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The problem

Given a smooth projective curve X/Q and a bound N, we wish to compute
Lp(T) for all primes p ≤ N where X has good reduction.

Here Lp(T) is the L-polynomial of the reduction Xp/Fp of X at p.
It is an integer polynomial of degree 2g that satisfies:

L(X; s) =
∏

p Lp(p−s)−1;

Z(Xp; T) = exp
(∑∞

n=1 #Xp(Fpn)Tn/n
)

=
Lp(T)

(1−T)(1−pT) ;

χ(Xp; T) = T2gLp(T−1).

Applications: computing L-functions and Sato-Tate distributions.
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Some existing solutions
Four methods were analyzed in [Kedlaya-S, 2008]:

genus 1 genus 2 genus 3

enumerate Xp(Fp), . . . ,Xp(Fpg) p log1+ε p p2 log1+ε p p3 log1+ε p

generic group algorithms1 p1/4 log1+ε p p3/4 log1+ε p p5/4 log1+ε

p-adic cohomology (Kedlaya-Harvey) p1/2 log2+ε p p1/2 log2+ε p p1/2 log2+ε p
`-adic CRT (Schoof-Pila)2 log5+ε p log8+ε p log14?+ε p

Within the feasible range of p ≤ N, it never makes sense to use the
polynomial-time algorithm that is asymptotically the best choice.

For practical purposes, group algorithms work best in genus 1 and 2, and a
combination of group algorithms and p-adic methods works best in genus 3.

At least this was the situation until the fall of last year. . .

1one uses Lp(1) = #Jac(Xp) and Lp(−1) = #Jac(X̃p).
2SEA has a heuristic complexity of O(log4+ε p) in genus 1, but is still not worth using.
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An average polynomial-time algorithm

All of the methods above perform separate computations for each prime p.
But we want to compute Lp(T) for all good p ≤ N using reductions of
the same curve in each case.

Is their a way to take advantage of this fact?

Theorem (Harvey, 2012)
Let y2 = f (x) be a hyperelliptic curve over Q, with deg f = 2g + 1 odd.
There is an algorithm to compute Lp(T) for all good primes p ≤ N in

O
(
g8+εN log3+ε N

)
time, using O(g3N log2 N) space (assuming g and ‖f‖ are suitably bounded).

This yields an average time of O
(
g8+ε log4+ε p

)
per prime p ≤ N.

But how practical is it for feasible values of N?
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The Hasse-Witt matrix

Harvey’s algorithm uses the same basic approach as Kedlaya’s algorithm:
compute the action of Frobenius on the Monsky-Washnitser cohomology to
sufficient p-adic precision. For a suitable choice of basis, this action can be
described by a matrix Ap ∈ Z2g×2g

p that satisfies

Ap ≡
(

Wp 0
0 0

)
mod p,

where Wp ∈ (Z/pZ)g×g is the Hasse-Witt matrix of X.
For hyperelliptic curves y2 = f (x), the matrix Wp is given by

Wp =


cp−1 cp−2 · · · cp−g

c2p−1 c2p−2 · · · c2p−g
...

...
...

...
cgp−1 cgp−2 · · · cgp−g

 ,

where ck is the coefficient of xk in the expansion of f (x)(p−1)/2 modulo p.
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Computing the Hasse-Witt matrix

Theorem (Harvey-S, 2013)
Let X/Q be a hyperelliptic curve. The matrices Wp can be computed for all
good primes p ≤ N in O(g2+ωN log3+ε N) time using O(gN) space.
(assuming g and ‖f‖ are suitably bounded).

For primes p of good reduction the identity

Lp(T) ≡ det(I − TWp) mod p

determines O(1) possibilities for Lp(T) in genus 2, and O(p1/2) in genus 3.

In the latter case, these can be distinguished in O(p1/4 log1+ε p) time,
which is negligible for the feasible range of p ≤ N.

In any case, Wp determines the trace of Frobenius for all sufficiently large p.
When approximating L(X; s), only the trace is needed for p ≥ N1/2.
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The algorithm in genus 1

Let X/Q be the elliptic curve y2 = f (x) = x3 + ax + b.
Then Lp(T) = pT2 − tpT + 1, where tp ≡ cp−1 mod p is the trace of Frobenius.

We wish to compute the coefficient cp−1 of xp−1 in f (x)(p−1)/2 mod p for p ≤ N.
Equivalently, the coefficient of x2n in f (x)n mod 2n + 1 for n ≤ (N − 1)/2.

Naı̈ve approach: iteratively compute f , f 2, f 3, . . . , f (N−1)/2 in Z[x] and
reduce the x2n coefficient of f (x)n modulo 2n + 1.

But the polynomials f n are huge, each has Ω(n2) bits.
This approach would require Ω(N3) time and Ω(N2) space.

So this is a terrible idea...

But we don’t need all the coefficients of f n, we only need one,
and we only need to know its value modulo 2n + 1.
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A better approach

Let f n
k denote the coefficient of xk in f (x)n.

Using f n = ff n−1 and (f n)′ = nf ′f n−1, one obtains the relations

(n + 2)f n
2n−2 = n

(
2af n−1

2n−3 + 3bf n−1
2n−2

)
,

(2n− 1)f n
2n−1 = n

(
3f n−1

2n−4 + af n−1
2n−2

)
,

2(2n− 1)bf n
2n = (n + 1)af n−1

2n−4 + 3(2n− 1)bf n−1
2n−3 − (n− 1)a2f n−1

2n−2.

Letting Dn = 2(n + 2)(2n− 1)b and

Mn =

 0 4n(2n− 1)ab 6n(2n− 1)b2

6n(n + 2)b 0 2n(n + 2)ab
(n + 1)(n + 2)a 3(n + 2)(2n− 1)b (1− n)(n + 2)a2

 ,

we can compute vn = (f n
2n−2, f

n
2n−1, f

n
2n) from vn−1 via vn = vn−1Mtr

n /Dn.
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A better approach
If we set D0 = 1, M0 =

(
0 0 0
0 0 0
0 0 1

)
, and define

Mn =

n∏
i=0

Mtr
i and Dn =

n∏
i=0

Di,

then we can compute vn as the bottom row ofMn/Dn. Thus it suffices to
compute the partial productsMn and Dn modulo 2n + 1.

Considering just the Dn, we want to compute

D0D1 mod 3
D0D1D2 mod 5

D0D1D2D3 mod 7
...

D0D1D2D3 · · ·D(N−1)/2 mod N

Doing this naı̈vely takes O
(
N2+ε

)
time, but it can be done in O

(
N1+ε

)
time.
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Remainder trees

Let X be the elliptic curve y2 = x3 + x + 1 (so a = b = 1).
Let us compute Dn =

∏
0≤i≤n Dn mod (2n + 1) for 1 ≤ n < 8,

where D0 = 1 and Di = 2(i + 2)(2i− 1)b for i > 0.

m0 m1 m2 m3 m4 m5 m6 m7 D0 D1 D2 D3 D4 D5 D6 D7

m0 m1 m2 m3 m4 m5 m6 m7 D0D1 D2 D3 D4 D5 D6 D6 *1 3 5 7 9 11 13 15 6 24 50 84 126 176 234 *1 3 5 7 1 11 13 1 6 24 50 84 126 176 234 *

3 35 11 13 144 4200 22176 *

105 143 604800 *531

1 4 9 11

* 0 4 4 * 1 11 *

modulus tree remainder tree

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 10 / 12



Remainder trees

Let X be the elliptic curve y2 = x3 + x + 1 (so a = b = 1).
Let us compute Dn =

∏
0≤i≤n Dn mod (2n + 1) for 1 ≤ n < 8,

where D0 = 1 and Di = 2(i + 2)(2i− 1)b for i > 0.

m0 m1 m2 m3 m4 m5 m6 m7 D0 D1 D2 D3 D4 D5 D6 D7

m0 m1 m2 m3 m4 m5 m6 m7 D0D1 D2 D3 D4 D5 D6 D6 *

1 3 5 7 9 11 13 15 6 24 50 84 126 176 234 *1 3 5 7 1 11 13 1 6 24 50 84 126 176 234 *

3 35 11 13 144 4200 22176 *

105 143 604800 *531

1 4 9 11

* 0 4 4 * 1 11 *

modulus tree remainder tree

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 10 / 12



Remainder trees

Let X be the elliptic curve y2 = x3 + x + 1 (so a = b = 1).
Let us compute Dn =

∏
0≤i≤n Dn mod (2n + 1) for 1 ≤ n < 8,

where D0 = 1 and Di = 2(i + 2)(2i− 1)b for i > 0.

m0 m1 m2 m3 m4 m5 m6 m7 D0 D1 D2 D3 D4 D5 D6 D7m0 m1 m2 m3 m4 m5 m6 m7 D0D1 D2 D3 D4 D5 D6 D6 *

1 3 5 7 9 11 13 15 6 24 50 84 126 176 234 *

1 3 5 7 1 11 13 1 6 24 50 84 126 176 234 *

3 35 11 13 144 4200 22176 *

105 143 604800 *531

1 4 9 11

* 0 4 4 * 1 11 *

modulus tree remainder tree

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 10 / 12



Remainder trees

Let X be the elliptic curve y2 = x3 + x + 1 (so a = b = 1).
Let us compute Dn =

∏
0≤i≤n Dn mod (2n + 1) for 1 ≤ n < 8,

where D0 = 1 and Di = 2(i + 2)(2i− 1)b for i > 0.

m0 m1 m2 m3 m4 m5 m6 m7 D0 D1 D2 D3 D4 D5 D6 D7m0 m1 m2 m3 m4 m5 m6 m7 D0D1 D2 D3 D4 D5 D6 D6 *1 3 5 7 9 11 13 15 6 24 50 84 126 176 234 *

1 3 5 7 1 11 13 1 6 24 50 84 126 176 234 *

3 35 11 13 144 4200 22176 *

105 143 604800 *531

1 4 9 11

* 0 4 4 * 1 11 *

modulus tree remainder tree

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 10 / 12



Remainder trees

Let X be the elliptic curve y2 = x3 + x + 1 (so a = b = 1).
Let us compute Dn =

∏
0≤i≤n Dn mod (2n + 1) for 1 ≤ n < 8,

where D0 = 1 and Di = 2(i + 2)(2i− 1)b for i > 0.

m0 m1 m2 m3 m4 m5 m6 m7 D0 D1 D2 D3 D4 D5 D6 D7m0 m1 m2 m3 m4 m5 m6 m7 D0D1 D2 D3 D4 D5 D6 D6 *1 3 5 7 9 11 13 15 6 24 50 84 126 176 234 *

1 3 5 7 1 11 13 1 6 24 50 84 126 176 234 *

3 35 11 13 144 4200 22176 *

105 143 604800 *531

1 4 9 11

* 0 4 4 * 1 11 *

modulus tree remainder tree

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 10 / 12



Remainder trees

Let X be the elliptic curve y2 = x3 + x + 1 (so a = b = 1).
Let us compute Dn =

∏
0≤i≤n Dn mod (2n + 1) for 1 ≤ n < 8,

where D0 = 1 and Di = 2(i + 2)(2i− 1)b for i > 0.

m0 m1 m2 m3 m4 m5 m6 m7 D0 D1 D2 D3 D4 D5 D6 D7m0 m1 m2 m3 m4 m5 m6 m7 D0D1 D2 D3 D4 D5 D6 D6 *1 3 5 7 9 11 13 15 6 24 50 84 126 176 234 *

1 3 5 7 1 11 13 1 6 24 50 84 126 176 234 *

3 35 11 13 144 4200 22176 *

105 143 604800 *

531

1 4 9 11

* 0 4 4 * 1 11 *

modulus tree remainder tree

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 10 / 12



Remainder trees

Let X be the elliptic curve y2 = x3 + x + 1 (so a = b = 1).
Let us compute Dn =

∏
0≤i≤n Dn mod (2n + 1) for 1 ≤ n < 8,

where D0 = 1 and Di = 2(i + 2)(2i− 1)b for i > 0.

m0 m1 m2 m3 m4 m5 m6 m7 D0 D1 D2 D3 D4 D5 D6 D7m0 m1 m2 m3 m4 m5 m6 m7 D0D1 D2 D3 D4 D5 D6 D6 *1 3 5 7 9 11 13 15 6 24 50 84 126 176 234 *

1 3 5 7 1 11 13 1 6 24 50 84 126 176 234 *

3 35 11 13 144 4200 22176 *

105 143 604800

*

53

1

1 4 9 11

* 0 4 4 * 1 11 *

modulus tree remainder tree

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 10 / 12



Remainder trees

Let X be the elliptic curve y2 = x3 + x + 1 (so a = b = 1).
Let us compute Dn =

∏
0≤i≤n Dn mod (2n + 1) for 1 ≤ n < 8,

where D0 = 1 and Di = 2(i + 2)(2i− 1)b for i > 0.

m0 m1 m2 m3 m4 m5 m6 m7 D0 D1 D2 D3 D4 D5 D6 D7m0 m1 m2 m3 m4 m5 m6 m7 D0D1 D2 D3 D4 D5 D6 D6 *1 3 5 7 9 11 13 15 6 24 50 84 126 176 234 *

1 3 5 7 1 11 13 1 6 24 50 84 126 176 234 *

3 35 11 13 144 4200 22176 *

105 143

604800 *

531

1 4 9 11

* 0 4 4 * 1 11 *

modulus tree remainder tree

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 10 / 12



Remainder trees

Let X be the elliptic curve y2 = x3 + x + 1 (so a = b = 1).
Let us compute Dn =

∏
0≤i≤n Dn mod (2n + 1) for 1 ≤ n < 8,

where D0 = 1 and Di = 2(i + 2)(2i− 1)b for i > 0.

m0 m1 m2 m3 m4 m5 m6 m7 D0 D1 D2 D3 D4 D5 D6 D7m0 m1 m2 m3 m4 m5 m6 m7 D0D1 D2 D3 D4 D5 D6 D6 *1 3 5 7 9 11 13 15 6 24 50 84 126 176 234 *

1 3 5 7 1 11 13 1 6 24 50 84 126 176 234 *

3 35 11 13

144 4200 22176 *

105 143

604800 *

531

1 4 9 11

* 0 4 4 * 1 11 *

modulus tree remainder tree

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 10 / 12



Remainder trees

Let X be the elliptic curve y2 = x3 + x + 1 (so a = b = 1).
Let us compute Dn =

∏
0≤i≤n Dn mod (2n + 1) for 1 ≤ n < 8,

where D0 = 1 and Di = 2(i + 2)(2i− 1)b for i > 0.

m0 m1 m2 m3 m4 m5 m6 m7 D0 D1 D2 D3 D4 D5 D6 D7m0 m1 m2 m3 m4 m5 m6 m7 D0D1 D2 D3 D4 D5 D6 D6 *1 3 5 7 9 11 13 15 6 24 50 84 126 176 234 *

1 3 5 7 1 11 13 1

6 24 50 84 126 176 234 *

3 35 11 13

144 4200 22176 *

105 143

604800 *

531

1 4 9 11

* 0 4 4 * 1 11 *

modulus tree remainder tree

Andrew V. Sutherland (MIT) Computing L-series of low genus curves August 2, 2013 10 / 12



Remainder trees

1 Can be used over any ring (not necessarily commutative) to compute a
sequence of partial products modulo a sequence of principal ideals
(we use the ring Zg×g and work moduli pg to avoid zero denominators).

2 Provided multiplication and reduction of ring elements take quasi-linear
time, the entire algorithm runs in quasi-linear time.

3 One can reduce the space by a log factor (without increasing the time)
using a forest of remainder trees and propagating results at the roots.

4 When many moduli are trivial, space can be further reduced (by another
log factor in our setting).

5 A time-space trade-off can be used to reduce space even more, but we
do not need to do this.
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Comparison

genus 1 genus 2 genus 3

enumerate Xp(Fp), . . . ,Xp(Fpg) p log1+ε p p2 log1+ε p p3 log1+ε p

generic group algorithms p1/4 log1+ε p p3/4 log1+ε p p5/4 log1+ε

p-adic cohomology (Kedlaya-Harvey) p1/2 log2+ε p p1/2 log2+ε p p1/2 log2+ε p
`-adic CRT (Schoof-Pila) log5+ε p log8+ε p log14?+ε p
Hasse-Witt matrices log4+ε p log4+ε p log4+ε p +

p1/4 log1+ε p

In genus 2 the new algorithm already outperforms smalljac when N > 221.
The prospects in genus 3 look even better (work in progress).

Next steps: generalize to non-hyperelliptic curves of genus 3.
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