▲□▶▲□▶▲□▶▲□▶ □ のQ@

Order Computations in Generic Groups Thesis Defense

Andrew V. Sutherland

Massachusetts Institute of Technology

April 27, 2007

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

- Generic Groups
- Order Computation

2 Results

- Primorial Steps
- Multi-Stage Sieve
- Order Computation Theorem
- Abelian Group Structure
- Comparisons

Conclusion

Future Work

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Generic Groups

Why generic groups?

Complexity Results

Strong lower bounds.

(Babai & Szémeredi 1984, Shoup 1997, Babai & Beals 1997)

Generality

Algorithms reusable and widely applicable. Computational algebra, number theory, cryptography. (ATLAS, Magma, GAP, Mathematica, LiDIA, Pari/GP)

Puzzle Appeal

What's inside the black box?

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Generic Groups

Why generic groups?

Complexity Results

Strong lower bounds.

(Babai & Szémeredi 1984, Shoup 1997, Babai & Beals 1997)

Generality

Algorithms reusable and widely applicable. Computational algebra, number theory, cryptography. (ATLAS, Magma, GAP, Mathematica, LiDIA, Pari/GP)

Puzzle Appeal

What's inside the black box?

Conclusion

Generic Groups

Why generic groups?

Complexity Results

Strong lower bounds.

(Babai & Szémeredi 1984, Shoup 1997, Babai & Beals 1997)

Generality

Algorithms reusable and widely applicable. Computational algebra, number theory, cryptography. (ATLAS, Magma, GAP, Mathematica, LiDIA, Pari/GP)

Puzzle Appeal

What's inside the black box?

Conclusion

Generic Groups

Computational Model

Black Box Groups

Black box $\mathcal{B}(G)$ supports: $\mathcal{B}_{mult}(\alpha, \beta)$, $\mathcal{B}_{inv}(\alpha)$, $\mathcal{B}_{id}()$. (Babai and Szémeredi 1984)

Unique Identification

Bijective identification map $\mathcal{B} : G \leftrightarrow \mathcal{I}$ hides representation. (Shoup 1997)

Random Group Elements

 $\mathcal{B}_{rand}()$ returns a uniformly random $\alpha \in G$. (CLMNO 1995, Babai 1997, Pak 2000)

Conclusion

Generic Groups

Generic Group Algorithms

Generic Group Functions/Relations

Defined for any finite group. Invariant under isomorphisms. Examples: α^k , $|\alpha|$, $DL(\alpha, \beta)$, *isAbelian*(), *Generators*().

Complexity Metrics

Count group operations and group identifiers stored.

Correctness

Must be correct for every group *G* and every black box $\mathcal{B}(G)$.

Conclusion

Order Computation

Why order computation?

Fundamental Problem

Essential component of many generic algorithms (order oracle).

Hard Problem

Exponential lower bounds (Babai 1999, Sutherland 2007). Strictly harder than factoring integers. As hard as $DL(\alpha, \beta)$? $(\alpha^k = 1_G \text{ vs. } \alpha^k = \beta)$.

Easy Problem

Conclusion

Order Computation

Why order computation?

Fundamental Problem

Essential component of many generic algorithms (order oracle).

Hard Problem

Exponential lower bounds (Babai 1999, Sutherland 2007). Strictly harder than factoring integers. As hard as $DL(\alpha, \beta)$? $(\alpha^k = 1_c \text{ vs. } \alpha^k = \beta)$.

Easy Problem

Conclusion

Order Computation

Why order computation?

Fundamental Problem

Essential component of many generic algorithms (order oracle).

Hard Problem

Exponential lower bounds (Babai 1999, Sutherland 2007). Strictly harder than factoring integers.

As hard as $DL(\alpha, \beta)$? $(\alpha^{k} = 1_{G} \text{ vs. } \alpha^{k} = \beta)$.

Easy Problem

Conclusion

Order Computation

Why order computation?

Fundamental Problem

Essential component of many generic algorithms (order oracle).

Hard Problem

Exponential lower bounds (Babai 1999, Sutherland 2007). Strictly harder than factoring integers. As hard as $DL(\alpha, \beta)$? ($\alpha^k = 1_G$ vs. $\alpha^k = \beta$).

Easy Problem

Conclusion

Order Computation

Why order computation?

Fundamental Problem

Essential component of many generic algorithms (order oracle).

Hard Problem

Exponential lower bounds (Babai 1999, Sutherland 2007). Strictly harder than factoring integers. As hard as $DL(\alpha, \beta)$? ($\alpha^k = \mathbf{1}_G$ vs. $\alpha^k = \beta$).

Easy Problem

Conclusion

(日) (日) (日) (日) (日) (日) (日)

Order Computation

Order Computation

Problem

- Find the least positive *N* such that $\alpha^N = \mathbf{1}_G$.
- No upper bound on N.

•
$$\alpha^k = \alpha^j \iff k \equiv j \mod N.$$

Solutions

- Birthday paradox suggests $\approx \sqrt{N}$.
- Pollard rho method $\sqrt{2\pi N}$ (Teske 1998, 2001).
- Shanks baby-steps giant-steps $2\sqrt{2N}$ (Terr 2000).

Conclusion

Order Computation

Order Computation

Problem

- Find the least positive *N* such that $\alpha^N = \mathbf{1}_G$.
- No upper bound on N.

•
$$\alpha^k = \alpha^j \iff k \equiv j \mod N.$$

Solutions

- Birthday paradox suggests $\approx \sqrt{N}$.
- Pollard rho method $\sqrt{2\pi N}$ (Teske 1998, 2001).
- Shanks baby-steps giant-steps $2\sqrt{2N}$ (Terr 2000).

Conclusion

Order Computation

Lower Bounds?

Babai

Exponential lower bound in black-box groups.

Shoup

 $\Omega(\sqrt{N})$ lower bound for discrete logarithm in generic groups.

Terr

 $\sqrt{2N}$ lower bound on addition chains.

Birthday Paradox

 $\sqrt{(2 \log 2)N}$ lower bound for a random algorithm.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

(日) (日) (日) (日) (日) (日) (日)

Main Results

New Generic Order Algorithm

Always $o(N^{1/2})$, usually near $O(N^{1/3})$. Occasionally subexponential.

Order Computation Theorem

Many order computations for the cost of one.

Abelian Group Structure Algorithm

 $O(M^{1/4})$ in almost all cases, given $M \ge |G|$ and $\lambda(G)$.

Results ●ooooooooooooooooo Conclusion

Primorial Steps

The Basic Idea

Modified Baby-steps Giant-steps

What if we knew $|\alpha|$ were odd?

What if we knew $|\alpha| \perp 6$?

What if we knew $|\alpha| \perp \prod_{p \leq L} p$?

Key Fact: Orders Can Be Divided

For any $\beta = \alpha^d$:

$$|\beta| = N_1$$
 and $|\alpha^{N_1}| = N_2 \implies |\alpha| = N_1 N_2.$

Note that $N_1 = |\alpha|/\operatorname{gcd}(d, |\alpha|)$ and $N_2 = \operatorname{gcd}(d, |\alpha|)$.

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ● ●

Results ●ooooooooooooooooo Conclusion

Primorial Steps

The Basic Idea

Modified Baby-steps Giant-steps

What if we knew $|\alpha|$ were odd?

What if we knew $|\alpha| \perp 6$?

What if we knew $|\alpha| \perp \prod_{p \leq L} p$?

Key Fact: Orders Can Be Divided

For any $\beta = \alpha^d$:

$$|\beta| = N_1$$
 and $|\alpha^{N_1}| = N_2 \implies |\alpha| = N_1 N_2.$

Note that $N_1 = |\alpha| / \operatorname{gcd}(d, |\alpha|)$ and $N_2 = \operatorname{gcd}(d, |\alpha|)$.

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

Results ●ooooooooooooooooo Conclusion

Primorial Steps

The Basic Idea

Modified Baby-steps Giant-steps

What if we knew $|\alpha|$ were odd?

What if we knew $|\alpha| \perp 6$?

What if we knew $|\alpha| \perp \prod_{p \leq L} p$?

Key Fact: Orders Can Be Divided

For any $\beta = \alpha^d$:

$$|\beta| = N_1$$
 and $|\alpha^{N_1}| = N_2 \implies |\alpha| = N_1 N_2.$

Note that $N_1 = |\alpha| / \gcd(d, |\alpha|)$ and $N_2 = \gcd(d, |\alpha|)$.

Results ●oooooooooooooooooo Conclusion

Primorial Steps

The Basic Idea

Modified Baby-steps Giant-steps

What if we knew $|\alpha|$ were odd?

What if we knew $|\alpha| \perp 6$?

What if we knew $|\alpha| \perp \prod_{p < L} p$?

Key Fact: Orders Can Be Divided

For any $\beta = \alpha^d$:

$$|\beta| = N_1$$
 and $|\alpha^{N_1}| = N_2 \implies |\alpha| = N_1 N_2.$

Note that $N_1 = |\alpha| / \operatorname{gcd}(d, |\alpha|)$ and $N_2 = \operatorname{gcd}(d, |\alpha|)$.

Primorial Steps Algorithm

- Let $E = \prod p^h$ and $P = \prod p$ (for $p \le L$ with $p^{h+1} > M$).
- 2 Compute $\beta = \alpha^E$.
- Use a fast order algorithm to find $N_2 = |\alpha^{N_1}|$ given *E*.

Return N₁N₂.

Introduc	otion

Conclusion

Primorial Steps

Primorials

W	p_w	Pw	$\phi(P_w)$	$\phi(P_w)/P_w$	$P_w/\phi(P_w)$
1	2	2	1	0.5000	2.0000
2	3	6	2	0.3333	3.0000
3	5	30	8	0.2667	3.7500
4	7	210	48	0.2286	4.3450
5	11	2310	480	0.2078	4.8125
6	13	30030	5760	0.1918	5.2135
7	17	510510	92160	0.1805	5.5394
8	19	9699690	1658880	0.1710	5.8471
9	23	223092870	36495360	0.1636	6.1129
10	29	6469693230	1021870080	0.1579	6.3312

Table: The First Ten Primorials

Introduction 000000	Results 0000000000000	Conclusion
Primorial Steps		
Complexity		

Worst Case

 $O\left(\sqrt{N/\log\log N}\right)$

Best Case

$$O(\pi(L) \lg M)$$

Typical Case

Let's try it.

Introduction 000000	Results 0000000000000	Conclusion
Primorial Steps		
Complexity		

Worst Case

$$O\left(\sqrt{N/\log\log N}\right)$$

Best Case

$$O(\pi(L) \lg M)$$

Typical Case

Let's try it.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ● ●

Introduction 000000	Results 0000000000000	Conclusion
Primorial Steps		
Complexity		

Worst Case

$$O\left(\sqrt{N/\log\log N}\right)$$

Best Case

$$O(\pi(L) \lg M)$$

Typical Case

Let's try it.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Conclusion

Multi-Stage Sieve

The Multi-Stage Sieve

Factoring in the Dark

Problem: We don't know any factors until we find them all.

Play the Odds

Solution: Alternate sieving and searching until we do.

Reap the Benefits

Result: Complexity depends on $q_*(N) = \max(\sqrt{p_1}, p_2)$.

・ロト・西ト・西ト・西ト・日・

Results ○○○○●○○○○○○○○○ Conclusion

(日) (日) (日) (日) (日) (日) (日)

Multi-Stage Sieve

The Multi-Stage Sieve

Factoring in the Dark

Problem: We don't know any factors until we find them all.

Play the Odds

Solution: Alternate sieving and searching until we do.

Reap the Benefits

Result: Complexity depends on $q_*(N) = \max(\sqrt{p_1}, p_2)$.

Results ○○○○●○○○○○○○○○ Conclusion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Multi-Stage Sieve

The Multi-Stage Sieve

Factoring in the Dark

Problem: We don't know any factors until we find them all.

Play the Odds

Solution: Alternate sieving and searching until we do.

Reap the Benefits

Result: Complexity depends on $q_*(N) = \max(\sqrt{p_1}, p_2)$.

Multi-Stage Sieve

Complexity

Median Complexity

 $O(N^{0.344})$ for uniform distribution on $N = |\alpha|$. Often better.

More generally...

$$Pr\left[T(N) \leq cN^{1/u}\right] \geq G(1/u, 2/u)$$

Subexponential Result

Choosing appropriate *u* gives $L[1/2, \sqrt{2}]$ algorithm for solving one of a sequence of random problems.

Multi-Stage Sieve

Complexity

Median Complexity

 $O(N^{0.344})$ for uniform distribution on $N = |\alpha|$. Often better.

More generally...

$$Pr\left[T(N) \leq cN^{1/u}
ight] \geq G(1/u, 2/u)$$

Subexponential Result

Choosing appropriate *u* gives $L[1/2, \sqrt{2}]$ algorithm for solving one of a sequence of random problems.

Multi-Stage Sieve

Complexity

Median Complexity

 $O(N^{0.344})$ for uniform distribution on $N = |\alpha|$. Often better.

More generally...

$$Pr\left[T(N) \leq cN^{1/u}
ight] \geq G(1/u, 2/u)$$

Subexponential Result

Choosing appropriate *u* gives $L[1/2, \sqrt{2}]$ algorithm for solving one of a sequence of random problems.

Results ○○○○○●○○○○○○○○ Conclusion

Multi-Stage Sieve

Semismooth and Smooth Probabilities

u	G(1/u, 2/u)	$\rho(u)$
2.2	0.8958	0.2203
2.5	0.7302	0.1303
2.9	0.5038	0.0598
3.0	0.4473	0.0486
4.0	0.0963	0.0049
5.0	0.0124	0.0003
6.0	1.092e-03	1.964e-05
8.0	3.662e-06	3.232e-08

Conclusion

(日) (日) (日) (日) (日) (日) (日)

Order Computation Theorem

The Group Exponent

Definition of $\lambda(G)$

 $\lambda(G)$ is the least *E* such that $\alpha^{E} = 1_{G}$ for all $\alpha \in G$. Equivalently, $\lambda(G) = \text{lcm}(|\alpha|)$ over $\alpha \in G$.

The Universal Exponent

Given factored $\lambda(G)$, all order computations are fast.

Generalization

For any subset $S \subseteq G$, $\lambda(S)$ is defined similarly.

Introduction

Results ○○○○○○○●○○○○○○ Conclusion

Order Computation Theorem

Computing $\lambda(S)$ via Order Computations

Set Order Algorithm

Let E = 1.

For $\alpha \in S$:

• Compute $e \leftarrow |\alpha^{E}|$ using a general order algorithm.

2 Factor *e* and set
$$E \leftarrow eE$$
.

Sompute $|\alpha|$ using a fast order algorithm given *E*.

Output $\lambda(S) = E$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Conclusion

Order Computation Theorem

Order Computation Theorem

Complexity of Set Order Algorithm

Exponentiation: $|S|O(\lg E)$

General Order: $T_1(e_1) + \cdots + T_1(e_k) \leq T_1(e_1 \cdots e_k) = T_1(E)$

Fast Order: $|S|T_2(\lg E)$

Order Computation Theorem

Let *S* be any subset of *G*. Computing $|\alpha|$ for all $\alpha \in S$ costs

$$(1 + o(1))T_1(\lambda(S)) + |S|T_2(\lg \lambda(S))$$

group operations.

Introduct	ion

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Abelian Group Structure

The Structure of an Abelian Group

Structure Theorem for Finite Abelian Groups

For any finite abelian group G:

$$G \cong C_{d_1} \otimes \cdots \otimes C_{d_k}$$
 with $d_1 | \cdots | d_k$.

$${\small 2} \quad G\cong C_{p^r}\otimes \cdots \otimes C_{q^s} \qquad \text{with } p,\ldots,q \text{ prime}.$$

The Problem

Find generators with known order for each cyclic group. In other words, compute a *basis* for *G*.

Conclusion

Abelian Group Structure

Computing the Structure of an Abelian Group

Main Idea

Use $\lambda(G)$ to process *p*-Sylow subgroups H_p separately. Compute $\alpha^{\lambda(G)/p^h}$ for random $\alpha \in G$ to sample H_p .

Basic Algorithm

Let $\vec{\alpha} = \emptyset$.

- **①** Try to find a random $\beta \in H_p$ not spanned by $\vec{\alpha}$.
- **2** Determine a minimal relation on $\vec{\alpha} \circ \beta$.
- Seduce $\vec{\alpha} \circ \beta$ to a basis, update $\vec{\alpha}$, and repeat.

Results ○○○○○○○○○○○○ Conclusion

Abelian Group Structure

Computing the Structure of an Abelian Group

Benefits of using p-Sylow subgroups

Greatly simplifies basis reduction (avoids SNF). Big savings when |G| contains multiple primes.

Helpful Hint

Use $M = O(|G|^{\delta})$ to avoid expensive discrete logs. Big savings when |G| contains a prime $p > \sqrt{M}$.

Net Result

Complexity is $O(M^{1/4}) = O(|G|^{\delta/4})$ once $\lambda(G)$ is known (in almost all cases).

Conclusion

Comparisons

Performance Comparisons

Reference Problem - Ideal Class Groups

Compute the ideal class group of $\mathbb{Q}[\sqrt{D}]$ for negative *D*.

Comparison to Generic Algorithms: $D = -4(10^{30} + 1)$

(Teske 1998): 250 million gops, 15 days (\approx 2-6 hours) Multi-stage sieve: 250,000 gops, 6 seconds.

Comparison to Non-Generic Algorithms: $D = -4(10^{54} + 1)$

(Buchmann MPQS 1999): 9 hours (\approx 10-30 minutes) Existing generic: 3 × 10¹⁴ gops, 200 years. Multi-stage sieve: 800,000 gops, 17 seconds

Conclusion

Comparisons

Performance Comparisons

Reference Problem - Ideal Class Groups

Compute the ideal class group of $\mathbb{Q}[\sqrt{D}]$ for negative *D*.

Comparison to Generic Algorithms: $D = -4(10^{30} + 1)$

(Teske 1998): 250 million gops, 15 days (\approx 2-6 hours) Multi-stage sieve: 250,000 gops, 6 seconds.

Comparison to Non-Generic Algorithms: $D = -4(10^{54} + 1)$

(Buchmann MPQS 1999): 9 hours (\approx 10-30 minutes) Existing generic: 3 × 10¹⁴ gops, 200 years. Multi-stage sieve: 800,000 gops, 17 seconds

Conclusion

Comparisons

Performance Comparisons

Reference Problem - Ideal Class Groups

Compute the ideal class group of $\mathbb{Q}[\sqrt{D}]$ for negative *D*.

Comparison to Generic Algorithms: $D = -4(10^{30} + 1)$

(Teske 1998): 250 million gops, 15 days (\approx 2-6 hours) Multi-stage sieve: 250,000 gops, 6 seconds.

Comparison to Non-Generic Algorithms: $D = -4(10^{54} + 1)$

(Buchmann MPQS 1999): 9 hours (\approx 10-30 minutes) Existing generic: 3×10^{14} gops, 200 years. Multi-stage sieve: 800,000 gops, 17 seconds

Conclusion

Comparisons

Recipe for Subexponential Algorithms

Subexponential Approach

Choose *u* so that $cN^{1/u}G(1/u, 2/u) \approx 1$. Running time is "aysmptotically" $L(1/2, \sqrt{2})$ or L(1/2, 1).

Example: $D = -(10^{80} + 1387)$

Primorial steps: 10^9 gops, 8 hours (u = 7). Existing generic: $\approx 10^{21}$ gops, many millenia. Best non-generic: a few days.

Generic Solution

Works for any problem that can be reduced to random order computations.

00

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

• Generic Groups Order Computation Primorial Steps Multi-Stage Sieve Abelian Group Structure Conclusion 3 Future Work

00

(日) (日) (日) (日) (日) (日) (日)

Main Results

New Generic Order Algorithm

Always $o(N^{1/2})$, usually near $O(N^{1/3})$. Occasionally subexponential.

Order Computation Theorem

Many order computations for the cost of one.

Abelian Group Structure Algorithm

 $O(M^{1/4})$ in almost all cases, given $M \ge |G|$ and $\lambda(G)$.

Introducti	on

Conclusion ●○

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Future Work

Future Work - Specific Questions

What is the right bound for order computation?

$$O\left(\sqrt{N/\log N}\right)$$
? $\Omega\left(\sqrt{N}/\log N\right)$?

Space efficient worst case?

 $o\left(\sqrt{N}\right)$ algorithm using polylogarithmic space?

Introducti	on

Conclusion ○●

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Future Work

Future Work - The Bigger Picture

Applications of the Order Computation Theorem

Which generic algorithms could be redesigned to take better advantage of these results?

Subexponential Applications

Which problems reduce to random order computations?