Computing *L*-series of low genus curves

Andrew V. Sutherland

Massachusetts Institute of Technology

SIAM Conference on Applied Algebraic Geometry August 2, 2013

joint work with David Harvey

The problem

Given a smooth projective curve X/\mathbb{Q} and a bound N, we wish to compute $L_p(T)$ for all primes $p \leq N$ where X has good reduction.

Here $L_p(T)$ is the *L*-polynomial of the reduction X_p/\mathbb{F}_p of *X* at *p*. It is an integer polynomial of degree 2g that satisfies:

•
$$L(X;s) = \prod_p \mathbf{L}_p(p^{-s})^{-1};$$

•
$$Z(X_p;T) = \exp\left(\sum_{n=1}^{\infty} \#X_p(\mathbb{F}_{p^n})T^n/n\right) = \frac{L_p(T)}{(1-T)(1-pT)};$$

•
$$\chi(X_p;T) = T^{2g} \boldsymbol{L}_p(T^{-1}).$$

Applications: computing *L*-functions and Sato-Tate distributions.

Four methods were analyzed in [Kedlaya-S, 2008]:

genus 1genus 2genus 3enumerate $X_p(\mathbb{F}_p), \ldots, X_p(\mathbb{F}_{p^s})$ $p \log^{1+\epsilon} p$ $p^2 \log^{1+\epsilon} p$ $p^3 \log^{1+\epsilon} p$

Four methods were analyzed in [Kedlaya-S, 2008]:

enumerate $X_p(\mathbb{F}_p), \ldots, X_p(\mathbb{F}_{p^g})$ generic group algorithms¹

¹one uses $L_p(1) = \# \operatorname{Jac}(X_p)$ and $L_p(-1) = \# \operatorname{Jac}(\tilde{X}_p)$.

Four methods were analyzed in [Kedlaya-S, 2008]:

$$\begin{array}{lll} & \mbox{genus 1} & \mbox{genus 2} & \mbox{genus 3} \\ \mbox{enumerate } X_p(\mathbb{F}_p), \dots, X_p(\mathbb{F}_{p^8}) & p \log^{1+\epsilon}p & p^2 \log^{1+\epsilon}p & p^3 \log^{1+\epsilon}p \\ \mbox{generic group algorithms}^1 & p^{1/4} \log^{1+\epsilon}p & p^{3/4} \log^{1+\epsilon}p & p^{5/4} \log^{1+\epsilon}p \\ p \mbox{-adic cohomology (Kedlaya-Harvey)} & p^{1/2} \log^{2+\epsilon}p & p^{1/2} \log^{2+\epsilon}p & p^{1/2} \log^{2+\epsilon}p \end{array}$$

¹one uses $L_p(1) = \# \operatorname{Jac}(X_p)$ and $L_p(-1) = \# \operatorname{Jac}(\tilde{X}_p)$.

Four methods were analyzed in [Kedlaya-S, 2008]:

 $\begin{array}{lll} & \mbox{genus 1} & \mbox{genus 2} & \mbox{genus 3} \\ \mbox{enumerate } X_p(\mathbb{F}_p), \dots, X_p(\mathbb{F}_{p^8}) & p \log^{1+\epsilon}p & p^2 \log^{1+\epsilon}p & p^3 \log^{1+\epsilon}p \\ \mbox{generic group algorithms}^1 & p^{1/4} \log^{1+\epsilon}p & p^{3/4} \log^{1+\epsilon}p & p^{5/4} \log^{1+\epsilon} \\ p\mbox{-adic cohomology (Kedlaya-Harvey)} & p^{1/2} \log^{2+\epsilon}p & p^{1/2} \log^{2+\epsilon}p & p^{1/2} \log^{2+\epsilon}p \\ \ell\mbox{-adic CRT (Schoof-Pila)}^2 & \log^{5+\epsilon}p & \log^{8+\epsilon}p & \log^{14?+\epsilon}p \end{array}$

¹one uses $L_p(1) = \# \operatorname{Jac}(X_p)$ and $L_p(-1) = \# \operatorname{Jac}(\tilde{X}_p)$. ²SEA has a heuristic complexity of $O(\log^{4+\epsilon} p)$ in genus 1, but is still not worth using.

Four methods were analyzed in [Kedlaya-S, 2008]:

	genus 1	genus 2	genus 3
enumerate $X_p(\mathbb{F}_p),\ldots,X_p(\mathbb{F}_{p^g})$	$p \log^{1+\epsilon} p$	$p^2 \log^{1+\epsilon} p$	$p^3 \log^{1+\epsilon} p$
generic group algorithms ¹	$p^{1/4}\log^{1+\epsilon}p$	$p^{3/4}\log^{1+\epsilon}p$	$p^{5/4}\log^{1+\epsilon}$
<i>p</i> -adic cohomology (Kedlaya-Harvey)	$p^{1/2}\log^{2+\epsilon}p$	$p^{1/2}\log^{2+\epsilon}p$	$p^{1/2}\log^{2+\epsilon}p$
ℓ -adic CRT (Schoof-Pila) ²	$\log^{5+\epsilon} p$	$\log^{8+\epsilon} p$	$\log^{14?+\epsilon} p$

Within the feasible range of $p \le N$, it *never* makes sense to use the polynomial-time algorithm that is asymptotically the best choice.

For practical purposes, group algorithms work best in genus 1 and 2, and a combination of group algorithms and *p*-adic methods works best in genus 3.

At least this was the situation until the fall of last year...

¹one uses $L_p(1) = \# \operatorname{Jac}(X_p)$ and $L_p(-1) = \# \operatorname{Jac}(\tilde{X}_p)$.

²SEA has a heuristic complexity of $O(\log^{4+\epsilon} p)$ in genus 1, but is still not worth using.

An average polynomial-time algorithm

All of the methods above perform separate computations for each prime p. But we want to compute $L_p(T)$ for all good $p \le N$ using reductions of *the same curve* in each case.

Is their a way to take advantage of this fact?

An average polynomial-time algorithm

All of the methods above perform separate computations for each prime *p*. But we want to compute $L_p(T)$ for all good $p \le N$ using reductions of *the same curve* in each case.

Is their a way to take advantage of this fact?

Theorem (Harvey, 2012)

Let $y^2 = f(x)$ be a hyperelliptic curve over \mathbb{Q} , with deg f = 2g + 1 odd. There is an algorithm to compute $L_p(T)$ for all good primes $p \le N$ in

 $O(g^{8+\epsilon}N\log^{3+\epsilon}N)$

time, using $O(g^3 N \log^2 N)$ space (assuming g and ||f|| are suitably bounded).

This yields an average time of $O(g^{8+\epsilon} \log^{4+\epsilon} p)$ per prime $p \le N$.

But how practical is it for feasible values of N?

The Hasse-Witt matrix

Harvey's algorithm uses the same basic approach as Kedlaya's algorithm: compute the action of Frobenius on the Monsky-Washnitser cohomology to sufficient *p*-adic precision. For a suitable choice of basis, this action can be described by a matrix $A_p \in \mathbb{Z}_p^{2g \times 2g}$ that satisfies

$$A_p \equiv \left(\begin{array}{c|c} W_p & 0\\ \hline 0 & 0 \end{array}\right) \bmod p,$$

where $W_p \in (\mathbb{Z}/p\mathbb{Z})^{g \times g}$ is the *Hasse-Witt matrix* of *X*. For hyperelliptic curves $y^2 = f(x)$, the matrix W_p is given by

$$W_{p} = \begin{pmatrix} c_{p-1} & c_{p-2} & \cdots & c_{p-g} \\ c_{2p-1} & c_{2p-2} & \cdots & c_{2p-g} \\ \vdots & \vdots & \vdots & \vdots \\ c_{gp-1} & c_{gp-2} & \cdots & c_{gp-g} \end{pmatrix},$$

where c_k is the coefficient of x^k in the expansion of $f(x)^{(p-1)/2}$ modulo p.

Computing the Hasse-Witt matrix

Theorem (Harvey-S, 2013)

Let X/\mathbb{Q} be a hyperelliptic curve. The matrices W_p can be computed for all good primes $p \le N$ in $O(g^{2+\omega}N\log^{3+\epsilon}N)$ time using O(gN) space. (assuming g and ||f|| are suitably bounded).

Computing the Hasse-Witt matrix

Theorem (Harvey-S, 2013)

Let X/\mathbb{Q} be a hyperelliptic curve. The matrices W_p can be computed for all good primes $p \leq N$ in $O(g^{2+\omega}N\log^{3+\epsilon}N)$ time using O(gN) space. (assuming g and ||f|| are suitably bounded).

For primes *p* of good reduction the identity

$$L_p(T) \equiv \det(I - TW_p) \mod p$$

determines O(1) possibilities for $L_p(T)$ in genus 2, and $O(p^{1/2})$ in genus 3.

In the latter case, these can be distinguished in $O(p^{1/4} \log^{1+\epsilon} p)$ time, which is negligible for the feasible range of $p \le N$.

In any case, W_p determines the trace of Frobenius for all sufficiently large p. When approximating L(X; s), only the trace is needed for $p \ge N^{1/2}$.

The algorithm in genus 1

Let X/\mathbb{Q} be the elliptic curve $y^2 = f(x) = x^3 + ax + b$. Then $L_p(T) = pT^2 - t_pT + 1$, where $t_p \equiv c_{p-1} \mod p$ is the trace of Frobenius.

We wish to compute the coefficient c_{p-1} of x^{p-1} in $f(x)^{(p-1)/2} \mod p$ for $p \le N$. Equivalently, the coefficient of x^{2n} in $f(x)^n \mod 2n + 1$ for $n \le (N-1)/2$.

Naïve approach: iteratively compute $f, f^2, f^3, \ldots, f^{(N-1)/2}$ in $\mathbb{Z}[x]$ and reduce the x^{2n} coefficient of $f(x)^n$ modulo 2n + 1.

The algorithm in genus 1

Let X/\mathbb{Q} be the elliptic curve $y^2 = f(x) = x^3 + ax + b$. Then $L_p(T) = pT^2 - t_pT + 1$, where $t_p \equiv c_{p-1} \mod p$ is the trace of Frobenius.

We wish to compute the coefficient c_{p-1} of x^{p-1} in $f(x)^{(p-1)/2} \mod p$ for $p \le N$. Equivalently, the coefficient of x^{2n} in $f(x)^n \mod 2n + 1$ for $n \le (N-1)/2$.

Naïve approach: iteratively compute $f, f^2, f^3, \ldots, f^{(N-1)/2}$ in $\mathbb{Z}[x]$ and reduce the x^{2n} coefficient of $f(x)^n$ modulo 2n + 1.

But the polynomials f^n are huge, each has $\Omega(n^2)$ bits. This approach would require $\Omega(N^3)$ time and $\Omega(N^2)$ space.

So this is a terrible idea...

The algorithm in genus 1

Let X/\mathbb{Q} be the elliptic curve $y^2 = f(x) = x^3 + ax + b$. Then $L_p(T) = pT^2 - t_pT + 1$, where $t_p \equiv c_{p-1} \mod p$ is the trace of Frobenius.

We wish to compute the coefficient c_{p-1} of x^{p-1} in $f(x)^{(p-1)/2} \mod p$ for $p \le N$. Equivalently, the coefficient of x^{2n} in $f(x)^n \mod 2n + 1$ for $n \le (N-1)/2$.

Naïve approach: iteratively compute $f, f^2, f^3, \ldots, f^{(N-1)/2}$ in $\mathbb{Z}[x]$ and reduce the x^{2n} coefficient of $f(x)^n$ modulo 2n + 1.

But the polynomials f^n are huge, each has $\Omega(n^2)$ bits. This approach would require $\Omega(N^3)$ time and $\Omega(N^2)$ space.

So this is a terrible idea...

But we don't need all the coefficients of f^n , we only need one, and we only need to know its value modulo 2n + 1.

A better approach

Let f_k^n denote the coefficient of x^k in $f(x)^n$. Using $f^n = ff^{n-1}$ and $(f^n)' = nf'f^{n-1}$, one obtains the relations

$$(n+2)f_{2n-2}^{n} = n\left(2af_{2n-3}^{n-1} + 3bf_{2n-2}^{n-1}\right),$$

$$(2n-1)f_{2n-1}^{n} = n\left(3f_{2n-4}^{n-1} + af_{2n-2}^{n-1}\right),$$

$$2(2n-1)bf_{2n}^{n} = (n+1)af_{2n-4}^{n-1} + 3(2n-1)bf_{2n-3}^{n-1} - (n-1)a^{2}f_{2n-2}^{n-1}.$$

Letting $D_n = 2(n+2)(2n-1)b$ and

$$M_n = \begin{pmatrix} 0 & 4n(2n-1)ab & 6n(2n-1)b^2 \\ 6n(n+2)b & 0 & 2n(n+2)ab \\ (n+1)(n+2)a & 3(n+2)(2n-1)b & (1-n)(n+2)a^2 \end{pmatrix},$$

we can compute $v_n = (f_{2n-2}^n, f_{2n-1}^n, f_{2n}^n)$ from v_{n-1} via $v_n = v_{n-1}M_n^{tr}/D_n$.

A better approach

If we set $D_0 = 1$, $M_0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, and define

$$\mathcal{M}_n = \prod_{i=0}^n M_i^{ ext{tr}} \quad ext{ and } \quad \mathcal{D}_n = \prod_{i=0}^n D_i,$$

then we can compute v_n as the bottom row of $\mathcal{M}_n/\mathcal{D}_n$. Thus it suffices to compute the partial products \mathcal{M}_n and \mathcal{D}_n modulo 2n + 1.

A better approach

If we set $D_0 = 1$, $M_0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, and define

$$\mathcal{M}_n = \prod_{i=0}^n M_i^{ ext{tr}} \quad ext{ and } \quad \mathcal{D}_n = \prod_{i=0}^n D_i,$$

then we can compute v_n as the bottom row of $\mathcal{M}_n/\mathcal{D}_n$. Thus it suffices to compute the partial products \mathcal{M}_n and \mathcal{D}_n modulo 2n + 1.

Considering just the D_n , we want to compute

 $D_0D_1 \mod 3$ $D_0D_1D_2 \mod 5$ $D_0D_1D_2D_3 \mod 7$

 $D_0D_1D_2D_3\cdots D_{(N-1)/2} \mod N$

Doing this naïvely takes $O(N^{2+\epsilon})$ time, but it can be done in $O(N^{1+\epsilon})$ time.

Can be used over any ring (not necessarily commutative) to compute a sequence of partial products modulo a sequence of principal ideals (we use the ring Z^{g×g} and work moduli p^g to avoid zero denominators).

- Can be used over any ring (not necessarily commutative) to compute a sequence of partial products modulo a sequence of principal ideals (we use the ring Z^{g×g} and work moduli p^g to avoid zero denominators).
- Provided multiplication and reduction of ring elements take quasi-linear time, the entire algorithm runs in quasi-linear time.

- Can be used over any ring (not necessarily commutative) to compute a sequence of partial products modulo a sequence of principal ideals (we use the ring Z^{g×g} and work moduli p^g to avoid zero denominators).
- Provided multiplication and reduction of ring elements take quasi-linear time, the entire algorithm runs in quasi-linear time.
- One can reduce the space by a log factor (*without increasing the time*) using a forest of remainder trees and propagating results at the roots.

- Can be used over any ring (not necessarily commutative) to compute a sequence of partial products modulo a sequence of principal ideals (we use the ring Z^{g×g} and work moduli p^g to avoid zero denominators).
- Provided multiplication and reduction of ring elements take quasi-linear time, the entire algorithm runs in quasi-linear time.
- One can reduce the space by a log factor (*without increasing the time*) using a forest of remainder trees and propagating results at the roots.
- When many moduli are trivial, space can be further reduced (by another log factor in our setting).

- Can be used over any ring (not necessarily commutative) to compute a sequence of partial products modulo a sequence of principal ideals (we use the ring Z^{g×g} and work moduli p^g to avoid zero denominators).
- Provided multiplication and reduction of ring elements take quasi-linear time, the entire algorithm runs in quasi-linear time.
- One can reduce the space by a log factor (*without increasing the time*) using a forest of remainder trees and propagating results at the roots.
- When many moduli are trivial, space can be further reduced (by another log factor in our setting).
- A time-space trade-off can be used to reduce space even more, but we do not need to do this.

enumerate $X_p(\mathbb{F}_p), \ldots, X_p(\mathbb{F}_{p^g})$

genus 1genus 2genus 3 $p \log^{1+\epsilon} p$ $p^2 \log^{1+\epsilon} p$ $p^3 \log^{1+\epsilon} p$

enumerate $X_p(\mathbb{F}_p), \ldots, X_p(\mathbb{F}_{p^g})$ generic group algorithms

genus 1	genus 2	genus 3
$p \log^{1+\epsilon} p$	$p^2 \log^{1+\epsilon} p$	$p^3 \log^{1+\epsilon} p$
$p^{1/4}\log^{1+\epsilon}p$	$p^{3/4}\log^{1+\epsilon}p$	$p^{5/4}\log^{1+\epsilon}$

 $\begin{array}{c|c} & \text{genus 1} & \text{genus 2} & \text{genus 3} \\ \text{enumerate } X_p(\mathbb{F}_p), \dots, X_p(\mathbb{F}_{p^g}) & p \log^{1+\epsilon}p & p^2 \log^{1+\epsilon}p & p^3 \log^{1+\epsilon}p \\ \text{generic group algorithms} & p^{1/4} \log^{1+\epsilon}p & p^{3/4} \log^{1+\epsilon}p & p^{5/4} \log^{1+\epsilon}p \\ p\text{-adic cohomology (Kedlaya-Harvey)} & p^{1/2} \log^{2+\epsilon}p & p^{1/2} \log^{2+\epsilon}p & p^{1/2} \log^{2+\epsilon}p \end{array}$

enumerate $X_p(\mathbb{F}_p), \ldots, X_p(\mathbb{F}_{p^g})$ generic group algorithms p-adic cohomology (Kedlaya-Harvey) ℓ -adic CRT (Schoof-Pila) Hasse-Witt matrices

In genus 2 the new algorithm already outperforms smalljac when $N > 2^{21}$. The prospects in genus 3 look even better (work in progress).

Next steps: generalize to non-hyperelliptic curves of genus 3.