L-polynomial distributions of genus 2 curves

Andrew V. Sutherland

Massachusetts Institute of Technology

May 25, 2010

joint work with Kiran Kedlaya
http://arxiv.org/abs/0803.4462

Distributions of Frobenius traces

Let E / \mathbb{Q} be an elliptic curve (non-singular).
Let $t_{p}=\# E\left(\mathbb{F}_{p}\right)-p+1$ denote the trace of Frobenius.
Consider the distribution of

$$
x_{p}=t_{p} / \sqrt{p} \in[-2,2]
$$

as $p \leqslant N$ varies over primes of good reduction.

What happens as $N \rightarrow \infty$?
http://math.mit.edu/~drew

Trace distributions in genus 1

1. Typical case (no CM)

For any elliptic curve without CM, the limiting distribution is the semicircular distribution [Sato-Tate conjecture]. ${ }^{a}$
${ }^{\text {a }}$ Proven (for almost all curves) by Clozel, Harris, Shepherd-Baron, and Taylor.
2. Exceptional cases (CM)

All elliptic curves with CM have the same limiting distribution [classical].

Zeta functions and L-polynomials

For a smooth projective curve C / \mathbb{Q} and a good prime p define

$$
Z\left(C / \mathbb{F}_{p} ; T\right)=\exp \left(\sum_{k=1}^{\infty} N_{k} T^{k} / k\right),
$$

where $N_{k}=\# C / \mathbb{F}_{p^{k}}$. This is a rational function of the form

$$
Z\left(C / \mathbb{F}_{p} ; T\right)=\frac{L_{p}(T)}{(1-T)(1-p T)},
$$

where $L_{p}(T)$ is an integer polynomial of degree $2 g$. For $g=2$:

$$
L_{p}(T)=p^{2} T^{4}+c_{1} p T^{3}+c_{2} p T^{2}+c_{1} T+1 .
$$

Unitarized L-polynomials

The polynomial

$$
\bar{L}_{p}(T)=L_{p}(T / \sqrt{p})=\sum_{i=0}^{2 g} a_{i} T^{i}
$$

has coefficients that satisfy $a_{i}=a_{2 g-i}$ and $\left|a_{i}\right| \leqslant\binom{ 2 g}{i}$.
Given a curve C, we may consider the distribution of $a_{1}, a_{2}, \ldots, a_{g}$, taken over primes $p \leqslant N$ of good reduction, as $N \rightarrow \infty$.

This talk focuses on the distribution of a_{1} and a_{2} in genus 2 .
http://math.mit.edu/~drew

The Katz-Sarnak random matrix model

$\bar{L}_{p}(\mathrm{~T})$ is a real reciprocal polynomial whose roots lie on the unit circle.
Every such polynomial arises as the characteristic polynomial $\chi(T)$ of a unitary symplectic matrix in $\mathbb{C}^{2 g \times 2 g}$.

Conjecture 1

For a typical curve of genus g, the distribution of \bar{L}_{p} converges to the distribution of χ in $\operatorname{USp}(2 g)$.

For $g=2$, a curve is "typical" if and only if $\operatorname{End}(J(C)) \cong \mathbb{Z}$ (no CM).
This conjecture has been proven "on average" for universal families of hyperelliptic curves, including all genus 2 curves, by Katz and Sarnak.

The Haar measure on $\operatorname{USp}(2 g)$

Let $e^{ \pm i \theta_{1}}, \ldots, e^{ \pm i \theta_{g}}$ denote the eigenvalues of a random conjugacy class in $U S p(2 g)$. The Weyl integration formula yields the measure

$$
\mu=\frac{1}{g!}\left(\prod_{j<k}\left(2 \cos \theta_{j}-2 \cos \theta_{k}\right)\right)^{2} \prod_{j}\left(\frac{2}{\pi} \sin ^{2} \theta_{j} d \theta_{j}\right)
$$

In genus 1 we have $\operatorname{USp}(2)=S U(2)$ and $\mu=\frac{2}{\pi} \sin ^{2} \theta d \theta$, which is the Sato-Tate distribution.

Note that $-a_{1}=\sum 2 \cos \theta_{j}$ is the trace.

Research Program

We wish to understand \bar{L}_{p}-distributions in genus 2 , both the typical situation, and all the exceptional cases.

This presents three challenges:

- Data collection
- Distinguishing distributions
- Theoretical model

Fast \bar{L}_{p} computations
Moment sequences
Subgroups of $\operatorname{USp}(4)$

Collecting data

There are four ways to compute \bar{L}_{p} in genus 2 :
(1) point counting: $\tilde{O}\left(p^{2}\right)$.
(2) group computation: $\tilde{O}\left(p^{3 / 4}\right)$.
(3) p-adic methods: $\tilde{O}\left(p^{1 / 2}\right)$.
(4) ℓ-adic methods: $\tilde{O}(1)$.

For most of the feasible range of $p \leqslant N$, we found (2) to be the fastest.
For smaller p we can assist by point counting over \mathbb{F}_{p} (but not $\mathbb{F}_{p^{2}}$). For larger p we can assist with ℓ-adic information for $\ell=2,3$.

Computing L-series of hyperelliptic curves, ANTS VIII, 2008, KS.

Performance comparison

$p \approx 2^{k}$	points+group	group	p-adic
2^{14}	$\mathbf{0 . 2 2}$	0.55	4
2^{15}	$\mathbf{0 . 3 4}$	0.88	6
2^{16}	$\mathbf{0 . 5 6}$	1.33	8
2^{17}	$\mathbf{0 . 9 8}$	2.21	11
2^{18}	$\mathbf{1 . 8 2}$	3.42	17
2^{19}	$\mathbf{3 . 4 4}$	5.87	27
2^{20}	$\mathbf{7 . 9 8}$	10.1	40
2^{21}	18.9	$\mathbf{1 7 . 9}$	66
2^{22}	52	$\mathbf{3 5}$	104
2^{23}		54	176
2^{24}		$\mathbf{1 0 4}$	288
2^{25}		$\mathbf{1 7 3}$	494
2^{26}		$\mathbf{3 0 6}$	871
2^{27}	505	1532	

Time to compute $L_{p}(T)$ in CPU milliseconds on a 2.5 GHz AMD Athlon

Time to compute \bar{L}_{p} for $p \leqslant N$

N	2 cores	16 cores
2^{16}	1	<1
2^{17}	4	2
2^{18}	12	3
2^{19}	40	7
2^{20}	$2: 32$	24
2^{21}	$10: 46$	$1: 38$
2^{22}	$40: 20$	$5: 38$
2^{23}	$2: 23: 56$	$19: 04$
2^{24}	$8: 00: 09$	$1: 16: 47$
2^{25}	$26: 51: 27$	$3: 24: 40$
2^{26}		$11: 07: 28$
2^{27}		$36: 48: 52$

Characterizing distributions

The moment sequence of a random variable X is

$$
M[X]=\left(\mathrm{E}\left[X^{0}\right], \mathrm{E}\left[X^{1}\right], \mathrm{E}\left[X^{2}\right], \ldots\right) .
$$

For suitably bounded X, the moment sequence $M[X]$ is well defined and uniquely determines the distribution of X.

Given sample values x_{1}, \ldots, x_{N} for X, the nth moment statistic is the mean of x_{i}^{n}. It converges to $\mathrm{E}\left[X^{n}\right]$ as $N \rightarrow \infty$.

Theorem

If X is a coefficient of the characteristic polynomial of a random matrix in a compact subgroup of $G L_{n}(\mathbb{C})$, then $M[X]$ is an integer sequence.

The typical trace moment sequence in genus 1

Using the measure μ in genus 1 , for $t=-a_{1}$ we have

$$
E\left[t^{n}\right]=\frac{2}{\pi} \int_{0}^{\pi}(2 \cos \theta)^{n} \sin ^{2} \theta d \theta
$$

This is zero when n is odd, and for $n=2 m$ we obtain

$$
E\left[t^{2 m}\right]=\frac{1}{2 m+1}\binom{2 m}{m}
$$

and therefore

$$
M[t]=(1,0,1,0,2,0,5,0,14,0,42,0,132, \ldots)
$$

This is sequence A126120 in the OEIS.

The typical trace moment sequence in genus $g>1$

A similar computation in genus 2 yields

$$
M[t]=(1,0,1,0,3,0,14,0,84,0,594, \ldots)
$$

which is sequence A138349, and in genus 3 we have

$$
M[t]=(1,0,1,0,3,0,15,0,104,0,909, \ldots)
$$

which is sequence A 138540 .
In genus g, the nth moment of the trace is the number of returning walks of length n on \mathbb{Z}^{g} with $x_{1} \geqslant x_{2} \geqslant \cdots \geqslant x_{g} \geqslant 0$ [Grabiner-Magyar].

The exceptional trace moment sequence in genus 1

For an elliptic curve with CM we find that

$$
E\left[t^{2 m}\right]=\frac{1}{2}\binom{2 m}{m}, \quad \text { for } m>0
$$

yielding the moment sequence

$$
M[t]=(1,0,1,0,3,0,10,0,35,0,126,0, \ldots)
$$

whose even entries are A008828.

An exceptional trace moment sequence in Genus 2

For a hyperelliptic curve whose Jacobian is isogenous to the direct product of two elliptic curves, we compute $M[t]=M\left[t_{1}+t_{2}\right]$ via

$$
\mathrm{E}\left[\left(t_{1}+t_{2}\right)^{n}\right]=\sum\binom{n}{i} \mathrm{E}\left[t_{1}^{i}\right] \mathrm{E}\left[t_{2}^{n-i}\right] .
$$

For example, using

$$
\begin{aligned}
& M\left[t_{1}\right]=(1,0,1,0,2,0,5,0,14,0,42,0,132, \ldots) \\
& M\left[t_{2}\right]=(1,0,1,0,3,0,10,0,35,0,126,0,462, \ldots)
\end{aligned}
$$

we obtain A138551,

$$
M[t]=(1,0,2,0,11,0,90,0,889,0,9723, \ldots)
$$

The second moment already differs from the standard sequence, and the fourth moment differs greatly (11 versus 3).

Sieving for exceptional curves

We surveyed the \bar{L}_{p}-distributions of genus 2 curves

$$
\begin{gathered}
y^{2}=x^{5}+c_{4} x^{4}+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0} \\
y^{2}=b^{6} x^{6}+b_{5} x^{5}+b_{4} x^{4}+b_{3} x^{3}+b_{2} x^{2}+b_{1} x+b_{0}
\end{gathered}
$$

with integer coefficients $\left|c_{i}\right| \leqslant 64$ and $\left|b_{i}\right| \leqslant 16$, over 10^{10} curves.
We initially computed \bar{L}_{p} for $p \leqslant N \approx 2^{12}$.
We then filtered out "unexceptional" curves (over 99\% of them), extended the computation using $N=2^{16}$, and filtered again.

We were left with about 30,000 non-isomorphic "exceptional" curves, with what appeared to be about 20 different distributions.

Representative examples were then extended to $N=2^{26}$.

Survey highlights

Some provisional observations:

- The moment statistics always appear to converge to integers.
- At least 20 apparently distinct \bar{L}_{p}-distributions were found. This exceeds the possibilities for $\operatorname{End}(J(C))$ and $\operatorname{Aut}(C)$.
- The same \bar{L}_{p}-distribution can arise for split and simple Jacobians.
- There appear to be at least 9 distinct possibilities for the density $z(C)$ of zero traces. Several exceptional cases have $z(C)=0$.
- The a_{1} distribution appears to determine the a_{2} distribution.

$\#$	$z(C)$	M_{2}	M_{4}	M_{6}	M_{8}	$l(x)$
1	0	1	3	14	84	$x^{5}+x+1$
2	0	2	10	70	588^{*}	$x^{5}-2 x^{4}+x^{3}+2 x-4$
3	0	2	11	90	888^{*}	$x^{5}+20 x^{4}-26 x^{3}+20 x^{2}+x$
4	0	2	12	110	1203^{*}	$x^{5}+4 x^{4}+3 x^{3}-x^{2}-x$
5	0	4	32	320	3581^{*}	$x^{5}+7 x^{3}+32 x^{2}+45 x+50$
6	$1 / 6$	2	12	100	979^{*}	$x^{5}-5 x^{3}-5 x^{2}-x$
7	$1 / 4$	2	12	100	1008^{*}	$x^{5}+2 x^{4}+2 x^{2}-x$
8	$1 / 4$	2	12	110	1257^{*}	$x^{5}-4 x^{4}-2 x^{3}-4 x^{2}+x$
9	$1 / 2$	1	5	35	293^{*}	$x^{5}-2 x^{4}+11 x^{3}+4 x^{2}+4 x$
10	$1 / 2$	1	6	55	601^{*}	$x^{5}-2 x^{4}-3 x^{3}+2 x^{2}+8 x$
11	$1 / 2$	2	16	160	1789^{*}	$x^{5}+x^{3}+x$
12	$1 / 2$	2	18	220	3005^{*}	$x^{5}-3 x^{4}+19 x^{3}+4 x^{2}+56 x-12$
13	$1 / 2$	4	48	640	8949^{*}	$x^{6}+1$
14	$7 / 12$	1	6	50	489^{*}	$x^{5}-4 x^{4}-3 x^{3}-7 x^{2}-2 x-3$
15	$7 / 12$	2	18	200	2446^{*}	$x^{6}+2$
16	$5 / 8$	1	6	50	502^{*}	$x^{5}+x^{3}+2 x$
17	$5 / 8$	2	18	200	2515^{*}	$x^{5}-10 x^{4}+50 x^{2}-25 x$
18	$3 / 4$	1	8	80	894^{*}	$x^{5}-2 x^{3}-x$
19	$3 / 4$	1	9	100	1222^{*}	$x^{5}-1$
20	$3 / 4$	1	9	110	1501^{*}	$11 x^{6}+11 x^{3}-4$
21	$3 / 4$	2	24	320	4474^{*}	$x^{5}+x$
22	$13 / 16$	1	9	100	1254^{*}	$x^{5}+3 x$
23	$7 / 8$	1	12	160	2237^{*}	$x^{5}+2 x$

Random matrix subgroup model

Conjecture 1

For a typical curve of genus g, the distribution of \bar{L}_{p} converges to the distribution of χ in $\operatorname{USp}(2 g)$.

Conjecture 2

For a genus g curve C, the distribution of \bar{L}_{p} converges to the distribution of χ in some infinite compact subgroup $H \subseteq U S p(2 g)$.

Equality holds if and only if C has large Galois image.

Subgroups representing genus $1 \bar{L}_{p}$-distributions

In the typical case H is the group $G_{1}=\operatorname{USp}(2 g)=S U(2)$.
For CM curves, we let H be the subgroup $G_{2} \subset U S p(2)$ defined by

$$
G_{2}=\left\{\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right),\left(\begin{array}{cc}
i \cos \theta & i \sin \theta \\
i \sin \theta & -i \cos \theta
\end{array}\right): \theta \in[0,2 \pi]\right\} .
$$

This is a compact group (the normalizer of $S O(2)$ in $S U(2)$).
The Haar measure on G_{2} yields the desired moment sequence

$$
M[t]=(1,0,1,0,3,0,10,0,35,0,126,0, \ldots)
$$

and the correct zero trace density $z(H)=1 / 2$.

Candidate subgroups H in genus 2

We can immediately identify four candidates for H :

$$
U S p(4), \quad G_{1} \times G_{1}, \quad G_{1} \times G_{2}, \quad G_{2} \times G_{2} .
$$

Additionally, we define subgroups H_{i}^{k} for $i=1,2$ and $k=1,2,3,4,6$, in which G_{i} is diagonally embedded with a copy of itself that has been "twisted" by a k th root of unity (the restriction on k is necessary).

Finally, for any of the groups H above, we may consider the group $J(H)$ obtained by including the matrix

$$
J=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right) .
$$

Not all of these groups yields distinct distributions, but 24 of them do. There is also an index 2 subgroup K of $J\left(G_{2} \times G_{2}\right)$.

Candidate subgroups H of $U S p(4)$

$\#$	H	d	$c(H)$	$z(H)$	M_{2}	M_{4}	M_{6}	M_{8}	M_{10}
1	$U S p(4)$	10	1	0	1	3	14	84	594
2	$G_{1} \times G_{1}$	6	1	0	2	10	70	588	5544
3	$G_{1} \times G_{2}$	4	2	0	2	11	90	889	9723
4	H_{1}^{3}	3	3	0	2	12	110	1204	14364
5	H_{1}	3	1	0	4	32	320	3584	43008
6	H_{1}^{6}	3	6	$1 / 6$	2	12	100	980	10584
7	H_{1}^{4}	3	4	$1 / 4$	2	12	100	1008	11424
8	$G_{2} \times G_{2}$	2	4	$1 / 4$	2	12	110	1260	16002
9	$J\left(G_{1} \times G_{1}\right)$	6	2	$1 / 2$	1	5	35	294	2772
10	$J\left(H_{1}^{3}\right)$	3	6	$1 / 2$	1	6	55	602	7182
11	H_{1}^{-1}	3	2	$1 / 2$	2	16	160	1792	21504
12	H_{2}^{3}	1	6	$1 / 2$	2	18	220	3010	43092
13	H_{2}	1	2	$1 / 2$	4	48	640	8960	129024
14	$J\left(H_{1}^{6}\right)$	3	12	$7 / 12$	1	6	50	490	5292
15	H_{2}^{6}	1	12	$7 / 12$	2	18	200	2450	31752
16	$J\left(H_{1}^{4}\right)$	3	8	$5 / 8$	1	6	50	504	5712
17	H_{2}^{4}	1	8	$5 / 8$	2	18	200	2520	34272
18	$J\left(H_{1}^{-}\right)$	3	4	$3 / 4$	1	8	80	896	10752
19	K	2	4	$3 / 4$	1	9	100	1225	15876
20	$J\left(H_{2}^{3}\right)$	1	12	$3 / 4$	1	9	110	1505	21546
21	H_{2}^{2}	1	4	$3 / 4$	2	24	320	4480	64512
22	$J\left(H_{2}^{4}\right)$	1	16	$13 / 16$	1	9	100	1260	17136
23	$J\left(H_{2}^{-}\right)$	1	8	$7 / 8$	1	12	160	2240	32256
$*$	$J\left(G_{2} \times G_{2}\right)$	2	8	$5 / 8$	1	6	55	630	8001
$*$	$J\left(H_{2}^{6}\right)$	1	24	$19 / 24$	1	9	100	1225	15876

A conjecturally complete classification in genus 2

Every distribution found in our survey (and in the literature) has a distribution matching one of these candidates.

Initially we found only 19 exceptional distributions, but careful examination of the survey data yielded 3 missing cases.

This left only $J\left(G_{2} \times G_{2}\right)$ and $J\left(H_{2}^{6}\right)$ unaccounted for.
$J\left(G_{2} \times G_{2}\right)$ has now been ruled out by Serre. A similar (but more difficult) argument may apply to $J\left(H_{2}^{6}\right)$.

Further supporting evidence

For each candidate subgroup $H \subseteq U S p(4)$ we may consider the component group of H and the dimension $d(H)$.

In many cases, we can partition the \bar{L}_{p} data via constraints on p. In every such case this yields the predicted component distributions.

The mod ℓ Galois image of C should have size $\approx \ell^{d}$, where $d=d(H)$. The ℓ-Sylow subgroup of $J\left(C / \mathbb{F}_{p}\right)$ then has full rank for a set of primes of density ℓ^{-d}. This has been confirmed for small d and ℓ.

Open questions

- Can one prove that the list

$$
0,1 / 6,1 / 4,1 / 2,7 / 12,5 / 8,3 / 4,13 / 16,7 / 8
$$

of values for $z(C)$ is complete in genus 2 ?

- Is their a lattice path interpretation for each of the identified subgroups in $U S p(4) ?$
- What happens in genus 3 ?

L-polynomial distributions of genus 2 curves

Andrew V. Sutherland

Massachusetts Institute of Technology

May 25, 2010

joint work with Kiran Kedlaya
http://arxiv.org/abs/0803.4462

