
Introduction Results Conclusion

Order Computations in Generic Groups
Thesis Defense

Andrew V. Sutherland

Massachusetts Institute of Technology

April 27, 2007

Introduction Results Conclusion

Outline

1 Introduction
Generic Groups
Order Computation

2 Results
Primorial Steps
Multi-Stage Sieve
Order Computation Theorem
Abelian Group Structure
Comparisons

3 Conclusion
Future Work

Introduction Results Conclusion

Generic Groups

Why generic groups?

Complexity Results
Strong lower bounds.
(Babai & Szémeredi 1984, Shoup 1997, Babai & Beals 1997)

Generality
Algorithms reusable and widely applicable.
Computational algebra, number theory, cryptography.
(ATLAS, Magma, GAP, Mathematica, LiDIA, Pari/GP)

Puzzle Appeal
What’s inside the black box?

Introduction Results Conclusion

Generic Groups

Why generic groups?

Complexity Results
Strong lower bounds.
(Babai & Szémeredi 1984, Shoup 1997, Babai & Beals 1997)

Generality
Algorithms reusable and widely applicable.
Computational algebra, number theory, cryptography.
(ATLAS, Magma, GAP, Mathematica, LiDIA, Pari/GP)

Puzzle Appeal
What’s inside the black box?

Introduction Results Conclusion

Generic Groups

Why generic groups?

Complexity Results
Strong lower bounds.
(Babai & Szémeredi 1984, Shoup 1997, Babai & Beals 1997)

Generality
Algorithms reusable and widely applicable.
Computational algebra, number theory, cryptography.
(ATLAS, Magma, GAP, Mathematica, LiDIA, Pari/GP)

Puzzle Appeal
What’s inside the black box?

Introduction Results Conclusion

Generic Groups

Computational Model

Black Box Groups
Black box B(G) supports: Bmult(α, β), Binv (α), Bid().
(Babai and Szémeredi 1984)

Unique Identification
Bijective identification map B : G↔ I hides representation.
(Shoup 1997)

Random Group Elements
Brand() returns a uniformly random α ∈ G.
(CLMNO 1995, Babai 1997, Pak 2000)

Introduction Results Conclusion

Generic Groups

Generic Group Algorithms

Generic Group Functions/Relations
Defined for any finite group. Invariant under isomorphisms.
Examples: αk , |α|, DL(α, β), isAbelian(), Generators().

Complexity Metrics
Count group operations and group identifiers stored.

Correctness
Must be correct for every group G and every black box B(G).

Introduction Results Conclusion

Order Computation

Why order computation?

Fundamental Problem
Essential component of many generic algorithms (order oracle).

Hard Problem
Exponential lower bounds (Babai 1999, Sutherland 2007).
Strictly harder than factoring integers.
As hard as DL(α, β)? (αk = 1G vs. αk = β).

Easy Problem
Given a factored exponent of α (a multiple of |α|), linear or
near-linear upper bounds (CL 1997, Sutherland 2006).

Introduction Results Conclusion

Order Computation

Why order computation?

Fundamental Problem
Essential component of many generic algorithms (order oracle).

Hard Problem
Exponential lower bounds (Babai 1999, Sutherland 2007).
Strictly harder than factoring integers.
As hard as DL(α, β)? (αk = 1G vs. αk = β).

Easy Problem
Given a factored exponent of α (a multiple of |α|), linear or
near-linear upper bounds (CL 1997, Sutherland 2006).

Introduction Results Conclusion

Order Computation

Why order computation?

Fundamental Problem
Essential component of many generic algorithms (order oracle).

Hard Problem
Exponential lower bounds (Babai 1999, Sutherland 2007).
Strictly harder than factoring integers.
As hard as DL(α, β)? (αk = 1G vs. αk = β).

Easy Problem
Given a factored exponent of α (a multiple of |α|), linear or
near-linear upper bounds (CL 1997, Sutherland 2006).

Introduction Results Conclusion

Order Computation

Why order computation?

Fundamental Problem
Essential component of many generic algorithms (order oracle).

Hard Problem
Exponential lower bounds (Babai 1999, Sutherland 2007).
Strictly harder than factoring integers.
As hard as DL(α, β)? (αk = 1G vs. αk = β).

Easy Problem
Given a factored exponent of α (a multiple of |α|), linear or
near-linear upper bounds (CL 1997, Sutherland 2006).

Introduction Results Conclusion

Order Computation

Why order computation?

Fundamental Problem
Essential component of many generic algorithms (order oracle).

Hard Problem
Exponential lower bounds (Babai 1999, Sutherland 2007).
Strictly harder than factoring integers.
As hard as DL(α, β)? (αk = 1G vs. αk = β).

Easy Problem
Given a factored exponent of α (a multiple of |α|), linear or
near-linear upper bounds (CL 1997, Sutherland 2006).

Introduction Results Conclusion

Order Computation

Order Computation

Problem

Find the least positive N such that αN = 1G.
No upper bound on N.
αk = αj ⇐⇒ k ≡ j mod N.

Solutions

Birthday paradox suggests ≈
√

N.
Pollard rho method

√
2πN (Teske 1998, 2001).

Shanks baby-steps giant-steps 2
√

2N (Terr 2000).

Introduction Results Conclusion

Order Computation

Order Computation

Problem

Find the least positive N such that αN = 1G.
No upper bound on N.
αk = αj ⇐⇒ k ≡ j mod N.

Solutions

Birthday paradox suggests ≈
√

N.
Pollard rho method

√
2πN (Teske 1998, 2001).

Shanks baby-steps giant-steps 2
√

2N (Terr 2000).

Introduction Results Conclusion

Order Computation

Lower Bounds?

Babai
Exponential lower bound in black-box groups.

Shoup

Ω(
√

N) lower bound for discrete logarithm in generic groups.

Terr
√

2N lower bound on addition chains.

Birthday Paradox√
(2 log 2)N lower bound for a random algorithm.

Introduction Results Conclusion

Outline

1 Introduction
Generic Groups
Order Computation

2 Results
Primorial Steps
Multi-Stage Sieve
Order Computation Theorem
Abelian Group Structure
Comparisons

3 Conclusion
Future Work

Introduction Results Conclusion

Main Results

New Generic Order Algorithm

Always o
(
N1/2), usually near O

(
N1/3).

Occasionally subexponential.

Order Computation Theorem
Many order computations for the cost of one.

Abelian Group Structure Algorithm

O
(
M1/4) in almost all cases, given M ≥ |G| and λ(G).

Introduction Results Conclusion

Primorial Steps

The Basic Idea

Modified Baby-steps Giant-steps
What if we knew |α| were odd?

What if we knew |α| ⊥ 6?

What if we knew |α| ⊥
∏

p≤L p?

Key Fact: Orders Can Be Divided

For any β = αd :

|β| = N1 and |αN1 | = N2 =⇒ |α| = N1N2.

Note that N1 = |α|/ gcd(d , |α|) and N2 = gcd(d , |α|).

Introduction Results Conclusion

Primorial Steps

The Basic Idea

Modified Baby-steps Giant-steps
What if we knew |α| were odd?

What if we knew |α| ⊥ 6?

What if we knew |α| ⊥
∏

p≤L p?

Key Fact: Orders Can Be Divided

For any β = αd :

|β| = N1 and |αN1 | = N2 =⇒ |α| = N1N2.

Note that N1 = |α|/ gcd(d , |α|) and N2 = gcd(d , |α|).

Introduction Results Conclusion

Primorial Steps

The Basic Idea

Modified Baby-steps Giant-steps
What if we knew |α| were odd?

What if we knew |α| ⊥ 6?

What if we knew |α| ⊥
∏

p≤L p?

Key Fact: Orders Can Be Divided

For any β = αd :

|β| = N1 and |αN1 | = N2 =⇒ |α| = N1N2.

Note that N1 = |α|/ gcd(d , |α|) and N2 = gcd(d , |α|).

Introduction Results Conclusion

Primorial Steps

The Basic Idea

Modified Baby-steps Giant-steps
What if we knew |α| were odd?

What if we knew |α| ⊥ 6?

What if we knew |α| ⊥
∏

p≤L p?

Key Fact: Orders Can Be Divided

For any β = αd :

|β| = N1 and |αN1 | = N2 =⇒ |α| = N1N2.

Note that N1 = |α|/ gcd(d , |α|) and N2 = gcd(d , |α|).

Introduction Results Conclusion

Primorial Steps

Primorial Steps Algorithm

1 Let E =
∏

ph and P =
∏

p (for p ≤ L with ph+1 > M).

2 Compute β = αE .

3 Use baby-steps ⊥ P and giant-step multiples of P to find
N1 = |β|.

4 Use a fast order algorithm to find N2 = |αN1 | given E .

5 Return N1N2.

Introduction Results Conclusion

Primorial Steps

Primorials

w pw Pw φ(Pw) φ(Pw)/Pw Pw/φ(Pw)

1 2 2 1 0.5000 2.0000
2 3 6 2 0.3333 3.0000
3 5 30 8 0.2667 3.7500
4 7 210 48 0.2286 4.3450
5 11 2310 480 0.2078 4.8125
6 13 30030 5760 0.1918 5.2135
7 17 510510 92160 0.1805 5.5394
8 19 9699690 1658880 0.1710 5.8471
9 23 223092870 36495360 0.1636 6.1129
10 29 6469693230 1021870080 0.1579 6.3312

Table: The First Ten Primorials

Introduction Results Conclusion

Primorial Steps

Complexity

Worst Case

O
(√

N/ log log N
)

Best Case

O(π(L) lg M)

Typical Case
Let’s try it.

Introduction Results Conclusion

Primorial Steps

Complexity

Worst Case

O
(√

N/ log log N
)

Best Case

O(π(L) lg M)

Typical Case
Let’s try it.

Introduction Results Conclusion

Primorial Steps

Complexity

Worst Case

O
(√

N/ log log N
)

Best Case

O(π(L) lg M)

Typical Case
Let’s try it.

Introduction Results Conclusion

Multi-Stage Sieve

The Multi-Stage Sieve

Factoring in the Dark
Problem: We don’t know any factors until we find them all.

Play the Odds
Solution: Alternate sieving and searching until we do.

Reap the Benefits
Result: Complexity depends on q∗(N) = max(

√
p1, p2).

Introduction Results Conclusion

Multi-Stage Sieve

The Multi-Stage Sieve

Factoring in the Dark
Problem: We don’t know any factors until we find them all.

Play the Odds
Solution: Alternate sieving and searching until we do.

Reap the Benefits
Result: Complexity depends on q∗(N) = max(

√
p1, p2).

Introduction Results Conclusion

Multi-Stage Sieve

The Multi-Stage Sieve

Factoring in the Dark
Problem: We don’t know any factors until we find them all.

Play the Odds
Solution: Alternate sieving and searching until we do.

Reap the Benefits
Result: Complexity depends on q∗(N) = max(

√
p1, p2).

Introduction Results Conclusion

Multi-Stage Sieve

Complexity

Median Complexity

O(N0.344) for uniform distribution on N = |α|. Often better.

More generally...

Pr
[
T (N) ≤ cN1/u

]
≥ G(1/u, 2/u)

Subexponential Result

Choosing appropriate u gives L[1/2,
√

2] algorithm for solving
one of a sequence of random problems.

Introduction Results Conclusion

Multi-Stage Sieve

Complexity

Median Complexity

O(N0.344) for uniform distribution on N = |α|. Often better.

More generally...

Pr
[
T (N) ≤ cN1/u

]
≥ G(1/u, 2/u)

Subexponential Result

Choosing appropriate u gives L[1/2,
√

2] algorithm for solving
one of a sequence of random problems.

Introduction Results Conclusion

Multi-Stage Sieve

Complexity

Median Complexity

O(N0.344) for uniform distribution on N = |α|. Often better.

More generally...

Pr
[
T (N) ≤ cN1/u

]
≥ G(1/u, 2/u)

Subexponential Result

Choosing appropriate u gives L[1/2,
√

2] algorithm for solving
one of a sequence of random problems.

Introduction Results Conclusion

Multi-Stage Sieve

Semismooth and Smooth Probabilities

u G(1/u, 2/u) ρ(u)

2.2 0.8958 0.2203
2.5 0.7302 0.1303
2.9 0.5038 0.0598
3.0 0.4473 0.0486
4.0 0.0963 0.0049
5.0 0.0124 0.0003
6.0 1.092e-03 1.964e-05
8.0 3.662e-06 3.232e-08

Introduction Results Conclusion

Order Computation Theorem

The Group Exponent

Definition of λ(G)

λ(G) is the least E such that αE = 1G for all α ∈ G.
Equivalently, λ(G) = lcm(|α|) over α ∈ G.

The Universal Exponent
Given factored λ(G), all order computations are fast.

Generalization
For any subset S ⊆ G, λ(S) is defined similarly.

Introduction Results Conclusion

Order Computation Theorem

Computing λ(S) via Order Computations

Set Order Algorithm
Let E = 1.

For α ∈ S:

1 Compute e← |αE | using a general order algorithm.

2 Factor e and set E ← eE .

3 Compute |α| using a fast order algorithm given E .

Output λ(S) = E .

Introduction Results Conclusion

Order Computation Theorem

Order Computation Theorem

Complexity of Set Order Algorithm
Exponentiation: |S|O (lg E)

General Order: T1(e1) + · · ·+ T1(ek) ≤ T1(e1 · · ·ek) = T1(E)

Fast Order: |S|T2(lg E)

Order Computation Theorem
Let S be any subset of G. Computing |α| for all α ∈ S costs(

1 + o (1)
)
T1

(
λ(S)

)
+ |S|T2

(
lg λ(S)

)
group operations.

Introduction Results Conclusion

Abelian Group Structure

The Structure of an Abelian Group

Structure Theorem for Finite Abelian Groups
For any finite abelian group G:

1 G ∼= Cd1 ⊗ · · · ⊗ Cdk with d1| · · · |dk .

2 G ∼= Cpr ⊗ · · · ⊗ Cqs with p, . . . , q prime.

The Problem
Find generators with known order for each cyclic group.
In other words, compute a basis for G.

Introduction Results Conclusion

Abelian Group Structure

Computing the Structure of an Abelian Group

Main Idea
Use λ(G) to process p-Sylow subgroups Hp separately.
Compute αλ(G)/ph

for random α ∈ G to sample Hp.

Basic Algorithm
Let ~α = ∅.

1 Try to find a random β ∈ Hp not spanned by ~α.

2 Determine a minimal relation on ~α ◦ β.

3 Reduce ~α ◦ β to a basis, update ~α, and repeat.

Introduction Results Conclusion

Abelian Group Structure

Computing the Structure of an Abelian Group

Benefits of using p-Sylow subgroups
Greatly simplifies basis reduction (avoids SNF).
Big savings when |G| contains multiple primes.

Helpful Hint

Use M = O
(
|G|δ

)
to avoid expensive discrete logs.

Big savings when |G| contains a prime p >
√

M.

Net Result

Complexity is O
(
M1/4) = O

(
|G|δ/4) once λ(G) is known

(in almost all cases).

Introduction Results Conclusion

Comparisons

Performance Comparisons

Reference Problem - Ideal Class Groups

Compute the ideal class group of Q[
√

D] for negative D.

Comparison to Generic Algorithms: D = −4(1030 + 1)

(Teske 1998): 250 million gops, 15 days (≈ 2-6 hours)
Multi-stage sieve: 250,000 gops, 6 seconds.

Comparison to Non-Generic Algorithms: D = −4(1054 + 1)

(Buchmann MPQS 1999): 9 hours (≈ 10-30 minutes)
Existing generic: 3× 1014 gops, 200 years.
Multi-stage sieve: 800,000 gops, 17 seconds

Introduction Results Conclusion

Comparisons

Performance Comparisons

Reference Problem - Ideal Class Groups

Compute the ideal class group of Q[
√

D] for negative D.

Comparison to Generic Algorithms: D = −4(1030 + 1)

(Teske 1998): 250 million gops, 15 days (≈ 2-6 hours)
Multi-stage sieve: 250,000 gops, 6 seconds.

Comparison to Non-Generic Algorithms: D = −4(1054 + 1)

(Buchmann MPQS 1999): 9 hours (≈ 10-30 minutes)
Existing generic: 3× 1014 gops, 200 years.
Multi-stage sieve: 800,000 gops, 17 seconds

Introduction Results Conclusion

Comparisons

Performance Comparisons

Reference Problem - Ideal Class Groups

Compute the ideal class group of Q[
√

D] for negative D.

Comparison to Generic Algorithms: D = −4(1030 + 1)

(Teske 1998): 250 million gops, 15 days (≈ 2-6 hours)
Multi-stage sieve: 250,000 gops, 6 seconds.

Comparison to Non-Generic Algorithms: D = −4(1054 + 1)

(Buchmann MPQS 1999): 9 hours (≈ 10-30 minutes)
Existing generic: 3× 1014 gops, 200 years.
Multi-stage sieve: 800,000 gops, 17 seconds

Introduction Results Conclusion

Comparisons

Recipe for Subexponential Algorithms

Subexponential Approach

Choose u so that cN1/uG(1/u, 2/u) ≈ 1.
Running time is “aysmptotically” L(1/2,

√
2) or L(1/2, 1).

Example: D = −(1080 + 1387)

Primorial steps: 109 gops, 8 hours (u = 7).
Existing generic: ≈ 1021 gops, many millenia.
Best non-generic: a few days.

Generic Solution
Works for any problem that can be reduced to random order
computations.

Introduction Results Conclusion

Outline

1 Introduction
Generic Groups
Order Computation

2 Results
Primorial Steps
Multi-Stage Sieve
Order Computation Theorem
Abelian Group Structure
Comparisons

3 Conclusion
Future Work

Introduction Results Conclusion

Main Results

New Generic Order Algorithm

Always o
(
N1/2), usually near O

(
N1/3).

Occasionally subexponential.

Order Computation Theorem
Many order computations for the cost of one.

Abelian Group Structure Algorithm

O
(
M1/4) in almost all cases, given M ≥ |G| and λ(G).

Introduction Results Conclusion

Future Work

Future Work - Specific Questions

What is the right bound for order computation?

O
(√

N/logN
)
? Ω

(√
N/ log N

)
?

Space efficient worst case?

o
(√

N
)

algorithm using polylogarithmic space?

Introduction Results Conclusion

Future Work

Future Work - The Bigger Picture

Applications of the Order Computation Theorem
Which generic algorithms could be redesigned to take better
advantage of these results?

Subexponential Applications
Which problems reduce to random order computations?

	Introduction
	Generic Groups
	Order Computation

	Results
	Primorial Steps
	Multi-Stage Sieve
	Order Computation Theorem
	Abelian Group Structure
	Comparisons

	Conclusion
	Future Work

