2012, Johansson 2013].
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Sato-Tate groups in dimension 2 with G0 = U(1).

d c G G/G0 z1 z2 M[a2
1] M[a2]

1 1 C1 C1 0 0, 0, 0, 0, 0 8, 96, 1280, 17920 4, 18, 88, 454
1 2 C2 C2 1 0, 0, 0, 0, 0 4, 48, 640, 8960 2, 10, 44, 230
1 3 C3 C3 0 0, 0, 0, 0, 0 4, 36, 440, 6020 2, 8, 34, 164
1 4 C4 C4 1 0, 0, 0, 0, 0 4, 36, 400, 5040 2, 8, 32, 150
1 6 C6 C6 1 0, 0, 0, 0, 0 4, 36, 400, 4900 2, 8, 32, 148
1 4 D2 D2 3 0, 0, 0, 0, 0 2, 24, 320, 4480 1, 6, 22, 118
1 6 D3 D3 3 0, 0, 0, 0, 0 2, 18, 220, 3010 1, 5, 17, 85
1 8 D4 D4 5 0, 0, 0, 0, 0 2, 18, 200, 2520 1, 5, 16, 78
1 12 D6 D6 7 0, 0, 0, 0, 0 2, 18, 200, 2450 1, 5, 16, 77
1 2 J(C1) C2 1 1, 0, 0, 0, 0 4, 48, 640, 8960 1, 11, 40, 235
1 4 J(C2) D2 3 1, 0, 0, 0, 1 2, 24, 320, 4480 1, 7, 22, 123
1 6 J(C3) C6 3 1, 0, 0, 2, 0 2, 18, 220, 3010 1, 5, 16, 85
1 8 J(C4) C4 × C2 5 1, 0, 2, 0, 1 2, 18, 200, 2520 1, 5, 16, 79
1 12 J(C6) C6 × C2 7 1, 2, 0, 2, 1 2, 18, 200, 2450 1, 5, 16, 77
1 8 J(D2) D2 × C2 7 1, 0, 0, 0, 3 1, 12, 160, 2240 1, 5, 13, 67
1 12 J(D3) D6 9 1, 0, 0, 2, 3 1, 9, 110, 1505 1, 4, 10, 48
1 16 J(D4) D4 × C2 13 1, 0, 2, 0, 5 1, 9, 100, 1260 1, 4, 10, 45
1 24 J(D6) D6 × C2 19 1, 2, 0, 2, 7 1, 9, 100, 1225 1, 4, 10, 44
1 2 C2,1 C2 1 0, 0, 0, 0, 1 4, 48, 640, 8960 3, 11, 48, 235
1 4 C4,1 C4 3 0, 0, 2, 0, 0 2, 24, 320, 4480 1, 5, 22, 115
1 6 C6,1 C6 3 0, 2, 0, 0, 1 2, 18, 220, 3010 1, 5, 18, 85
1 4 D2,1 D2 3 0, 0, 0, 0, 2 2, 24, 320, 4480 2, 7, 26, 123
1 8 D4,1 D4 7 0, 0, 2, 0, 2 1, 12, 160, 2240 1, 4, 13, 63
1 12 D6,1 D6 9 0, 2, 0, 0, 4 1, 9, 110, 1505 1, 4, 11, 48
1 6 D3,2 D3 3 0, 0, 0, 0, 3 2, 18, 220, 3010 2, 6, 21, 90
1 8 D4,2 D4 5 0, 0, 0, 0, 4 2, 18, 200, 2520 2, 6, 20, 83
1 12 D6,2 D6 7 0, 0, 0, 0, 6 2, 18, 200, 2450 2, 6, 20, 82
1 12 T A4 3 0, 0, 0, 0, 0 2, 12, 120, 1540 1, 4, 12, 52
1 24 O S4 9 0, 0, 0, 0, 0 2, 12, 100, 1050 1, 4, 11, 45
1 24 O1 S4 15 0, 0, 6, 0, 6 1, 6, 60, 770 1, 3, 8, 30
1 24 J(T) A4 × C2 15 1, 0, 0, 8, 3 1, 6, 60, 770 1, 3, 7, 29
1 48 J(O) S4 × C2 33 1, 0, 6, 8, 9 1, 6, 50, 525 1, 3, 7, 26
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Sato-Tate groups in dimension 2 with G0 6= U(1).

d c G G/G0 z1 z2 M[a2
1] M[a2]

3 1 E1 C1 0 0, 0, 0, 0, 0 4, 32, 320, 3584 3, 10, 37, 150
3 2 E2 C2 1 0, 0, 0, 0, 0 2, 16, 160, 1792 1, 6, 17, 78
3 3 E3 C3 0 0, 0, 0, 0, 0 2, 12, 110, 1204 1, 4, 13, 52
3 4 E4 C4 1 0, 0, 0, 0, 0 2, 12, 100, 1008 1, 4, 11, 46
3 6 E6 C6 1 0, 0, 0, 0, 0 2, 12, 100, 980 1, 4, 11, 44
3 2 J(E1) C2 1 0, 0, 0, 0, 0 2, 16, 160, 1792 2, 6, 20, 78
3 4 J(E2) D2 3 0, 0, 0, 0, 0 1, 8, 80, 896 1, 4, 10, 42
3 6 J(E3) D3 3 0, 0, 0, 0, 0 1, 6, 55, 602 1, 3, 8, 29
3 8 J(E4) D4 5 0, 0, 0, 0, 0 1, 6, 50, 504 1, 3, 7, 26
3 12 J(E6) D6 7 0, 0, 0, 0, 0 1, 6, 50, 490 1, 3, 7, 25
2 1 F C1 0 0, 0, 0, 0, 0 4, 36, 400, 4900 2, 8, 32, 148
2 2 Fa C2 0 0, 0, 0, 0, 1 3, 21, 210, 2485 2, 6, 20, 82
2 2 Fc C2 1 0, 0, 0, 0, 0 2, 18, 200, 2450 1, 5, 16, 77
2 2 Fab C2 1 0, 0, 0, 0, 1 2, 18, 200, 2450 2, 6, 20, 82
2 4 Fac C4 3 0, 0, 2, 0, 1 1, 9, 100, 1225 1, 3, 10, 41
2 4 Fa,b D2 1 0, 0, 0, 0, 3 2, 12, 110, 1260 2, 5, 14, 49
2 4 Fab,c D2 3 0, 0, 0, 0, 1 1, 9, 100, 1225 1, 4, 10, 44
2 8 Fa,b,c D4 5 0, 0, 2, 0, 3 1, 6, 55, 630 1, 3, 7, 26
4 1 G4 C1 0 0, 0, 0, 0, 0 3, 20, 175, 1764 2, 6, 20, 76
4 2 N(G4) C2 0 0, 0, 0, 0, 1 2, 11, 90, 889 2, 5, 14, 46
6 1 G6 C1 0 0, 0, 0, 0, 0 2, 10, 70, 588 2, 5, 14, 44
6 2 N(G6) C2 1 0, 0, 0, 0, 0 1, 5, 35, 294 1, 3, 7, 23

10 1 USp(4) C1 0 0, 0, 0, 0, 0 1, 3, 14, 84 1, 2, 4, 10
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Galois types

Let A be an abelian surface defined over a number field k.
Let K be the minimal extension of k for which End(AK) = End(AQ̄).
The group Gal(K/k) acts on the R-algebra End(AK)R = End(AK)⊗Z R.

The Galois type of A is the isomorphism class of [Gal(K/k),End(AK)R].

An isomorphism [G,E] ' [G′,E′] is an isomorphism G ' G′ of groups
and an equivariant isomorphism E ' E′ of R-algebras.

One may have G ' G′ and E ' E′ but [G,E] 6' [G′,E′].
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Galois types and Sato-Tate groups in dimension 2

Theorem 2 [FKRS 2012]
Up to conjugacy, the Sato-Tate group G of an abelian surface A is
uniquely determined by its Galois type, and vice versa.

We also have G/G0 ' Gal(K/k), and G0 is uniquely determined by the
isomorphism class of End(AK)R, and vice versa:

U(1) M2(C) U(1)× SU(2) C× R
SU(2) M2(R) SU(2)× SU(2) R× R

U(1)× U(1) C× C USp(4) R

There are 52 distinct Galois types of abelian surfaces.

The proof uses the algebraic Sato-Tate group of Banaszak and
Kedlaya, which, for g ≤ 3, uniquely determines STA.
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Exhibiting Sato-Tate groups of abelian surfaces

Remarkably, the 34 Sato-Tate groups that can arise over Q can all be
realized as the Sato-Tate group of the Jacobian of a hyperelliptic curve.

The remaining 18 groups all arise as subgroups of these 34.

These subgroups can be obtained by extending the field of definition
appropriately (in fact, one can realize all 52 groups using just 9 curves).
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Genus 2 curves realizing Sato-Tate groups with G0 = U(1)

Group Curve y2 = f(x) k K
C1 x6 + 1 Q(

√
−3) Q(

√
−3)

C2 x5 − x Q(
√
−2) Q(i,

√
2)

C3 x6 + 4 Q(
√
−3) Q(

√
−3, 3
√

2)
C4 x6 + x5 − 5x4 − 5x2 − x + 1 Q(

√
−2) Q(

√
−2, a); a4 + 17a2 + 68 = 0

C6 x6 + 2 Q(
√
−3) Q(

√
−3, 6
√

2)
D2 x5 + 9x Q(

√
−2) Q(i,

√
2,
√

3)
D3 x6 + 10x3 − 2 Q(

√
−2) Q(

√
−3, 6
√
−2)

D4 x5 + 3x Q(
√
−2) Q(i,

√
2, 4
√

3)
D6 x6 + 3x5 + 10x3 − 15x2 + 15x − 6 Q(

√
−3) Q(i,

√
2,
√

3, a); a3 + 3a − 2 = 0
T x6 + 6x5 − 20x4 + 20x3 − 20x2 − 8x + 8 Q(

√
−2) Q(

√
−2, a, b);

a3 − 7a + 7 = b4 + 4b2 + 8b + 8 = 0
O x6 − 5x4 + 10x3 − 5x2 + 2x − 1 Q(

√
−2) Q(

√
−2,
√
−11, a, b);

a3 − 4a + 4 = b4 + 22b + 22 = 0
J(C1) x5 − x Q(i) Q(i,

√
2)

J(C2) x5 − x Q Q(i,
√

2)
J(C3) x6 + 10x3 − 2 Q(

√
−3) Q(

√
−3, 6
√
−2)

J(C4) x6 + x5 − 5x4 − 5x2 − x + 1 Q see entry for C4
J(C6) x6 − 15x4 − 20x3 + 6x + 1 Q Q(i,

√
3, a); a3 + 3a2 − 1 = 0

J(D2) x5 + 9x Q Q(i,
√

2,
√

3)
J(D3) x6 + 10x3 − 2 Q Q(

√
−3, 6
√
−2)

J(D4) x5 + 3x Q Q(i,
√

2, 4
√

3)
J(D6) x6 + 3x5 + 10x3 − 15x2 + 15x − 6 Q see entry for D6
J(T) x6 + 6x5 − 20x4 + 20x3 − 20x2 − 8x + 8 Q see entry for T
J(O) x6 − 5x4 + 10x3 − 5x2 + 2x − 1 Q see entry for O
C2,1 x6 + 1 Q Q(

√
−3)

C4.1 x5 + 2x Q(i) Q(i, 4
√

2)
C6,1 x6 + 6x5 − 30x4 + 20x3 + 15x2 − 12x + 1 Q Q(

√
−3, a); a3 − 3a + 1 = 0

D2,1 x5 + x Q Q(i,
√

2)
D4,1 x5 + 2x Q Q(i, 4

√
2)

D6,1 x6 + 6x5 − 30x4 − 40x3 + 60x2 + 24x − 8 Q Q(
√
−2,
√
−3, a); a3 − 9a + 6 = 0

D3,2 x6 + 4 Q Q(
√
−3, 3
√

2)
D4,2 x6 + x5 + 10x3 + 5x2 + x − 2 Q Q(

√
−2, a); a4 − 14a2 + 28a − 14 = 0

D6,2 x6 + 2 Q Q(
√
−3, 6
√

2)
O1 x6 + 7x5 + 10x4 + 10x3 + 15x2 + 17x + 4 Q Q(

√
−2, a, b);

a3 + 5a + 10 = b4 + 4b2 + 8b + 2 = 0
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Genus 2 curves realizing Sato-Tate groups with G0 6= U(1)

Group Curve y2 = f (x) k K
F x6 + 3x4 + x2 − 1 Q(i,

√
2) Q(i,

√
2)

Fa x6 + 3x4 + x2 − 1 Q(i) Q(i,
√

2)
Fab x6 + 3x4 + x2 − 1 Q(

√
2) Q(i,

√
2)

Fac x5 + 1 Q Q(a); a4 + 5a2 + 5 = 0
Fa,b x6 + 3x4 + x2 − 1 Q Q(i,

√
2)

E1 x6 + x4 + x2 + 1 Q Q
E2 x6 + x5 + 3x4 + 3x2 − x + 1 Q Q(

√
2)

E3 x5 + x4 − 3x3 − 4x2 − x Q Q(a); a3 − 3a + 1 = 0
E4 x5 + x4 + x2 − x Q Q(a); a4 − 5a2 + 5 = 0
E6 x5 + 2x4 − x3 − 3x2 − x Q Q(

√
7, a); a3 − 7a− 7 = 0

J(E1) x5 + x3 + x Q Q(i)
J(E2) x5 + x3 − x Q Q(i,

√
2)

J(E3) x6 + x3 + 4 Q Q(
√
−3, 3√2)

J(E4) x5 + x3 + 2x Q Q(i, 4√2)
J(E6) x6 + x3 − 2 Q Q(

√
−3, 6√−2)

G1,3 x6 + 3x4 − 2 Q(i) Q(i)
N(G1,3) x6 + 3x4 − 2 Q Q(i)
G3,3 x6 + x2 + 1 Q Q
N(G3,3) x6 + x5 + x− 1 Q Q(i)
USp(4) x5 − x + 1 Q Q
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Searching for curves

We surveyed the L̄-polynomial distributions of genus 2 curves

y2 = x5 + c4x4 + c3x3 + c2x2 + c1x + c0,

y2 = x6 + c5x5 + c4x4 + c3x3 + c2x2 + c1x + c0,

with integer coefficients |ci| ≤ 128, over 248 curves.

We specifically searched for cases not already addressed in [KS09].

We found over 10 million non-isogenous curves with exceptional
distributions, including at least 3 apparent matches for all of our
target Sato-Tate groups.

Representative examples were computed to high precision N = 230.

For each example, the field K was then determined, allowing the
Galois type, and hence the Sato-Tate group, to be provably identified.
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Computational methods

There are four standard ways to compute Lp(T) for a genus 2 curve:

1 point counting: O(p2 log1+ε p).

2 group computation: O(p3/4 log1+ε p).

3 p-adic methods: O(p1/2 log2+ε p).

4 CRT approach: O(log8+ε p).

For the feasible range of p ≤ N, we found (2) to be the best [KS08].
We can accelerate the computation with partial use of (1) and (4).

The smalljac software package provides an open source
implementation of this approach.
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A recent breakthrough

All of the methods above perform separate computations for each p.
But we want to compute Lp(T) for all good p ≤ N using reductions of
the same curve in each case.

Is their a way to take advantage of this?

Theorem (Harvey, 2012)
Let y2 = f (x) be a hyperelliptic curve of genus g with log ‖f‖ = O(log N).
One can compute Lp(T) for all odd p ≤ N with p - disc(f ) in time

O
(
g8+εN log3+ε N

)
.

This yields an average time of O
(
g8+ε log4+ε N

)
per prime.

This is the first algorithm to achieve an average running time
that is polynomial in both g and log p.
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Some preliminary implementation results

With suitable optimizations, this algorithm can be made quite practical.

In genus 2 we are able to surpass the performance of smalljac
for N ≥ 218, with more than a 10× improvement for N ≥ 225.

When combined with group computations in genus 3, we expect
to obtain a dramatic improvement over all existing methods.

We are also looking at adapting the algorithm to handle certain
families of non-hyperelliptic curves, including Picard curves.

[Harvey-S, Achter-S work in progress]
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Harvey’s algorithm in genus 1

The Hasse invariant hp of an elliptic curve y2 = f (x) = x3 + ax + b
over Fp is the coefficient of xp−1 in the polynomial f (x)(p−1)/2.

We have hp ≡ tp mod p, which uniquely determines tp for p > 13.

Naı̈ve approach: iteratively compute f , f 2, f 3, . . . , f (N−1)/2 in Z[x] and
reduce the xp−1 coefficient of f (x)(p−1)/2 mod p for each prime p ≤ N.

But the polynomials f n are huge, each has Ω(n2) bits.
It would take Ω(N3) time to compute f , . . . , f (N−1)/2 in Z[x].

So this is a terrible idea...

But we don’t need all the coefficients of f n, we only need one;
and we only need to know its value modulo p = 2n + 1.
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A better approach
Let f (x) = x3 + ax + b, and let f n

k denote the coefficient of xk in f (x)n.
Using f n = ff n−1 and (f n)′ = nf ′f n−1, one obtains the relations

(n + 2)f n
2n−2 = n

(
2af n−1

2n−3 + 3bf n−1
2n−2

)
,

(2n− 1)f n
2n−1 = n

(
3f n−1

2n−4 + af n−1
2n−2

)
,

2(2n− 1)bf n
2n = (n + 1)af n−1

2n−4 + 3(2n− 1)bf n−1
2n−3 − (n− 1)a2f n−1

2n−2.

These allow us to compute the vector wn = [f n
2n−2, f

n
2n−1, f

n
2n] from the

vector wn−1 = [f n−1
2n−4, f

n−1
2n−3, f

n−1
2n−2] via multiplication by a 3× 3 matrix Mn

with entries in Q. We have

wn = w0M1M2 · · ·Mn.

For n = (p− 1)/2, the Hasse invariant of the elliptic curve y2 = f (x)
over Fp is obtained by reducing the third entry f 2n

n of wn modulo p.
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Computing tp mod p

To compute tp mod p for all odd primes p ≤ N it suffices to compute

M1 mod 3

M1M2 mod 5

M1M2M3 mod 7

M1M2M3M4 mod 9
...

M1M2M3 · · ·M(N−1)/2 mod N

Doing this naı̈vely would take O
(
N2+ε

)
time.

But it can be done in O
(
N1+ε

)
time using a remainder tree.
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Remainder trees
Given matrices M1,M2, . . . ,MN and moduli m1,m2, . . . ,mN , we wish to
compute remainders R1,R2, . . . ,RN , where Rn =

∏n−1
i=1 Mi mod mn.

Algorithm for N = 2k:

1 Compute a binary product tree with leaf values M1, . . . ,MN and
internal nodes whose values that are the product of their children,
and do the same for the moduli m1, . . . ,mN .

2 Working from the top down, compute each node’s remainder as
the product of its parent’s remainder and its left sibling’s value,
reduced modulo the node’s modulus.

Each node’s remainder is the product of the values in the leaves
to its left, reduced modulo the node’s modulus.

The leaf remainders are precisely R1, . . . ,RN .
Using FFT-based arithmetic, this algorithm runs in quasi-linear time.
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Hyperelliptic curves of genus g > 1.

The general algorithm uses Monsky-Washnitzer cohomology (as in
Kedlaya’s algorithm), but for g ≤ 3 it is enough to just compute the
Hasse-Witt matrix. This is the g× g matrix W = [wij] with entries

wij = f (p−1)/2
pi−j mod p.

The wij can each be computed using recurrence relations between
the coefficients of f n and those of f n−1, as in genus 1.

The characteristic polynomial of W determines the Lp(T) mod p.

Using group computations in the Jacobian of the curve, one can
determine Lp(T) exactly. This takes Õ(1) time in genus 2, and Õ(p1/4)
time in genus 3, which turns out to be negligible within the feasible
range of computation.

Andrew V. Sutherland (MIT) The Sato-Tate conjecture for abelian varieties January 7, 2014 30 / 31



Hyperelliptic curves of genus g > 1.

The general algorithm uses Monsky-Washnitzer cohomology (as in
Kedlaya’s algorithm), but for g ≤ 3 it is enough to just compute the
Hasse-Witt matrix. This is the g× g matrix W = [wij] with entries

wij = f (p−1)/2
pi−j mod p.

The wij can each be computed using recurrence relations between
the coefficients of f n and those of f n−1, as in genus 1.

The characteristic polynomial of W determines the Lp(T) mod p.

Using group computations in the Jacobian of the curve, one can
determine Lp(T) exactly. This takes Õ(1) time in genus 2, and Õ(p1/4)
time in genus 3, which turns out to be negligible within the feasible
range of computation.

Andrew V. Sutherland (MIT) The Sato-Tate conjecture for abelian varieties January 7, 2014 30 / 31



Sato-Tate in dimension 3

For g = 3 there are 15 possibilities for the connected part of STA.
There are at least 400 groups that satisfy the Sato-Tate axioms.

In order to realize cases with large component groups, one needs
abelian threefolds with many endomorphisms. An obvious place to
start is with Jacobians of curves with large automorphism groups
(and their twists). Some notable cases enumerated by Wolfart:

y2 = x8 − x, y2 = x7 − x, y2 = x8 − 1

y2 = x8 − 14x4 + 1, y3 = x4 − x, y3 = x4 − 1

x4 + y4 = 1, x3y + y3z + z3x = 0.

However, Jacobians may not be enough!
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