
Computing L-series of low genus curves

Andrew V. Sutherland
Massachusetts Institute of Technology

SIAM Conference on Applied Algebraic Geometry

August 2, 2013

joint work with David Harvey

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 1 / 12



The problem

Given a smooth projective curve X/Q and a bound N, we wish to compute
Lp(T) for all primes p ≤ N where X has good reduction.

Here Lp(T) is the L-polynomial of the reduction Xp/Fp of X at p.
It is an integer polynomial of degree 2g that satisfies:

L(X; s) =
∏

p Lp(p−s)−1;

Z(Xp; T) = exp
(∑∞

n=1 #Xp(Fpn)Tn/n
)

=
Lp(T)

(1−T)(1−pT) ;

χ(Xp; T) = T2gLp(T−1).

Applications: computing L-functions and Sato-Tate distributions.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 2 / 12



Some existing solutions
Four methods were analyzed in [Kedlaya-S, 2008]:

genus 1 genus 2 genus 3

enumerate Xp(Fp), . . . ,Xp(Fpg) p log1+ε p p2 log1+ε p p3 log1+ε p

generic group algorithms1 p1/4 log1+ε p p3/4 log1+ε p p5/4 log1+ε

p-adic cohomology (Kedlaya-Harvey) p1/2 log2+ε p p1/2 log2+ε p p1/2 log2+ε p
`-adic CRT (Schoof-Pila)2 log5+ε p log8+ε p log14?+ε p

Within the feasible range of p ≤ N, it never makes sense to use the
polynomial-time algorithm that is asymptotically the best choice.

For practical purposes, group algorithms work best in genus 1 and 2, and a
combination of group algorithms and p-adic methods works best in genus 3.

At least this was the situation until the fall of last year. . .

1one uses Lp(1) = #Jac(Xp) and Lp(−1) = #Jac(X̃p).
2SEA has a heuristic complexity of O(log4+ε p) in genus 1, but is still not worth using.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 3 / 12



Some existing solutions
Four methods were analyzed in [Kedlaya-S, 2008]:

genus 1 genus 2 genus 3

enumerate Xp(Fp), . . . ,Xp(Fpg) p log1+ε p p2 log1+ε p p3 log1+ε p

generic group algorithms1 p1/4 log1+ε p p3/4 log1+ε p p5/4 log1+ε

p-adic cohomology (Kedlaya-Harvey) p1/2 log2+ε p p1/2 log2+ε p p1/2 log2+ε p
`-adic CRT (Schoof-Pila)2 log5+ε p log8+ε p log14?+ε p

Within the feasible range of p ≤ N, it never makes sense to use the
polynomial-time algorithm that is asymptotically the best choice.

For practical purposes, group algorithms work best in genus 1 and 2, and a
combination of group algorithms and p-adic methods works best in genus 3.

At least this was the situation until the fall of last year. . .

1one uses Lp(1) = #Jac(Xp) and Lp(−1) = #Jac(X̃p).

2SEA has a heuristic complexity of O(log4+ε p) in genus 1, but is still not worth using.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 3 / 12



Some existing solutions
Four methods were analyzed in [Kedlaya-S, 2008]:

genus 1 genus 2 genus 3

enumerate Xp(Fp), . . . ,Xp(Fpg) p log1+ε p p2 log1+ε p p3 log1+ε p

generic group algorithms1 p1/4 log1+ε p p3/4 log1+ε p p5/4 log1+ε

p-adic cohomology (Kedlaya-Harvey) p1/2 log2+ε p p1/2 log2+ε p p1/2 log2+ε p

`-adic CRT (Schoof-Pila)2 log5+ε p log8+ε p log14?+ε p

Within the feasible range of p ≤ N, it never makes sense to use the
polynomial-time algorithm that is asymptotically the best choice.

For practical purposes, group algorithms work best in genus 1 and 2, and a
combination of group algorithms and p-adic methods works best in genus 3.

At least this was the situation until the fall of last year. . .

1one uses Lp(1) = #Jac(Xp) and Lp(−1) = #Jac(X̃p).

2SEA has a heuristic complexity of O(log4+ε p) in genus 1, but is still not worth using.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 3 / 12



Some existing solutions
Four methods were analyzed in [Kedlaya-S, 2008]:

genus 1 genus 2 genus 3

enumerate Xp(Fp), . . . ,Xp(Fpg) p log1+ε p p2 log1+ε p p3 log1+ε p

generic group algorithms1 p1/4 log1+ε p p3/4 log1+ε p p5/4 log1+ε

p-adic cohomology (Kedlaya-Harvey) p1/2 log2+ε p p1/2 log2+ε p p1/2 log2+ε p
`-adic CRT (Schoof-Pila)2 log5+ε p log8+ε p log14?+ε p

Within the feasible range of p ≤ N, it never makes sense to use the
polynomial-time algorithm that is asymptotically the best choice.

For practical purposes, group algorithms work best in genus 1 and 2, and a
combination of group algorithms and p-adic methods works best in genus 3.

At least this was the situation until the fall of last year. . .

1one uses Lp(1) = #Jac(Xp) and Lp(−1) = #Jac(X̃p).
2SEA has a heuristic complexity of O(log4+ε p) in genus 1, but is still not worth using.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 3 / 12



Some existing solutions
Four methods were analyzed in [Kedlaya-S, 2008]:

genus 1 genus 2 genus 3

enumerate Xp(Fp), . . . ,Xp(Fpg) p log1+ε p p2 log1+ε p p3 log1+ε p

generic group algorithms1 p1/4 log1+ε p p3/4 log1+ε p p5/4 log1+ε

p-adic cohomology (Kedlaya-Harvey) p1/2 log2+ε p p1/2 log2+ε p p1/2 log2+ε p
`-adic CRT (Schoof-Pila)2 log5+ε p log8+ε p log14?+ε p

Within the feasible range of p ≤ N, it never makes sense to use the
polynomial-time algorithm that is asymptotically the best choice.

For practical purposes, group algorithms work best in genus 1 and 2, and a
combination of group algorithms and p-adic methods works best in genus 3.

At least this was the situation until the fall of last year. . .

1one uses Lp(1) = #Jac(Xp) and Lp(−1) = #Jac(X̃p).
2SEA has a heuristic complexity of O(log4+ε p) in genus 1, but is still not worth using.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 3 / 12



An average polynomial-time algorithm

All of the methods above perform separate computations for each prime p.
But we want to compute Lp(T) for all good p ≤ N using reductions of
the same curve in each case.

Is their a way to take advantage of this fact?

Theorem (Harvey, 2012)
Let y2 = f (x) be a hyperelliptic curve over Q, with deg f = 2g + 1 odd.
There is an algorithm to compute Lp(T) for all good primes p ≤ N in

O
(
g8+εN log3+ε N

)
time, using O(g3N log2 N) space (assuming g and ‖f‖ are suitably bounded).

This yields an average time of O
(
g8+ε log4+ε p

)
per prime p ≤ N.

But how practical is it for feasible values of N?

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 4 / 12



An average polynomial-time algorithm

All of the methods above perform separate computations for each prime p.
But we want to compute Lp(T) for all good p ≤ N using reductions of
the same curve in each case.

Is their a way to take advantage of this fact?

Theorem (Harvey, 2012)
Let y2 = f (x) be a hyperelliptic curve over Q, with deg f = 2g + 1 odd.
There is an algorithm to compute Lp(T) for all good primes p ≤ N in

O
(
g8+εN log3+ε N

)
time, using O(g3N log2 N) space (assuming g and ‖f‖ are suitably bounded).

This yields an average time of O
(
g8+ε log4+ε p

)
per prime p ≤ N.

But how practical is it for feasible values of N?

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 4 / 12



The Hasse-Witt matrix

Harvey’s algorithm uses the same basic approach as Kedlaya’s algorithm:
compute the action of Frobenius on the Monsky-Washnitser cohomology to
sufficient p-adic precision. For a suitable choice of basis, this action can be
described by a matrix Ap ∈ Z2g×2g

p that satisfies

Ap ≡
(

Wp 0
0 0

)
mod p,

where Wp ∈ (Z/pZ)g×g is the Hasse-Witt matrix of X.
For hyperelliptic curves y2 = f (x), the matrix Wp is given by

Wp =


cp−1 cp−2 · · · cp−g

c2p−1 c2p−2 · · · c2p−g
...

...
...

...
cgp−1 cgp−2 · · · cgp−g

 ,

where ck is the coefficient of xk in the expansion of f (x)(p−1)/2 modulo p.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 5 / 12



Computing the Hasse-Witt matrix

Theorem (Harvey-S, 2013)
Let X/Q be a hyperelliptic curve. The matrices Wp can be computed for all
good primes p ≤ N in O(g2+ωN log3+ε N) time using O(gN) space.
(assuming g and ‖f‖ are suitably bounded).

For primes p of good reduction the identity

Lp(T) ≡ det(I − TWp) mod p

determines O(1) possibilities for Lp(T) in genus 2, and O(p1/2) in genus 3.

In the latter case, these can be distinguished in O(p1/4 log1+ε p) time,
which is negligible for the feasible range of p ≤ N.

In any case, Wp determines the trace of Frobenius for all sufficiently large p.
When approximating L(X; s), only the trace is needed for p ≥ N1/2.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 6 / 12



Computing the Hasse-Witt matrix

Theorem (Harvey-S, 2013)
Let X/Q be a hyperelliptic curve. The matrices Wp can be computed for all
good primes p ≤ N in O(g2+ωN log3+ε N) time using O(gN) space.
(assuming g and ‖f‖ are suitably bounded).

For primes p of good reduction the identity

Lp(T) ≡ det(I − TWp) mod p

determines O(1) possibilities for Lp(T) in genus 2, and O(p1/2) in genus 3.

In the latter case, these can be distinguished in O(p1/4 log1+ε p) time,
which is negligible for the feasible range of p ≤ N.

In any case, Wp determines the trace of Frobenius for all sufficiently large p.
When approximating L(X; s), only the trace is needed for p ≥ N1/2.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 6 / 12



The algorithm in genus 1

Let X/Q be the elliptic curve y2 = f (x) = x3 + ax + b.
Then Lp(T) = pT2 − tpT + 1, where tp ≡ cp−1 mod p is the trace of Frobenius.

We wish to compute the coefficient cp−1 of xp−1 in f (x)(p−1)/2 mod p for p ≤ N.
Equivalently, the coefficient of x2n in f (x)n mod 2n + 1 for n ≤ (N − 1)/2.

Naı̈ve approach: iteratively compute f , f 2, f 3, . . . , f (N−1)/2 in Z[x] and
reduce the x2n coefficient of f (x)n modulo 2n + 1.

But the polynomials f n are huge, each has Ω(n2) bits.
This approach would require Ω(N3) time and Ω(N2) space.

So this is a terrible idea...

But we don’t need all the coefficients of f n, we only need one,
and we only need to know its value modulo 2n + 1.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 7 / 12



The algorithm in genus 1

Let X/Q be the elliptic curve y2 = f (x) = x3 + ax + b.
Then Lp(T) = pT2 − tpT + 1, where tp ≡ cp−1 mod p is the trace of Frobenius.

We wish to compute the coefficient cp−1 of xp−1 in f (x)(p−1)/2 mod p for p ≤ N.
Equivalently, the coefficient of x2n in f (x)n mod 2n + 1 for n ≤ (N − 1)/2.

Naı̈ve approach: iteratively compute f , f 2, f 3, . . . , f (N−1)/2 in Z[x] and
reduce the x2n coefficient of f (x)n modulo 2n + 1.

But the polynomials f n are huge, each has Ω(n2) bits.
This approach would require Ω(N3) time and Ω(N2) space.

So this is a terrible idea...

But we don’t need all the coefficients of f n, we only need one,
and we only need to know its value modulo 2n + 1.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 7 / 12



The algorithm in genus 1

Let X/Q be the elliptic curve y2 = f (x) = x3 + ax + b.
Then Lp(T) = pT2 − tpT + 1, where tp ≡ cp−1 mod p is the trace of Frobenius.

We wish to compute the coefficient cp−1 of xp−1 in f (x)(p−1)/2 mod p for p ≤ N.
Equivalently, the coefficient of x2n in f (x)n mod 2n + 1 for n ≤ (N − 1)/2.

Naı̈ve approach: iteratively compute f , f 2, f 3, . . . , f (N−1)/2 in Z[x] and
reduce the x2n coefficient of f (x)n modulo 2n + 1.

But the polynomials f n are huge, each has Ω(n2) bits.
This approach would require Ω(N3) time and Ω(N2) space.

So this is a terrible idea...

But we don’t need all the coefficients of f n, we only need one,
and we only need to know its value modulo 2n + 1.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 7 / 12



A better approach

Let f n
k denote the coefficient of xk in f (x)n.

Using f n = ff n−1 and (f n)′ = nf ′f n−1, one obtains the relations

(n + 2)f n
2n−2 = n

(
2af n−1

2n−3 + 3bf n−1
2n−2

)
,

(2n− 1)f n
2n−1 = n

(
3f n−1

2n−4 + af n−1
2n−2

)
,

2(2n− 1)bf n
2n = (n + 1)af n−1

2n−4 + 3(2n− 1)bf n−1
2n−3 − (n− 1)a2f n−1

2n−2.

Letting Dn = 2(n + 2)(2n− 1)b and

Mn =

 0 4n(2n− 1)ab 6n(2n− 1)b2

6n(n + 2)b 0 2n(n + 2)ab
(n + 1)(n + 2)a 3(n + 2)(2n− 1)b (1− n)(n + 2)a2

 ,

we can compute vn = (f n
2n−2, f

n
2n−1, f

n
2n) from vn−1 via vn = vn−1Mtr

n /Dn.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 8 / 12



A better approach
If we set D0 = 1, M0 =

(
0 0 0
0 0 0
0 0 1

)
, and define

Mn =

n∏
i=0

Mtr
i and Dn =

n∏
i=0

Di,

then we can compute vn as the bottom row ofMn/Dn. Thus it suffices to
compute the partial productsMn and Dn modulo 2n + 1.

Considering just the Dn, we want to compute

D0D1 mod 3
D0D1D2 mod 5

D0D1D2D3 mod 7
...

D0D1D2D3 · · ·D(N−1)/2 mod N

Doing this naı̈vely takes O
(
N2+ε

)
time, but it can be done in O

(
N1+ε

)
time.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 9 / 12



A better approach
If we set D0 = 1, M0 =

(
0 0 0
0 0 0
0 0 1

)
, and define

Mn =

n∏
i=0

Mtr
i and Dn =

n∏
i=0

Di,

then we can compute vn as the bottom row ofMn/Dn. Thus it suffices to
compute the partial productsMn and Dn modulo 2n + 1.

Considering just the Dn, we want to compute

D0D1 mod 3
D0D1D2 mod 5

D0D1D2D3 mod 7
...

D0D1D2D3 · · ·D(N−1)/2 mod N

Doing this naı̈vely takes O
(
N2+ε

)
time, but it can be done in O

(
N1+ε

)
time.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 9 / 12



Remainder trees

Let X be the elliptic curve y2 = x3 + x + 1 (so a = b = 1).
Let us compute Dn =

∏
0≤i≤n Dn mod (2n + 1) for 1 ≤ n < 8,

where D0 = 1 and Di = 2(i + 2)(2i− 1)b for i > 0.

m0 m1 m2 m3 m4 m5 m6 m7 D0 D1 D2 D3 D4 D5 D6 D7

m0 m1 m2 m3 m4 m5 m6 m7 D0D1 D2 D3 D4 D5 D6 D6 *1 3 5 7 9 11 13 15 6 24 50 84 126 176 234 *1 3 5 7 1 11 13 1 6 24 50 84 126 176 234 *

3 35 11 13 144 4200 22176 *

105 143 604800 *531

1 4 9 11

* 0 4 4 * 1 11 *

modulus tree remainder tree

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 10 / 12



Remainder trees

Let X be the elliptic curve y2 = x3 + x + 1 (so a = b = 1).
Let us compute Dn =

∏
0≤i≤n Dn mod (2n + 1) for 1 ≤ n < 8,

where D0 = 1 and Di = 2(i + 2)(2i− 1)b for i > 0.

m0 m1 m2 m3 m4 m5 m6 m7 D0 D1 D2 D3 D4 D5 D6 D7

m0 m1 m2 m3 m4 m5 m6 m7 D0D1 D2 D3 D4 D5 D6 D6 *

1 3 5 7 9 11 13 15 6 24 50 84 126 176 234 *1 3 5 7 1 11 13 1 6 24 50 84 126 176 234 *

3 35 11 13 144 4200 22176 *

105 143 604800 *531

1 4 9 11

* 0 4 4 * 1 11 *

modulus tree remainder tree

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 10 / 12



Remainder trees

Let X be the elliptic curve y2 = x3 + x + 1 (so a = b = 1).
Let us compute Dn =

∏
0≤i≤n Dn mod (2n + 1) for 1 ≤ n < 8,

where D0 = 1 and Di = 2(i + 2)(2i− 1)b for i > 0.

m0 m1 m2 m3 m4 m5 m6 m7 D0 D1 D2 D3 D4 D5 D6 D7m0 m1 m2 m3 m4 m5 m6 m7 D0D1 D2 D3 D4 D5 D6 D6 *

1 3 5 7 9 11 13 15 6 24 50 84 126 176 234 *

1 3 5 7 1 11 13 1 6 24 50 84 126 176 234 *

3 35 11 13 144 4200 22176 *

105 143 604800 *531

1 4 9 11

* 0 4 4 * 1 11 *

modulus tree remainder tree

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 10 / 12



Remainder trees

Let X be the elliptic curve y2 = x3 + x + 1 (so a = b = 1).
Let us compute Dn =

∏
0≤i≤n Dn mod (2n + 1) for 1 ≤ n < 8,

where D0 = 1 and Di = 2(i + 2)(2i− 1)b for i > 0.

m0 m1 m2 m3 m4 m5 m6 m7 D0 D1 D2 D3 D4 D5 D6 D7m0 m1 m2 m3 m4 m5 m6 m7 D0D1 D2 D3 D4 D5 D6 D6 *1 3 5 7 9 11 13 15 6 24 50 84 126 176 234 *

1 3 5 7 1 11 13 1 6 24 50 84 126 176 234 *

3 35 11 13 144 4200 22176 *

105 143 604800 *531

1 4 9 11

* 0 4 4 * 1 11 *

modulus tree remainder tree

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 10 / 12



Remainder trees

Let X be the elliptic curve y2 = x3 + x + 1 (so a = b = 1).
Let us compute Dn =

∏
0≤i≤n Dn mod (2n + 1) for 1 ≤ n < 8,

where D0 = 1 and Di = 2(i + 2)(2i− 1)b for i > 0.

m0 m1 m2 m3 m4 m5 m6 m7 D0 D1 D2 D3 D4 D5 D6 D7m0 m1 m2 m3 m4 m5 m6 m7 D0D1 D2 D3 D4 D5 D6 D6 *1 3 5 7 9 11 13 15 6 24 50 84 126 176 234 *

1 3 5 7 1 11 13 1 6 24 50 84 126 176 234 *

3 35 11 13 144 4200 22176 *

105 143 604800 *531

1 4 9 11

* 0 4 4 * 1 11 *

modulus tree remainder tree

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 10 / 12



Remainder trees

Let X be the elliptic curve y2 = x3 + x + 1 (so a = b = 1).
Let us compute Dn =

∏
0≤i≤n Dn mod (2n + 1) for 1 ≤ n < 8,

where D0 = 1 and Di = 2(i + 2)(2i− 1)b for i > 0.

m0 m1 m2 m3 m4 m5 m6 m7 D0 D1 D2 D3 D4 D5 D6 D7m0 m1 m2 m3 m4 m5 m6 m7 D0D1 D2 D3 D4 D5 D6 D6 *1 3 5 7 9 11 13 15 6 24 50 84 126 176 234 *

1 3 5 7 1 11 13 1 6 24 50 84 126 176 234 *

3 35 11 13 144 4200 22176 *

105 143 604800 *

531

1 4 9 11

* 0 4 4 * 1 11 *

modulus tree remainder tree

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 10 / 12



Remainder trees

Let X be the elliptic curve y2 = x3 + x + 1 (so a = b = 1).
Let us compute Dn =

∏
0≤i≤n Dn mod (2n + 1) for 1 ≤ n < 8,

where D0 = 1 and Di = 2(i + 2)(2i− 1)b for i > 0.

m0 m1 m2 m3 m4 m5 m6 m7 D0 D1 D2 D3 D4 D5 D6 D7m0 m1 m2 m3 m4 m5 m6 m7 D0D1 D2 D3 D4 D5 D6 D6 *1 3 5 7 9 11 13 15 6 24 50 84 126 176 234 *

1 3 5 7 1 11 13 1 6 24 50 84 126 176 234 *

3 35 11 13 144 4200 22176 *

105 143 604800

*

53

1

1 4 9 11

* 0 4 4 * 1 11 *

modulus tree remainder tree

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 10 / 12



Remainder trees

Let X be the elliptic curve y2 = x3 + x + 1 (so a = b = 1).
Let us compute Dn =

∏
0≤i≤n Dn mod (2n + 1) for 1 ≤ n < 8,

where D0 = 1 and Di = 2(i + 2)(2i− 1)b for i > 0.

m0 m1 m2 m3 m4 m5 m6 m7 D0 D1 D2 D3 D4 D5 D6 D7m0 m1 m2 m3 m4 m5 m6 m7 D0D1 D2 D3 D4 D5 D6 D6 *1 3 5 7 9 11 13 15 6 24 50 84 126 176 234 *

1 3 5 7 1 11 13 1 6 24 50 84 126 176 234 *

3 35 11 13 144 4200 22176 *

105 143

604800 *

531

1 4 9 11

* 0 4 4 * 1 11 *

modulus tree remainder tree

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 10 / 12



Remainder trees

Let X be the elliptic curve y2 = x3 + x + 1 (so a = b = 1).
Let us compute Dn =

∏
0≤i≤n Dn mod (2n + 1) for 1 ≤ n < 8,

where D0 = 1 and Di = 2(i + 2)(2i− 1)b for i > 0.

m0 m1 m2 m3 m4 m5 m6 m7 D0 D1 D2 D3 D4 D5 D6 D7m0 m1 m2 m3 m4 m5 m6 m7 D0D1 D2 D3 D4 D5 D6 D6 *1 3 5 7 9 11 13 15 6 24 50 84 126 176 234 *

1 3 5 7 1 11 13 1 6 24 50 84 126 176 234 *

3 35 11 13

144 4200 22176 *

105 143

604800 *

531

1 4 9 11

* 0 4 4 * 1 11 *

modulus tree remainder tree

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 10 / 12



Remainder trees

Let X be the elliptic curve y2 = x3 + x + 1 (so a = b = 1).
Let us compute Dn =

∏
0≤i≤n Dn mod (2n + 1) for 1 ≤ n < 8,

where D0 = 1 and Di = 2(i + 2)(2i− 1)b for i > 0.

m0 m1 m2 m3 m4 m5 m6 m7 D0 D1 D2 D3 D4 D5 D6 D7m0 m1 m2 m3 m4 m5 m6 m7 D0D1 D2 D3 D4 D5 D6 D6 *1 3 5 7 9 11 13 15 6 24 50 84 126 176 234 *

1 3 5 7 1 11 13 1

6 24 50 84 126 176 234 *

3 35 11 13

144 4200 22176 *

105 143

604800 *

531

1 4 9 11

* 0 4 4 * 1 11 *

modulus tree remainder tree

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 10 / 12



Remainder trees

1 Can be used over any ring (not necessarily commutative) to compute a
sequence of partial products modulo a sequence of principal ideals
(we use the ring Zg×g and work moduli pg to avoid zero denominators).

2 Provided multiplication and reduction of ring elements take quasi-linear
time, the entire algorithm runs in quasi-linear time.

3 One can reduce the space by a log factor (without increasing the time)
using a forest of remainder trees and propagating results at the roots.

4 When many moduli are trivial, space can be further reduced (by another
log factor in our setting).

5 A time-space trade-off can be used to reduce space even more, but we
do not need to do this.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 11 / 12



Remainder trees

1 Can be used over any ring (not necessarily commutative) to compute a
sequence of partial products modulo a sequence of principal ideals
(we use the ring Zg×g and work moduli pg to avoid zero denominators).

2 Provided multiplication and reduction of ring elements take quasi-linear
time, the entire algorithm runs in quasi-linear time.

3 One can reduce the space by a log factor (without increasing the time)
using a forest of remainder trees and propagating results at the roots.

4 When many moduli are trivial, space can be further reduced (by another
log factor in our setting).

5 A time-space trade-off can be used to reduce space even more, but we
do not need to do this.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 11 / 12



Remainder trees

1 Can be used over any ring (not necessarily commutative) to compute a
sequence of partial products modulo a sequence of principal ideals
(we use the ring Zg×g and work moduli pg to avoid zero denominators).

2 Provided multiplication and reduction of ring elements take quasi-linear
time, the entire algorithm runs in quasi-linear time.

3 One can reduce the space by a log factor (without increasing the time)
using a forest of remainder trees and propagating results at the roots.

4 When many moduli are trivial, space can be further reduced (by another
log factor in our setting).

5 A time-space trade-off can be used to reduce space even more, but we
do not need to do this.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 11 / 12



Remainder trees

1 Can be used over any ring (not necessarily commutative) to compute a
sequence of partial products modulo a sequence of principal ideals
(we use the ring Zg×g and work moduli pg to avoid zero denominators).

2 Provided multiplication and reduction of ring elements take quasi-linear
time, the entire algorithm runs in quasi-linear time.

3 One can reduce the space by a log factor (without increasing the time)
using a forest of remainder trees and propagating results at the roots.

4 When many moduli are trivial, space can be further reduced (by another
log factor in our setting).

5 A time-space trade-off can be used to reduce space even more, but we
do not need to do this.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 11 / 12



Remainder trees

1 Can be used over any ring (not necessarily commutative) to compute a
sequence of partial products modulo a sequence of principal ideals
(we use the ring Zg×g and work moduli pg to avoid zero denominators).

2 Provided multiplication and reduction of ring elements take quasi-linear
time, the entire algorithm runs in quasi-linear time.

3 One can reduce the space by a log factor (without increasing the time)
using a forest of remainder trees and propagating results at the roots.

4 When many moduli are trivial, space can be further reduced (by another
log factor in our setting).

5 A time-space trade-off can be used to reduce space even more, but we
do not need to do this.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 11 / 12



Comparison

genus 1 genus 2 genus 3

enumerate Xp(Fp), . . . ,Xp(Fpg) p log1+ε p p2 log1+ε p p3 log1+ε p

generic group algorithms p1/4 log1+ε p p3/4 log1+ε p p5/4 log1+ε

p-adic cohomology (Kedlaya-Harvey) p1/2 log2+ε p p1/2 log2+ε p p1/2 log2+ε p
`-adic CRT (Schoof-Pila) log5+ε p log8+ε p log14?+ε p
Hasse-Witt matrices log4+ε p log4+ε p log4+ε p +

p1/4 log1+ε p

In genus 2 the new algorithm already outperforms smalljac when N > 221.
The prospects in genus 3 look even better (work in progress).

Next steps: generalize to non-hyperelliptic curves of genus 3.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 12 / 12



Comparison

genus 1 genus 2 genus 3

enumerate Xp(Fp), . . . ,Xp(Fpg) p log1+ε p p2 log1+ε p p3 log1+ε p

generic group algorithms p1/4 log1+ε p p3/4 log1+ε p p5/4 log1+ε

p-adic cohomology (Kedlaya-Harvey) p1/2 log2+ε p p1/2 log2+ε p p1/2 log2+ε p
`-adic CRT (Schoof-Pila) log5+ε p log8+ε p log14?+ε p
Hasse-Witt matrices log4+ε p log4+ε p log4+ε p +

p1/4 log1+ε p

In genus 2 the new algorithm already outperforms smalljac when N > 221.
The prospects in genus 3 look even better (work in progress).

Next steps: generalize to non-hyperelliptic curves of genus 3.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 12 / 12



Comparison

genus 1 genus 2 genus 3

enumerate Xp(Fp), . . . ,Xp(Fpg) p log1+ε p p2 log1+ε p p3 log1+ε p

generic group algorithms p1/4 log1+ε p p3/4 log1+ε p p5/4 log1+ε

p-adic cohomology (Kedlaya-Harvey) p1/2 log2+ε p p1/2 log2+ε p p1/2 log2+ε p

`-adic CRT (Schoof-Pila) log5+ε p log8+ε p log14?+ε p
Hasse-Witt matrices log4+ε p log4+ε p log4+ε p +

p1/4 log1+ε p

In genus 2 the new algorithm already outperforms smalljac when N > 221.
The prospects in genus 3 look even better (work in progress).

Next steps: generalize to non-hyperelliptic curves of genus 3.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 12 / 12



Comparison

genus 1 genus 2 genus 3

enumerate Xp(Fp), . . . ,Xp(Fpg) p log1+ε p p2 log1+ε p p3 log1+ε p

generic group algorithms p1/4 log1+ε p p3/4 log1+ε p p5/4 log1+ε

p-adic cohomology (Kedlaya-Harvey) p1/2 log2+ε p p1/2 log2+ε p p1/2 log2+ε p
`-adic CRT (Schoof-Pila) log5+ε p log8+ε p log14?+ε p
Hasse-Witt matrices log4+ε p log4+ε p log4+ε p +

p1/4 log1+ε p

In genus 2 the new algorithm already outperforms smalljac when N > 221.
The prospects in genus 3 look even better (work in progress).

Next steps: generalize to non-hyperelliptic curves of genus 3.

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 12 / 12


