Sato-Tate in genus 2

Andrew V. Sutherland

Massachusetts Institute of Technology

March 30, 2009

joint work with Kiran Kedlaya

http://arxiv.org/abs/0803.4462

ヘロン 人間 とくほ とくほ とう

■ のへで

The distribution of Frobenius traces

Let E/\mathbb{Q} be an elliptic curve (non-singular). Let $t_{\rho} = \#E(\mathbb{F}_{\rho}) - \rho + 1$ denote the trace of Frobenius.

Consider the distribution of

$$x_p = t_p/\sqrt{p} \in [-2, 2]$$

as $p \leq N$ varies over primes of good reduction.

What happens as $N \to \infty$?

Two trace distributions for E/\mathbb{Q}

Curves with complex multiplication

All elliptic curves with CM have the same limiting distribution. This follows from classical results.

Conjecture (Sato-Tate)

For any elliptic curve without CM, the limiting distribution is the semicircular distribution.

Proven by Clozel, Harris, Shepherd-Baron, and Taylor (2006), provided E does not have purely additive reduction.

ヘロン 人間 とくほ とくほ とう

3

L-polynomials

Let C/\mathbb{Q} be a smooth projective curve of genus g. The zeta function of C is defined by

$$Z(C/\mathbb{F}_{p};T) = \exp\left(\sum_{k=1}^{\infty} N_{k}T^{k}/k
ight)$$

where $N_k = \#C/\mathbb{F}_{p^k}$. It is a rational function of the form

$$Z(C/\mathbb{F}_{p};T) = \frac{L_{p}(T)}{(1-T)(1-pT)}$$

where $L_p(T)$ has degree 2g.

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 ● ④ ● ●

Unitarized L-polynomials

The polynomial

$$ar{L}_{
ho}(T)=L_{
ho}(T/\sqrt{
ho})=\sum_{i=0}^{2g}a_iT^i$$

is a real symmetric polynomial whose roots lie on the unit circle.

Every such polynomial arises as the characteristic polynomial $\chi(T)$ of some matrix in USp(2g) ($2g \times 2g$ complex matrices that are both unitary and symplectic).

Note that the coefficients satisfy $|a_i| \leq {2g \choose i}$.

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q ()

The Katz-Sarnak model

Conjecture (Katz-Sarnak)

For a typical curve of genus g, the distribution of $\overline{L}_p(T)$ converges to the distribution of $\chi(T)$ in USp(2g).

"Typical" means curves with large Galois image. For g = 2 this is equivalent to $\text{End}(C) \cong \mathbb{Z}$ (i.e. no CM).

This conjecture is known to be true "on average" for universal families of hyperelliptic curves (including all genus 2 curves).

The Haar measure on USp(2g)

Let $e^{\pm i\theta_1}, \ldots, e^{\pm i\theta_g}$ denote the eigenvalues of a random matrix (conjugacy class) in USp(2g). The Weyl integration formula yields the Haar measure

$$\mu = \frac{1}{g!} \left(\prod_{j < k} (2\cos\theta_j - 2\cos\theta_k) \right)^2 \prod_j \left(\frac{2}{\pi} \sin^2\theta_j d\theta_j \right).$$

In genus 1 we have USp(2) = SU(2) and $\mu = \frac{2}{\pi} \sin^2 \theta d\theta$, which is the Sato-Tate distribution.

Note that
$$-a_1 = \sum 2 \cos \theta_j$$
 is the trace.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Improving resolution

Methods of computing $\bar{L}_{\rho}(T)$ in genus 2:

- 1. point counting: $\tilde{O}(p^2)$.
- 2. group computation: $\tilde{O}(p^{3/4})$.
- 3. *p*-adic methods: $\tilde{O}(p^{1/2})$.
- 4. ℓ -adic methods: $\tilde{O}(1)$.

Currently (4) is impractical and (3) is the fastest for large p. However, for the feasible range of $p \le N$, (2) is the best choice.

Computing L-series of hyperelliptic curves, ANTS VIII, 2008, KS.

ヘロト ヘアト ヘヨト ヘ

Moment sequences

The *moment sequence* of a random variable X is

$$M[X] = (E[X^0], E[X^1], E[X^2], \ldots).$$

Provided is X is suitably bounded, M[X] exists and uniquely determines the distribution of X.

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

Moment sequences

The *moment sequence* of a random variable *X* is

$$M[X] = (\mathsf{E}[X^0], \mathsf{E}[X^1], \mathsf{E}[X^2], \ldots).$$

Provided is X is suitably bounded, M[X] exists and uniquely determines the distribution of X.

Given sample values x_1, \ldots, x_N for X, the nth *moment statistic* is the mean of x_i^n . It converges to $E[X^n]$ as $N \to \infty$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Moment sequences

The *moment sequence* of a random variable *X* is

$$M[X] = (\mathsf{E}[X^0], \mathsf{E}[X^1], \mathsf{E}[X^2], \ldots).$$

Provided is X is suitably bounded, M[X] exists and uniquely determines the distribution of X.

Given sample values x_1, \ldots, x_N for X, the nth *moment statistic* is the mean of x_i^n . It converges to $E[X^n]$ as $N \to \infty$.

If X is a symmetric integer polynomial of the eigenvalues of a random matrix in USp(2g) (e.g. the trace), then M[X] is an *integer* sequence (follows from representation theory).

・ロン ・四 と ・ ヨ と ・ ヨ と …

The typical trace moment sequence in genus 1

Using the measure μ in genus 1, for $t = -a_1$ we have

$$E[t^n] = \frac{2}{\pi} \int_0^{\pi} (2\cos\theta)^n \sin^2\theta d\theta.$$

∃ <2 <</p>

・ 同 ト ・ ヨ ト ・ ヨ ト …

The typical trace moment sequence in genus 1

Using the measure μ in genus 1, for $t = -a_1$ we have

$$E[t^n] = \frac{2}{\pi} \int_0^{\pi} (2\cos\theta)^n \sin^2\theta d\theta.$$

This is zero when *n* is odd, and for n = 2m we obtain

$$E[t^{2m}] = \frac{1}{2m+1} \binom{2m}{m}.$$

and therefore

$$M[t] = (1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, \ldots).$$

This is sequence A126120 in the OEIS.

< 回 > < 回 >

The typical trace moment sequence in genus g > 1

A similar computation in genus 2 yields

```
M[t] = (1, 0, 1, 0, 3, 0, 14, 0, 84, 0, 594, \ldots),
```

which is sequence A138349, and in genus 3 we have

 $M[t] = (1, 0, 1, 0, 3, 0, 15, 0, 104, 0, 909, \ldots),$

which is sequence A138540.

The *n*th moment of the trace in genus *g* is equal to the number of returning lattice paths in \mathbb{Z}^g satisfying $x_1 \ge x_2 \ge \cdots \ge x_g \ge 0$ at ever step (a Weyl chamber) [Grabiner-Magyar].

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

The trace moment sequence of a CM curve in genus 1

For an elliptic curve with CM we find that

$$E[t^{2m}] = \frac{1}{2} \binom{2m}{m}, \quad \text{for } m > 0$$

yielding the moment sequence

$$M[t] = (1, 0, 1, 0, 3, 0, 10, 0, 35, 0, 126, 0, \ldots),$$

whose even entries are A008828.

Where does this fit in a random matrix model?

(雪) (ヨ) (ヨ)

ъ

Exceptional distributions in genus 2.

We surveyed the distributions of the genus 2 curves:

$$y^2 = x^5 + c_4 x^4 + c_3 x^3 + c_2 x^2 + c_1 x + c_0,$$

$$y^2 = b^6 x^6 + b_5 x^5 + b_4 x^4 + b_3 x^3 + b_2 x^2 + b_1 x + b_0,$$

with integer coefficients $|c_i| \le 64$ and $|b_i| \le 16$. More than 10^{10} curves were tested.

We found over 30,000 non-isomorphic curves with exceptional distributions, about 20 distinct shapes.

All apparently converge to integer moment sequences.

Genus 2 exceptional distributions (one example)

For a hyperelliptic curve whose Jacobian is the direct product of two elliptic curves, we compute $M[t] = M[t_1 + t_2]$ via

$$\mathsf{E}[(t_1+t_2)^n] = \sum \binom{n}{i} \mathsf{E}[t_1^i] \mathsf{E}[t_2^{n-i}].$$

For example, using

$$\begin{split} &M[t_1] = (1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, \ldots), \\ &M[t_2] = (1, 0, 1, 0, 3, 0, 10, 0, 35, 0, 126, 0, 462, \ldots), \end{split}$$

we obtain A138551,

 $M[t] = (1, 0, 2, 0, 11, 0, 90, 0, 889, 0, 9723, \ldots).$

▲ 伊 ▶ ▲ 王 ▶ ▲ 王 ▶ ● の Q @

Analyzing the data in genus 2

Some survey highlights:

- At least 19 distinct distributions were found. This is exceeds the possibilities for End(C), Aut(C), or MT(C).
- Some obviously correspond to split Jacobians, but many do not. The same distribution can arise for curves with split and simple Jacobians.
- Some have positive zero-trace densities, some do not.
- The a_1 distribution appears to determine the a_2 distribution.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Random matrix subgroup model

Conjecture

For a genus g curve C, the distribution of $\overline{L}_p(T)$ converges to the distribution of $\chi(T)$ in some infinite compact subgroup $H \subseteq USp(2g)$.

Equality holds if and only if C has large Galois image.

ヘロン 人間 とくほ とくほ とう

3

Representations of genus 1 distributions

The Sato-Tate distribution has H = USp(2g), the typical case.

For CM curves, consider the subgroup of USp(2) = SU(2):

$$H = \left\{ \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}, \begin{pmatrix} i\cos\theta & i\sin\theta \\ i\sin\theta & -i\cos\theta \end{pmatrix} : \theta \in [0, 2\pi] \right\}.$$

This is a compact group (the normalizer of SO(2) in SU(2)).

Its Haar measure yields the desired moment sequence.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Candidate subgroups in genus 2

In genus 2 we have subgroups analogous to the two in genus 1.

Additionally, we consider embeddings of the two genus 1 groups as block diagonal matrices, where we allow "twisting" by *k*th roots of unity that lie in a quadratic extension of \mathbb{Q} (so *k* is 1,2,3,4, or 6).

This restriction corresponds to the requirement that $L_p(T)$ have integer coefficients (and yields integer moment sequences).

See http://arxiv.org/abs/0803.4462 for details.

・ロト ・ 理 ト ・ ヨ ト ・

A conjecturally complete classification in genus 2

This model yields a total of 24 candidates in addition to USp(4) itself. Every distribution found in our survey has a distribution matching one of these candidates.

Initially we found only 19 exceptional distributions, but careful examination of the survey data yielded 3 missing cases.

A conjecturally complete classification in genus 2

This model yields a total of 24 candidates in addition to USp(4) itself. Every distribution found in our survey has a distribution matching one of these candidates.

Initially we found only 19 exceptional distributions, but careful examination of the survey data yielded 3 missing cases.

One of the remaining 2 candidates was recently ruled out by Serre, who suggests that the other is also similarly obstructed.

Supporting evidence

In addition to the trace moment sequences, for each candidate subgroup $H \subseteq USp(4)$ we may also consider the component group of *H* and the dimension of *H*.

Partitioning the $\bar{L}_{\rho}(T)$ data according to suitable constraints on ρ yields the predicted component distributions.

The dimension of *H* predicts the cardinality of the mod ℓ Galois image. For small ℓ we estimate this by counting how often the ℓ -Sylow subgroup of $J(C/\mathbb{F}_p)$ has full rank.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Open questions

 Consider the zero-trace densities that arise in genus 2. Can one prove that the list

1/6, 1/4, 1/2, 7/12, 5/8, 3/4, 13/16, 7/8

is complete in genus 2?

- Is their a lattice path interpretation for each of the identified subgroups in USp(4)?
- What happens in genus 3?

▲ 伊 ▶ ▲ 王 ▶ ▲ 王 ▶ ● の Q @

Sato-Tate in genus 2

Andrew V. Sutherland

Massachusetts Institute of Technology

March 30, 2009

joint work with Kiran Kedlaya

http://arxiv.org/abs/0803.4462

ヘロン 人間 とくほ とくほ とう

■ のへで