L-polynomial distributions of genus 2 curves

Andrew V. Sutherland

Massachusetts Institute of Technology

May 25, 2010

joint work with Kiran Kedlaya

http://arxiv.org/abs/0803.4462

Distributions of Frobenius traces

Let E/\mathbb{Q} be an elliptic curve (non-singular). Let $t_p = #E(\mathbb{F}_p) - p + 1$ denote the trace of Frobenius.

Consider the distribution of

$$x_p = t_p / \sqrt{p} \in [-2, 2]$$

as $p \leq N$ varies over primes of good reduction.

What happens as $N \to \infty$?

http://math.mit.edu/~drew

Trace distributions in genus 1

1. Typical case (no CM)

For any elliptic curve without CM, the limiting distribution is the semicircular distribution [Sato-Tate conjecture].^{*a*}

^aProven (for almost all curves) by Clozel, Harris, Shepherd-Baron, and Taylor.

2. Exceptional cases (CM)

All elliptic curves with CM have the same limiting distribution [classical].

Zeta functions and L-polynomials

For a smooth projective curve C/\mathbb{Q} and a good prime *p* define

$$Z(C/\mathbb{F}_p;T) = \exp\left(\sum_{k=1}^{\infty} N_k T^k/k\right),$$

where $N_k = \#C/\mathbb{F}_{p^k}$. This is a rational function of the form

$$Z(C/\mathbb{F}_p;T) = \frac{L_p(T)}{(1-T)(1-pT)},$$

where $L_p(T)$ is an integer polynomial of degree 2g. For g = 2:

$$L_p(T) = p^2 T^4 + c_1 p T^3 + c_2 p T^2 + c_1 T + 1.$$

Unitarized L-polynomials

The polynomial

$$\bar{L}_p(T) = L_p(T/\sqrt{p}) = \sum_{i=0}^{2g} a_i T^i$$

has coefficients that satisfy $a_i = a_{2g-i}$ and $|a_i| \leq \binom{2g}{i}$.

Given a curve *C*, we may consider the distribution of $a_1, a_2, ..., a_g$, taken over primes $p \leq N$ of good reduction, as $N \to \infty$.

This talk focuses on the distribution of a_1 and a_2 in genus 2.

The Katz-Sarnak random matrix model

 $\bar{L}_p(T)$ is a real reciprocal polynomial whose roots lie on the unit circle.

Every such polynomial arises as the characteristic polynomial $\chi(T)$ of a unitary symplectic matrix in $\mathbb{C}^{2g \times 2g}$.

Conjecture 1

For a typical curve of genus g, the distribution of \overline{L}_p converges to the distribution of χ in USp(2g).

For g = 2, a curve is "typical" if and only if $\text{End}(J(C)) \cong \mathbb{Z}$ (no CM).

This conjecture has been proven "on average" for universal families of hyperelliptic curves, including all genus 2 curves, by Katz and Sarnak.

The Haar measure on USp(2g)

Let $e^{\pm i\theta_1}, \ldots, e^{\pm i\theta_g}$ denote the eigenvalues of a random conjugacy class in USp(2g). The Weyl integration formula yields the measure

$$\mu = \frac{1}{g!} \left(\prod_{j < k} (2\cos\theta_j - 2\cos\theta_k) \right)^2 \prod_j \left(\frac{2}{\pi} \sin^2\theta_j d\theta_j \right).$$

In genus 1 we have USp(2) = SU(2) and $\mu = \frac{2}{\pi} \sin^2 \theta d\theta$, which is the Sato-Tate distribution.

Note that $-a_1 = \sum 2 \cos \theta_j$ is the trace.

We wish to understand \bar{L}_p -distributions in genus 2, both the typical situation, and all the exceptional cases.

This presents three challenges:

- Data collection
- Distinguishing distributions
- Theoretical model

Fast \bar{L}_p computations Moment sequences Subgroups of USp(4)

Collecting data

There are four ways to compute \bar{L}_p in genus 2:

- point counting: $\tilde{O}(p^2)$.
- **2** group computation: $\tilde{O}(p^{3/4})$.
- 3 *p*-adic methods: $\tilde{O}(p^{1/2})$.
- ℓ -adic methods: $\tilde{O}(1)$.

For most of the feasible range of $p \leq N$, we found (2) to be the fastest.

For smaller *p* we can assist by point counting over \mathbb{F}_p (but not \mathbb{F}_{p^2}). For larger *p* we can assist with ℓ -adic information for $\ell = 2, 3$.

Computing L-series of hyperelliptic curves, ANTS VIII, 2008, KS.

Performance comparison

$p \approx 2^k$	points+group	group	p-adic
214	0.22	0.55	4
2 ¹⁵	0.34	0.88	6
216	0.56	1.33	8
2 ¹⁷	0.98	2.21	11
2 ¹⁸	1.82	3.42	17
2 ¹⁹	3.44	5.87	27
2^{20}	7.98	10.1	40
2 ²¹	18.9	17.9	66
2^{22}	52	35	104
2^{23}		54	176
2^{24}		104	288
2 ²⁵		173	494
2^{26}		306	871
2 ²⁷		505	1532

Time to compute $L_p(T)$ in CPU milliseconds on a 2.5 GHz AMD Athlon

Time to compute \overline{L}_p for $p \leq N$

Ν	2 cores	16 cores
2^{16}	1	< 1
2^{17}	4	2
2^{18}	12	3
2^{19}	40	7
2^{20}	2:32	24
2^{21}	10:46	1:38
2^{22}	40:20	5:38
2^{23}	2:23:56	19:04
2^{24}	8:00:09	1:16:47
2^{25}	26:51:27	3:24:40
2^{26}		11:07:28
2^{27}		36:48:52

Characterizing distributions

The moment sequence of a random variable X is

```
M[X] = (E[X^0], E[X^1], E[X^2], \ldots).
```

For suitably bounded X, the moment sequence M[X] is well defined and uniquely determines the distribution of X.

Given sample values x_1, \ldots, x_N for X, the nth *moment statistic* is the mean of x_i^n . It converges to $E[X^n]$ as $N \to \infty$.

Theorem

If *X* is a coefficient of the characteristic polynomial of a random matrix in a compact subgroup of $GL_n(\mathbb{C})$, then M[X] is an integer sequence.

The typical trace moment sequence in genus 1

Using the measure μ in genus 1, for $t = -a_1$ we have

$$E[t^n] = \frac{2}{\pi} \int_0^{\pi} (2\cos\theta)^n \sin^2\theta d\theta.$$

This is zero when *n* is odd, and for n = 2m we obtain

$$E[t^{2m}] = \frac{1}{2m+1} \binom{2m}{m}.$$

and therefore

$$M[t] = (1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, \ldots).$$

This is sequence A126120 in the OEIS.

The typical trace moment sequence in genus g > 1

A similar computation in genus 2 yields

```
M[t] = (1, 0, 1, 0, 3, 0, 14, 0, 84, 0, 594, \ldots),
```

which is sequence A138349, and in genus 3 we have

 $M[t] = (1, 0, 1, 0, 3, 0, 15, 0, 104, 0, 909, \ldots),$

which is sequence A138540.

In genus *g*, the *n*th moment of the trace is the number of returning walks of length *n* on \mathbb{Z}^g with $x_1 \ge x_2 \ge \cdots \ge x_g \ge 0$ [Grabiner-Magyar].

The exceptional trace moment sequence in genus 1

For an elliptic curve with CM we find that

$$E[t^{2m}] = \frac{1}{2} \binom{2m}{m}, \quad \text{for } m > 0$$

yielding the moment sequence

$$M[t] = (1, 0, 1, 0, 3, 0, 10, 0, 35, 0, 126, 0, \ldots),$$

whose even entries are A008828.

An exceptional trace moment sequence in Genus 2

For a hyperelliptic curve whose Jacobian is isogenous to the direct product of two elliptic curves, we compute $M[t] = M[t_1 + t_2]$ via

$$\mathbf{E}[(t_1+t_2)^n] = \sum {\binom{n}{i}} \mathbf{E}[t_1^i] \mathbf{E}[t_2^{n-i}].$$

For example, using

$$M[t_1] = (1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, ...),$$

$$M[t_2] = (1, 0, 1, 0, 3, 0, 10, 0, 35, 0, 126, 0, 462, ...),$$

we obtain A138551,

$$M[t] = (1, 0, 2, 0, 11, 0, 90, 0, 889, 0, 9723, \ldots).$$

The second moment already differs from the standard sequence, and the fourth moment differs greatly (11 versus 3).

Sieving for exceptional curves

We surveyed the \bar{L}_p -distributions of genus 2 curves

$$y^2 = x^5 + c_4 x^4 + c_3 x^3 + c_2 x^2 + c_1 x + c_0,$$

 $y^{2} = b^{6}x^{6} + b_{5}x^{5} + b_{4}x^{4} + b_{3}x^{3} + b_{2}x^{2} + b_{1}x + b_{0},$

with integer coefficients $|c_i| \leq 64$ and $|b_i| \leq 16$, over 10^{10} curves.

We initially computed \bar{L}_p for $p \leq N \approx 2^{12}$.

We then filtered out "unexceptional" curves (over 99% of them), extended the computation using $N = 2^{16}$, and filtered again.

We were left with about 30,000 non-isomorphic "exceptional" curves, with what appeared to be about 20 different distributions.

Representative examples were then extended to $N = 2^{26}$.

Survey highlights

Some provisional observations:

- The moment statistics always appear to converge to integers.
- At least 20 apparently distinct \overline{L}_p -distributions were found. This exceeds the possibilities for $\operatorname{End}(J(C))$ and $\operatorname{Aut}(C)$.
- The same \bar{L}_p -distribution can arise for split and simple Jacobians.
- There appear to be at least 9 distinct possibilities for the density z(C) of zero traces. Several exceptional cases have z(C) = 0.
- The a_1 distribution appears to determine the a_2 distribution.

#	z(C)	M_2	M_4	M_6	M_8	f(x)
1	0	1	3	14	84	$x^5 + x + 1$
2	0	2	10	70	588*	$x^5 - 2x^4 + x^3 + 2x - 4$
3	0	2	11	90	888*	$x^5 + 20x^4 - 26x^3 + 20x^2 + x$
4	0	2	12	110	1203*	$x^5 + 4x^4 + 3x^3 - x^2 - x$
5	0	4	32	320	3581*	$x^5 + 7x^3 + 32x^2 + 45x + 50$
6	1/6	2	12	100	979*	$x^5 - 5x^3 - 5x^2 - x$
7	1/4	2	12	100	1008*	$x^5 + 2x^4 + 2x^2 - x$
8	1/4	2	12	110	1257*	$x^5 - 4x^4 - 2x^3 - 4x^2 + x$
9	1/2	1	5	35	293*	$x^5 - 2x^4 + 11x^3 + 4x^2 + 4x$
10	1/2	1	6	55	601*	$x^5 - 2x^4 - 3x^3 + 2x^2 + 8x$
11	1/2	2	16	160	1789*	$x^{5} + x^{3} + x$
12	1/2	2	18	220	3005*	$x^5 - 3x^4 + 19x^3 + 4x^2 + 56x - 12$
13	1/2	4	48	640	8949*	$x^{6} + 1$
14	7/12	1	6	50	489*	$x^5 - 4x^4 - 3x^3 - 7x^2 - 2x - 3$
15	7/12	2	18	200	2446*	$x^{6} + 2$
16	5/8	1	6	50	502*	$x^5 + x^3 + 2x$
17	5/8	2	18	200	2515*	$x^5 - 10x^4 + 50x^2 - 25x$
18	3/4	1	8	80	894*	$x^5 - 2x^3 - x$
19	3/4	1	9	100	1222*	$x^5 - 1$
20	3/4	1	9	110	1501*	$11x^6 + 11x^3 - 4$
21	3/4	2	24	320	4474*	$x^{5} + x$
22	13/16	1	9	100	1254*	$x^{5} + 3x$
23	7/8	1	12	160	2237*	$x^5 + 2x$

Random matrix subgroup model

Conjecture 1

For a typical curve of genus g, the distribution of \overline{L}_p converges to the distribution of χ in USp(2g).

Conjecture 2

For a genus g curve C, the distribution of \overline{L}_p converges to the distribution of χ in some infinite compact subgroup $H \subseteq USp(2g)$.

Equality holds if and only if C has large Galois image.

Subgroups representing genus 1 \bar{L}_p -distributions

In the typical case *H* is the group $G_1 = USp(2g) = SU(2)$.

For CM curves, we let *H* be the subgroup $G_2 \subset USp(2)$ defined by

$$G_2 = \left\{ egin{pmatrix} \cos heta & \sin heta \ -\sin heta & \cos heta \end{pmatrix}$$
 , $egin{pmatrix} i \cos heta & i \sin heta \ i \sin heta & -i \cos heta \end{pmatrix}$: $heta \in [0, 2\pi]
ight\}$.

This is a compact group (the normalizer of SO(2) in SU(2)).

The Haar measure on G_2 yields the desired moment sequence

 $M[t] = (1, 0, 1, 0, 3, 0, 10, 0, 35, 0, 126, 0, \ldots),$

and the correct zero trace density z(H) = 1/2.

Candidate subgroups *H* in genus 2

We can immediately identify four candidates for *H*:

 $USp(4), \quad G_1 \times G_1, \quad G_1 \times G_2, \quad G_2 \times G_2.$

Additionally, we define subgroups H_i^k for i = 1, 2 and k = 1, 2, 3, 4, 6, in which G_i is diagonally embedded with a copy of itself that has been "twisted" by a *k*th root of unity (the restriction on *k* is necessary).

Finally, for any of the groups *H* above, we may consider the group J(H) obtained by including the matrix

$$J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}.$$

Not all of these groups yields distinct distributions, but 24 of them do. There is also an index 2 subgroup *K* of $J(G_2 \times G_2)$.

Candidate subgroups *H* of USp(4)

#	Н	d	c(H)	z(H)	M_2	M_4	M_6	M_8	<i>M</i> ₁₀
1	USp(4)	10	1	0	1	3	14	84	594
2	$G_1 \times G_1$	6	1	0	2	10	70	588	5544
3	$G_1 \times G_2$	4	2	0	2	11	90	889	9723
4	H_{1}^{3}	3	3	0	2	12	110	1204	14364
5	H_1	3	1	0	4	32	320	3584	43008
6	H_{1}^{6}	3	6	1/6	2	12	100	980	10584
7	H_1^4	3	4	1/4	2	12	100	1008	11424
8	$G_2 \times G_2$	2	4	1/4	2	12	110	1260	16002
9	$J(G_1 \times G_1)$	6	2	1/2	1	5	35	294	2772
10	$J(H_{1}^{3})$	3	6	1/2	1	6	55	602	7182
11	H_1^-	3	2	1/2	2	16	160	1792	21504
12	H_2^3	1	6	1/2	2	18	220	3010	43092
13	H_2	1	2	1/2	4	48	640	8960	129024
14	$J(H_{1}^{6})$	3	12	7/12	1	6	50	490	5292
15	H_2^6	1	12	7/12	2	18	200	2450	31752
16	$J(\overline{H_1^4})$	3	8	5/8	1	6	50	504	5712
17	H_2^4	1	8	5/8	2	18	200	2520	34272
18	$J(\tilde{H_1})$	3	4	3/4	1	8	80	896	10752
19	Ŕ	2	4	3/4	1	9	100	1225	15876
20	$J(H_{2}^{3})$	1	12	3/4	1	9	110	1505	21546
21	$H_2^{-\tilde{i}}$	1	4	3/4	2	24	320	4480	64512
22	$J(\tilde{H}_2^4)$	1	16	13/16	1	9	100	1260	17136
23	$J(H_2^{2})$	1	8	7/8	1	12	160	2240	32256
*	$J(G_2 \times G_2)$	2	8	5/8	1	6	55	630	8001
*	$J(H_2^6)$	1	24	19/24	1	9	100	1225	15876

A conjecturally complete classification in genus 2

Every distribution found in our survey (and in the literature) has a distribution matching one of these candidates.

Initially we found only 19 exceptional distributions, but careful examination of the survey data yielded 3 missing cases.

This left only $J(G_2 \times G_2)$ and $J(H_2^6)$ unaccounted for.

 $J(G_2 \times G_2)$ has now been ruled out by Serre. A similar (but more difficult) argument may apply to $J(H_2^6)$.

Further supporting evidence

For each candidate subgroup $H \subseteq USp(4)$ we may consider the component group of H and the dimension d(H).

In many cases, we can partition the \bar{L}_p data via constraints on p. In every such case this yields the predicted component distributions.

The mod ℓ Galois image of *C* should have size $\approx \ell^d$, where d = d(H). The ℓ -Sylow subgroup of $J(C/\mathbb{F}_p)$ then has full rank for a set of primes of density ℓ^{-d} . This has been confirmed for small *d* and ℓ .

Open questions

Can one prove that the list

0, 1/6, 1/4, 1/2, 7/12, 5/8, 3/4, 13/16, 7/8

of values for z(C) is complete in genus 2?

- Is their a lattice path interpretation for each of the identified subgroups in *USp*(4)?
- What happens in genus 3?

L-polynomial distributions of genus 2 curves

Andrew V. Sutherland

Massachusetts Institute of Technology

May 25, 2010

joint work with Kiran Kedlaya

http://arxiv.org/abs/0803.4462