Isogeny volcanoes

Andrew V. Sutherland

Massachusetts Institute of Technology

PANTS XX — September 7, 2013

http://arxiv.org/abs/1208.5370

A volcano

A volcano

l-volcanoes

For a prime ℓ , an ℓ -volcano is a connected undirected graph whose vertices are partitioned into levels V_0, \ldots, V_d .

- **1.** The subgraph on V_0 (the *surface*) is a connected regular graph of degree 0, 1, or 2.
- **2.** For i > 0, each $v \in V_i$ has exactly one neighbor in V_{i-1} . All edges not on the surface arise in this manner.
- **3.** For i < d, each $v \in V_i$ has degree ℓ +1.

We allow self-loops and multi-edges in our graphs, but this can happen only on the surface of an ℓ -volcano.

A 3-volcano of depth 2

Elliptic curves

An elliptic curve E/k is a smooth projective curve of genus 1 with a distinguished *k*-rational point 0.

For any field extension k'/k, the set of k'-rational points E(k') forms an abelian group with identity element 0.

When the characteristic of k is not 2 or 3 (which we assume for convenience) we may define E with an equation of the form

$$y^2 = x^3 + Ax + B,$$

where $A, B \in k$.

j-invariants

The \bar{k} -isomorphism classes of elliptic curves E/k are in bijection with the field k. For $E: y^2 = x^3 + Ax + B$, the *j*-invariant of E is

$$j(E) = j(A, B) = 1728 \frac{4A^3}{4A^3 + 27B^2} \in k$$

The *j*-invariants j(0, B) = 0 and j(A, 0) = 1728 are special. They correspond to elliptic curves with extra automorphisms.

For $j_0 \notin \{0, 1728\}$, we have $j_0 = j(A, B)$, where

 $A = 3j_0(1728 - j_0)$ and $B = 2j_0(1728 - j_0)^2$.

Note that $j(E_1) = j(E_2)$ does not necessarily imply that E_1 and E_2 are isomorphic over k, but they must be isomorphic over \bar{k} .

ℓ -isogenies

An *isogeny* $\phi: E_1 \rightarrow E_2$ is a non-constant morphism of elliptic curves, a non-trivial rational map that fixes the point 0.

It induces a group homomorphism $\phi: E_1(\bar{k}) \to E_2(\bar{k})$ with finite kernel. Conversely, every finite subgroup of $E_1(\bar{k})$ is the kernel of an isogeny.

ℓ -isogenies

An *isogeny* $\phi: E_1 \rightarrow E_2$ is a non-constant morphism of elliptic curves, a non-trivial rational map that fixes the point 0.

It induces a group homomorphism $\phi: E_1(\bar{k}) \to E_2(\bar{k})$ with finite kernel. Conversely, every finite subgroup of $E_1(\bar{k})$ is the kernel of an isogeny.

The *degree* of an isogeny is its degree as a rational map. For *separable* isogenies, we have $deg \phi = |\ker \phi|$.

We are interested in isogenies of prime degree $\ell \neq \operatorname{char} k$, which are necessarily separable isogenies with cyclic kernels.

The *dual isogeny* $\hat{\phi} \colon E_2 \to E_1$ has the same degree ℓ as ϕ , and

$$\phi \circ \hat{\phi} = \hat{\phi} \circ \phi = [\ell]$$

is the *multiplication-by-* ℓ map.

The ℓ -torsion subgroup

For $\ell \neq \operatorname{char}(k)$, the ℓ -torsion subgroup

$$E[\ell] = \{P \in E(\bar{k}) : \ell P = 0\}$$

is isomorphic to $\mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$ and thus contains $\ell + 1$ cyclic subgroups of order ℓ , each of which is the kernel of an ℓ -isogeny.

These ℓ -isogenies are not necessarily defined over *k*.

An ℓ -isogeny is defined over k (and has image defined over k) if and only if its kernel is Galois-invariant.

The number of Galois-invariant order- ℓ subgroups of $E[\ell]$ is either 0, 1, 2, or $\ell + 1$.

The modular equation

Let $j: \mathbb{H} \to \mathbb{C}$ be the classical modular function. For any $\tau \in \mathbb{H}$, the values $j(\tau)$ and $j(\ell \tau)$ are the *j*-invariants of elliptic curves over \mathbb{C} that are ℓ -isogenous.

The minimal polynomial $\Phi_{\ell}(Y)$ of the function $j(\ell z)$ over $\mathbb{C}(j)$ has coefficients that are actually integer polynomials of j(z).

Replacing j(z) with X yields the *modular polynomial* $\Phi_{\ell} \in \mathbb{Z}[X, Y]$ that parameterizes pairs of ℓ -isogenous elliptic curves E/\mathbb{C} :

 $\Phi_{\ell}(j(E_1), j(E_2)) = 0 \iff j(E_1) \text{ and } j(E_2) \text{ are } \ell\text{-isogenous.}$

This moduli interpretation remains valid over any field of characteristic not $\ell.$

 $[\]Phi_{\ell}(X,Y) = 0$ is a defining equation for the affine modular curve $Y_0(\ell) = \Gamma_0(\ell) \setminus \mathbb{H}$.

The graph of ℓ -isogenies

Definition

The ℓ -isogeny graph $G_{\ell}(k)$ has vertex set $\{j(E) : E/k\} = k$ and edges (j_1, j_2) for each root $j_2 \in k$ of $\Phi_{\ell}(j_1, Y)$ (with multiplicity).

Except for $j \in \{0, 1728\}$, the in-degree of each vertex of G_{ℓ} is equal to its out-degree. Thus G_{ℓ} is a bi-directed graph on $k \setminus \{0, 1728\}$, which we may regard as an undirected graph.

Note that we have an infinite family of graphs $G_{\ell}(k)$ with vertex set k, one for each prime $\ell \neq char(k)$.

Ordinary and supersingular curves

For an elliptic curve E/k with char(k) = p we have

 $E[p] \simeq \begin{cases} \mathbb{Z}/p\mathbb{Z} & (ordinary), \\ \{0\} & (supersingular). \end{cases}$

For isogenous elliptic curves $E_1 \sim E_2$, either both are ordinary or both are supersingular. Thus the each isogeny graph G_ℓ decomposes into ordinary and supersingular components.

This has cryptographic applications; see [Charles-Lauter-Goren 2008], for example.

Ordinary and supersingular curves

For an elliptic curve E/k with char(k) = p we have

 $E[p] \simeq \begin{cases} \mathbb{Z}/p\mathbb{Z} & (ordinary), \\ \{0\} & (supersingular). \end{cases}$

For isogenous elliptic curves $E_1 \sim E_2$, either both are ordinary or both are supersingular. Thus the each isogeny graph G_ℓ decomposes into ordinary and supersingular components.

Every supersingular curve is defined over \mathbb{F}_{p^2} . Thus the supersingular components of $G_{\ell}(\mathbb{F}_{p^2})$ are regular graphs of degree $\ell + 1$.

In fact, $G_{\ell}(\mathbb{F}_{p^2})$ has just one supersingular component, and it is a *Ramanujan graph* [Pizer 1990].

This has cryptographic applications; see [Charles-Lauter-Goren 2008], for example.

Endomorphism rings

Isogenies from an elliptic curve E to itself are *endomorphisms*. They form a ring End(E) under composition and point addition.

We always have $\mathbb{Z} \subseteq \text{End}(E)$, due to scalar multiplication maps. If $\mathbb{Z} \subsetneq \text{End}(E)$, then *E* has *complex multiplication* (CM).

For an elliptic curve *E* with complex multiplication:

$\operatorname{End}(E) \simeq \left\{ \right.$	order in an imaginary quadratic field	(ordinary),
	order in a quaternion algebra	(supersingular).

Over a finite field, every elliptic curve has CM.

Horizontal and vertical isogenies

Let $\varphi \colon E_1 \to E_2$ by an ℓ -isogeny of ordinary elliptic curves with CM. Let $\operatorname{End}(E_1) \simeq \mathcal{O}_1 = [1, \tau_1]$ and $\operatorname{End}(E_2) \simeq \mathcal{O}_2 = [1, \tau_2]$.

Then $\ell \tau_2 \in \mathcal{O}_1$ and $\ell \tau_1 \in \mathcal{O}_2$.

Thus one of the following holds:

- $\mathcal{O}_1 = \mathcal{O}_2$, in which case φ is *horizontal*;
- $[\mathcal{O}_1 : \mathcal{O}_2] = \ell$, in which case φ is *descending*;
- $[\mathcal{O}_2 : \mathcal{O}_1] = \ell$, in which case φ is *ascending*.

In the latter two cases we say that φ is a *vertical* isogeny.

The theory of complex multiplication

Let E/k have $\operatorname{End}(E) \simeq \mathcal{O} \subset K = \mathbb{Q}(\sqrt{D})$, with $D = \operatorname{disc} K$.

For each invertible $\mathcal{O}\text{-ideal}\ \mathfrak{a},$ the $\mathfrak{a}\text{-torsion}\ subgroup$

$$E[\mathfrak{a}] = \{ P \in E(\bar{k}) : \alpha(P) = 0 \text{ for all } \alpha \in \mathfrak{a} \}$$

is the kernel of an isogeny $\varphi_{\mathfrak{a}} : E \to E'$ of degree $N(\mathfrak{a}) = [\mathcal{O} : \mathfrak{a}]$. We necessarily have $\operatorname{End}(E) \simeq \operatorname{End}(E')$, so $\varphi_{\mathfrak{a}}$ is **horizontal**.

If a is principal, then $E' \simeq E$. This induces a $cl(\mathcal{O})$ -action on the set.

$$\operatorname{Ell}_{\mathcal{O}}(k) = \{j(E) : E/k \text{ with } \operatorname{End}(E) \simeq \mathcal{O}\}.$$

This action is faithful and transitive; thus $Ell_{\mathcal{O}}(k)$ is a principal homogeneous space, a *torsor*, for $cl(\mathcal{O})$.

One can decompose horizontal isogenies of large prime degree into an equivalent sequence of isogenies of small prime degrees, which makes them **easy to compute**; see [Bröker-Charles-Lauter 2008, Jao-Souhkarev 2010].

Horizontal isogenies

Every horizontal $\ell\text{-isogeny}$ arises from the action of an invertible $\mathcal O\text{-ideal }\mathfrak l$ of norm $\ell.$

If $\ell \mid [\mathcal{O}_K : \mathcal{O}]$, no such \mathfrak{l} exists; if $\ell \nmid [\mathcal{O}_K : \mathcal{O}]$, then there are

$$1 + \left(\frac{D}{\ell}\right) = \begin{cases} 0\\1\\2 \end{cases}$$

 ℓ is inert in *K*, ℓ is ramified in *K*, ℓ splits in *K*,

such ℓ -isogenies.

In the split case, $(\ell) = \mathfrak{l} \cdot \overline{\mathfrak{l}}$, and the \mathfrak{l} -orbits partition $\operatorname{Ell}_{\mathcal{O}}(k)$ into cycles corresponding to the cosets of $\langle [\mathfrak{l}] \rangle$ in $\operatorname{cl}(\mathcal{O})$.

Vertical isogenies

Let \mathcal{O} be an imaginary quadratic order with discriminant $D_{\mathcal{O}} < -4$, and let $\mathcal{O}' = \mathbb{Z} + \ell \mathcal{O}$ be the order of index ℓ in \mathcal{O} .

The map that sends each invertible \mathcal{O}' -ideal \mathfrak{a} to the (invertible) \mathcal{O} -ideal $\mathfrak{a}\mathcal{O}$ preserves norms and induces a surjective homomorphism

 $\phi\colon \operatorname{cl}(\mathcal{O}')\to\operatorname{cl}(\mathcal{O})$

compatible with the class group actions on $\text{Ell}_{\mathcal{O}}(k)$ and $\text{Ell}_{\mathcal{O}'}(k)$.

It follows that each $j(E') \in \text{Ell}_{\mathcal{O}'}(k)$ has a unique ℓ -isogenous "parent" j(E) in $\text{Ell}_{\mathcal{O}}(k)$, and every vertical isogeny must arise in this way.

The "children" of j(E) correspond to a coset of the kernel of ϕ , which is a cyclic of order $\ell - \left(\frac{D_{\mathcal{O}}}{\ell}\right)$, generated by the class of an invertible \mathcal{O}' -ideal with norm ℓ^2 .

Ordinary elliptic curves over finite fields

Let E/\mathbb{F}_q be an ordinary elliptic curve with *trace of Frobenius*

 $t = \operatorname{tr} \pi_E = q + 1 - \# E(\mathbb{F}_q).$

Then $\pi_E^2 - t\pi_E + q = 0$ and we have the *norm equation*

$$4q = t^2 - v^2 D,$$

where *D* is the (fundamental) discriminant of the imaginary quadratic field $K = \mathbb{Q}(\sqrt{t^2 - 4q}) \simeq \operatorname{End}(E) \otimes \mathbb{Q}$ and $v = [\mathcal{O}_K : \mathbb{Z}[\pi_E]]$. We have

 $\mathbb{Z}[\pi_E] \subseteq \operatorname{End}(E) \subseteq \mathcal{O}_K.$

Thus $[\mathcal{O}_K : \text{End}(E)]$ divides *v*; this holds for any *E* with trace *t*. If we define $\text{Ell}_t(\mathbb{F}_q) = \{j(E) : E/\mathbb{F}_q \text{ with } \text{tr } \pi_E = t\}$, then

$$\operatorname{Ell}_{t}(\mathbb{F}_{q}) = \bigcup_{\mathbb{Z}[\pi_{E}] \subseteq \mathcal{O} \subseteq \mathcal{O}_{K}} \operatorname{Ell}_{\mathcal{O}}(\mathbb{F}_{q}).$$

The main theorem

Theorem (Kohel)

Let *V* be an ordinary connected component of $G_{\ell}(\mathbb{F}_q)$ that does not contain 0, 1728. Then *V* is an ℓ -volcano in which the following hold:

(i) Vertices in level V_i all have the same endomorphism ring \mathcal{O}_i .

(ii)
$$\ell \nmid [\mathcal{O}_K : \mathcal{O}_0]$$
, and $[\mathcal{O}_i : \mathcal{O}_{i+1}] = \ell$.

- (iii) The subgraph on V_0 has degree $1 + (\frac{D}{\ell})$, where $D = \operatorname{disc}(\mathcal{O}_0)$.
- (iv) If $(\frac{D}{\ell}) \ge 0$ then $|V_0|$ is the order of [I] in $cl(\mathcal{O}_0)$.

(v) The depth of V is $\operatorname{ord}_{\ell}(v)$, where $4q = t^2 - v^2 D$.

The term volcano is due to Fouquet and Morain.

Applications

Curves on the floor necessarily have cyclic rational ℓ -torsion. This is useful, for example, when constructing Edwards curves with the CM method [Morain 2009].

Finding a shortest path to the floor

Finding a shortest path to the floor

Finding a shortest path to the floor

We now know that we are 2 levels above the floor.

Application: identifying supersingular curves

The equation $4q = t^2 - v^2D$ implies that each ordinary component of $G_{\ell}(\mathbb{F}_q)$ is an ℓ -volcano of depth less than $\log_{\ell} \sqrt{4q}$.

Given $j(E) \in \mathbb{F}_{p^2}$, if we cannot find a shortest path to the floor in $G_2(\mathbb{F}_{p^2})$ within $\lceil \log_2 p \rceil$ steps, then *E* **must be supersingular**.

Conversely, if *E* is supersingular, our attempt to find the floor must fail, since every vertex in the supersingular component has degree $\ell + 1$.

Application: identifying supersingular curves

The equation $4q = t^2 - v^2D$ implies that each ordinary component of $G_{\ell}(\mathbb{F}_q)$ is an ℓ -volcano of depth less than $\log_{\ell} \sqrt{4q}$.

Given $j(E) \in \mathbb{F}_{p^2}$, if we cannot find a shortest path to the floor in $G_2(\mathbb{F}_{p^2})$ within $\lceil \log_2 p \rceil$ steps, then *E* **must be supersingular**.

Conversely, if *E* is supersingular, our attempt to find the floor must fail, since every vertex in the supersingular component has degree $\ell + 1$.

This yields a (probabilistic) algorithm to determine supersingularity in $\tilde{O}(n^3)$ time, where $n = \log p$, improving the $\tilde{O}(n^4)$ complexity of the best previously known algorithms.

Moreover, the expected running time on a random elliptic curve is $\tilde{O}(n^2)$, matching the complexity of the best *Monte Carlo* algorithms, and faster in practice.

See [S 2012] for details.

Application: computing endomorphism rings

Given an ordinary elliptic curve E/\mathbb{F}_q , if we compute the Frobenius trace *t* and put $4q = t^2 - v^2D$, we can determine $\mathcal{O} \simeq \text{End}(E)$ by determining $u = [\mathcal{O}_K : \mathcal{O}]$, which must divide *v*.

It suffices to determine the level of j(E) in its ℓ -volcano for $\ell | v$.

Problem: when ℓ is large it is not feasible to compute Φ_{ℓ} , nor is it feasible to directly compute a **vertical** ℓ -isogeny.

See [Bisson-S 2011] and [Bisson 2012] for more details.

Application: computing endomorphism rings

Given an ordinary elliptic curve E/\mathbb{F}_q , if we compute the Frobenius trace *t* and put $4q = t^2 - v^2D$, we can determine $\mathcal{O} \simeq \text{End}(E)$ by determining $u = [\mathcal{O}_K : \mathcal{O}]$, which must divide *v*.

It suffices to determine the level of j(E) in its ℓ -volcano for $\ell | v$.

Problem: when ℓ is large it is not feasible to compute Φ_{ℓ} , nor is it feasible to directly compute a **vertical** ℓ -isogeny.

Solution: we may determine the primes $\ell | u$ by finding *smooth relations* that hold in $cl((v/\ell)^2D)$ but not in $cl(\ell^2D)$ and evaluating the corresponding **horizontal** isogenies (and similarly for ℓ^e)

This yields a probabilistic algorithm to compute End(E) with subexponential expected running time $L[1/2, \sqrt{3}/2]$, under GRH.

See [Bisson-S 2011] and [Bisson 2012] for more details.

Example

Let $q = 2^{320} + 261$ and suppose tr $\pi_E = t$, where t = 2306414344576213633891236434392671392737040459558.

Then $4q = t^2 - v^2 D$, where D = -147759 and $v = 2^2 p_1 p_2$ with

 $p_1 = 16447689059735824784039,$ $p_2 = 71003976975490059472571.$

For $D_1 = 2^4 p_2^2 D$, and $D'_1 = p_1^2 D$, the relation

 $\{\mathfrak{p}_5,\mathfrak{p}_{19}^2,\bar{\mathfrak{p}}_{23}^{210},\mathfrak{p}_{29},\mathfrak{p}_{31},\bar{\mathfrak{p}}_{41}^{145},\mathfrak{p}_{139},\bar{\mathfrak{p}}_{149},\mathfrak{p}_{167},\bar{\mathfrak{p}}_{191},\bar{\mathfrak{p}}_{251}^6,\mathfrak{p}_{269},\bar{\mathfrak{p}}_{587}^7,\bar{\mathfrak{p}}_{643}\}$

holds in $cl(D_1)$ but not in $cl(D'_1)$ (\mathfrak{p}_{ℓ} is an ideal of norm ℓ). For $D_2 = 2^4 p_1^2 D$, and $D'_2 = p_2^2 D$, the relation

 $\{\mathfrak{p}_{11}, \bar{\mathfrak{p}}_{13}^{576}, \mathfrak{p}_{23}^2, \bar{\mathfrak{p}}_{41}, \bar{\mathfrak{p}}_{47}, \mathfrak{p}_{83}, \mathfrak{p}_{101}, \bar{\mathfrak{p}}_{197}^{28}, \bar{\mathfrak{p}}_{307}^3, \mathfrak{p}_{317}, \bar{\mathfrak{p}}_{419}, \mathfrak{p}_{911}\}$

holds in $cl(D_2)$ but not in $cl(D'_2)$.

Constructing elliptic curves with the CM method

Let \mathcal{O} be an imaginary quadratic order with discriminant D. The *Hilbert class polynomial* $H_D \in \mathbb{Z}[X]$ is defined by

$$H_D(X) = \prod_{j \in \operatorname{Ell}_{\mathcal{O}}(\mathbb{C})} (X - j).$$

Equivalently, it is the minimal polynomial of $j(\mathcal{O})$ over $K = \mathbb{Q}(\sqrt{D})$. The field $K_{\mathcal{O}} = K(j(\mathcal{O}))$ is the *ring class field* for \mathcal{O} .

One can also construct supersingular curves with Hilbert class polynomials; see [Bröker 2008].
Constructing elliptic curves with the CM method

Let \mathcal{O} be an imaginary quadratic order with discriminant D. The *Hilbert class polynomial* $H_D \in \mathbb{Z}[X]$ is defined by

$$H_D(X) = \prod_{j \in \operatorname{Ell}_{\mathcal{O}}(\mathbb{C})} (X - j).$$

Equivalently, it is the minimal polynomial of $j(\mathcal{O})$ over $K = \mathbb{Q}(\sqrt{D})$. The field $K_{\mathcal{O}} = K(j(\mathcal{O}))$ is the *ring class field* for \mathcal{O} .

If *q* splits completely in $K_{\mathcal{O}}$, then $H_D(X)$ splits completely in $\mathbb{F}_q[X]$, and every root of H_D is the *j*-invariant of an elliptic curve E/\mathbb{F}_q with N = q + 1 - t points, where $4q = t^2 - v^2D$.

Every ordinary elliptic curve E/\mathbb{F}_q can be constructed in this way, but computing H_D becomes quite difficult as |D| grows.

The size of H_D is $O(|D| \log |D|)$ bits, exponential in $\log q$.

One can also construct supersingular curves with Hilbert class polynomials; see [Bröker 2008].

Application: computing Hilbert class polynomials

The CRT approach to computing $H_D(X)$, as described in [Belding-Bröker-Enge-Lauter 2008] and [S 2011].

- **1.** Select a sufficiently large set of primes of the form $4p = t^2 v^2D$.
- **2.** For each prime p, compute $H_D \mod p$ as follows:
 - **a.** Generate random curves E/\mathbb{F}_p until #E = p + 1 t.
 - **b.** Use volcano climbing to find $E' \sim E$ with $\operatorname{End}(E') \simeq \mathcal{O}$.
 - **c.** Enumerate $\text{Ell}_{\mathcal{O}}(\mathbb{F}_p)$ by applying the $\text{cl}(\mathcal{O})$ -action to j(E').
 - **d.** Compute $\prod_{j \in \text{Ell}_{\mathcal{O}}(\mathbb{F}_p)} (X j) = H_D(X) \mod p$.
- **3.** Use the CRT to recover H_D over \mathbb{Z} (or mod q via the explicit CRT).

Under the GRH, the expected running time is $O(|D| \log^{5+\epsilon} |D|)$, quasi-linear in the size of H_D .

One can similarly compute other types of class polynomials [Enge-S 2010].

For particularly deep volcanoes, one may prefer to use a pairing-based approach; see [lonica-Joux 2010].

Computational results

The CRT method has been used to compute $H_D(X)$ with $|D| > 10^{13}$, and using alternative class polynomials, with $|D| > 10^{15}$ (for comparison, the previous record was $|D| \approx 10^{10}$).

When cl(O) is composite (almost always the case), one can accelerate the CM method by decomposing the ring class field [Hanrot-Morain 2001, Enge-Morain 2003].

Combining this idea with the CRT approach has made CM constructions with $|D| > 10^{16}$ possible [S 2012].

Application: computing modular polynomials

We can also use a CRT approach to compute $\Phi_{\ell}(X, Y)$ [Bröker-Lauter-S 2012].

- **1.** Select a sufficiently large set of primes of the form $4p = t^2 \ell^2 v^2 D$ with $\ell \nmid v, p \equiv 1 \mod \ell$, and $h(D) > \ell + 1$.
- **2.** For each prime *p*, compute $\Phi_{\ell} \mod p$ as follows:
 - **a.** Compute $\operatorname{Ell}_{\mathcal{O}}(\mathbb{F}_p)$ using $H_D \mod p$.
 - **b.** Map the ℓ -volcanoes intersecting $\text{Ell}_O(\mathbb{F}_p)$ (without using Φ_ℓ).
 - **c.** Interpolate $\Phi_{\ell}(X, Y) \mod p$.
- **3.** Use the CRT to recover Φ_{ℓ} over \mathbb{Z} (or mod q via the explicit CRT).

Under the GRH, the expected running time is $O(\ell^3 \log^{3+\epsilon} \ell)$, quasi-linear in the size of Φ_{ℓ} .

We can similarly compute modular polynomials for other modular functions. See [Bruinier-Ono-S 2013] for an algorithm to compute Φ_N for composite *N*.

Example $\ell = 5$, p = 4451, D = -151

General requirements $4p = t^2 - v^2 \ell^2 D, \quad p \equiv 1 \mod \ell$

Example $\ell = 5$, p = 4451, D = -151t = 52, v = 2, h(D) = 7 $\begin{array}{ll} \mbox{General requirements} \\ 4p = t^2 - v^2 \ell^2 D, \quad p \equiv 1 \mbox{ mod } \ell \\ \ell \nmid v, \quad \left(\frac{D}{\ell} \right) = 1, \quad h(D) \geq \ell + 2 \end{array}$

Example $\ell = 5, p = 4451, D = -151$ t = 52, v = 2, h(D) = 7 $\begin{array}{ll} \mbox{General requirements} \\ 4p = t^2 - v^2 \ell^2 D, \quad p \equiv 1 \mbox{ mod } \ell \\ \ell \nmid v, \quad \left(\frac{D}{\ell} \right) = 1, \quad h(D) \geq \ell + 2 \end{array}$

1. Find a root of $H_D(X)$

Example $\ell = 5, \quad p = 4451, \quad D = -151$ $t = 52, \quad v = 2, \quad h(D) = 7$ $\begin{array}{l} \mbox{General requirements} \\ 4p = t^2 - v^2 \ell^2 D, \quad p \equiv 1 \mbox{ mod } \ell \\ \ell \nmid v, \quad (\frac{D}{\ell}) = 1, \quad h(D) \geq \ell + 2 \end{array}$

1. Find a root of $H_D(X)$: 901

2. Enumerate surface using the action of α_{ℓ_0}

 $\begin{array}{l} \mbox{General requirements} \\ 4p = t^2 - v^2 \ell^2 D, \quad p \equiv 1 \mbox{ mod } \ell \\ \ell \nmid v, \quad (\frac{D}{\ell}) = 1, \quad h(D) \geq \ell + 2 \\ \ell_0 \neq \ell, \ (\frac{D}{\ell_0}) = 1, \ \alpha_\ell = \alpha_{\ell_0}^k \end{array}$

3. Descend to the floor using Vélu's formula

3. Descend to the floor using Vélu's formula: 901 $\stackrel{5}{\longrightarrow}$ 3188

 $\begin{array}{l} \mbox{General requirements} \\ 4p = t^2 - v^2 \ell^2 D, \quad p \equiv 1 \mbox{ mod } \ell \\ \ell \nmid v, \quad (\frac{D}{\ell}) = 1, \quad h(D) \geq \ell + 2 \\ \ell_0 \neq \ell, \ (\frac{D}{\ell_0}) = 1, \ \alpha_\ell = \alpha_{\ell_0}^k \end{array}$

4. Enumerate floor using the action of β_{ℓ_0}

4. Enumerate floor using the action of β_{ℓ_0} $3188 \xrightarrow{2}{2} 945 \xrightarrow{2}{2} 3144 \xrightarrow{2}{2} 3508 \xrightarrow{2}{2} 2843 \xrightarrow{2}{2} 1502 \xrightarrow{2}{2} 676 \xrightarrow{2}{2}$ $2970 \xrightarrow{2}{2} 3497 \xrightarrow{2}{2} 1180 \xrightarrow{2}{2} 2464 \xrightarrow{2}{2} 4221 \xrightarrow{2}{2} 4228 \xrightarrow{2}{2} 2434 \xrightarrow{2}{2}$ $1478 \xrightarrow{2}{2} 3244 \xrightarrow{2}{2} 2255 \xrightarrow{2}{2} 2976 \xrightarrow{2}{2} 3345 \xrightarrow{2}{2} 1064 \xrightarrow{2}{2} 1868 \xrightarrow{2}{2}$ $3328 \xrightarrow{2}{2} 291 \xrightarrow{2}{3147} \xrightarrow{2} 2566 \xrightarrow{2}{4397} \xrightarrow{2} 2087 \xrightarrow{2}{3341} \xrightarrow{2}$

4. Enumerate floor using the action of β_{ℓ_0} $\xrightarrow{2}{2}$ 945 $\xrightarrow{2}{2}$ 3144 $\xrightarrow{2}{2}$ 3508 $\xrightarrow{2}{2}$ 2843 $\xrightarrow{2}{2}$ 1502 $\xrightarrow{2}{2}$ 676 $\xrightarrow{2}{2}$ $\xrightarrow{2}{2}$ 3497 $\xrightarrow{2}{2}$ 1180 $\xrightarrow{2}{2}$ 2464 $\xrightarrow{2}{2}$ 4221 $\xrightarrow{2}{2}$ 4228 $\xrightarrow{2}{2}$ 2434 $\xrightarrow{2}{2}$ $\xrightarrow{2}{2}$ 3244 $\xrightarrow{2}{2}$ 2255 $\xrightarrow{2}{2}$ 2976 $\xrightarrow{2}{2}$ 3345 $\xrightarrow{2}{2}$ 1064 $\xrightarrow{2}{2}$ 1868 $\xrightarrow{2}{2}$ $\xrightarrow{2}{2}$ 291 $\xrightarrow{2}{3}$ 3147 $\xrightarrow{2}{2}$ 2566 $\xrightarrow{2}{3}$ 4397 $\xrightarrow{2}{2}$ 2087 $\xrightarrow{2}{3}$ 3341 $\xrightarrow{2}{2}$

4. Enumerate floor using the action of β_{ℓ_0} $3188 \xrightarrow{2}{2} 945 \xrightarrow{2}{2} 3144 \xrightarrow{2}{2} 3508 \xrightarrow{2}{2} 2843 \xrightarrow{2}{2} 1502 \xrightarrow{2}{2} 676 \xrightarrow{2}{2}$ $2970 \xrightarrow{2}{2} 3497 \xrightarrow{2}{2} 1180 \xrightarrow{2}{2} 2464 \xrightarrow{2}{2} 4221 \xrightarrow{2}{2} 4228 \xrightarrow{2}{2} 2434 \xrightarrow{2}{2}$ $1478 \xrightarrow{2}{2} 3244 \xrightarrow{2}{2} 2255 \xrightarrow{2}{2} 2976 \xrightarrow{2}{2} 3345 \xrightarrow{2}{2} 1064 \xrightarrow{2}{2} 1868 \xrightarrow{2}{2}$ $3328 \xrightarrow{2}{2} 291 \xrightarrow{2}{3} 3147 \xrightarrow{2} 2566 \xrightarrow{2}{3} 4397 \xrightarrow{2} 2087 \xrightarrow{2}{3} 3341 \xrightarrow{2}{3}$

4. Enumerate floor using the action of β_{ℓ_0} $3188 \xrightarrow{2}{2} 945 \xrightarrow{2}{2} 3144 \xrightarrow{2}{2} 3508 \xrightarrow{2}{2} 2843 \xrightarrow{2}{2} 1502 \xrightarrow{2}{2} 676 \xrightarrow{2}{2} 2970 \xrightarrow{2}{2} 3497 \xrightarrow{2}{2} 1180 \xrightarrow{2}{2} 2464 \xrightarrow{2}{2} 4221 \xrightarrow{2}{2} 4228 \xrightarrow{2}{2} 2434 \xrightarrow{2}{2} 1478 \xrightarrow{2}{2} 3244 \xrightarrow{2}{2} 2255 \xrightarrow{2}{2} 2976 \xrightarrow{2}{2} 3345 \xrightarrow{2}{2} 1064 \xrightarrow{2}{2} 1868 \xrightarrow{2}{2} 3328 \xrightarrow{2}{2} 291 \xrightarrow{2}{3} 3147 \xrightarrow{2} 2566 \xrightarrow{2}{3} 4397 \xrightarrow{2}{2} 2087 \xrightarrow{3}{3} 341 \xrightarrow{2}$

4. Enumerate floor using the action of β_{ℓ_0} $3188 \xrightarrow{2}{2} 945 \xrightarrow{2}{2} 3144 \xrightarrow{2}{2} 3508 \xrightarrow{2}{2} 2843 \xrightarrow{2}{2} 1502 \xrightarrow{2}{2} 676 \xrightarrow{2}{2}$ $2970 \xrightarrow{2}{2} 3497 \xrightarrow{2}{2} 1180 \xrightarrow{2}{2} 2464 \xrightarrow{2}{2} 4221 \xrightarrow{2}{2} 4228 \xrightarrow{2}{2} 2434 \xrightarrow{2}{2}$ $1478 \xrightarrow{2}{2} 3244 \xrightarrow{2}{2} 2255 \xrightarrow{2}{2} 2976 \xrightarrow{2}{2} 3345 \xrightarrow{2}{2} 1064 \xrightarrow{2}{2} 1868 \xrightarrow{2}{2}$ $3328 \xrightarrow{2}{2} 291 \xrightarrow{2}{3} 3147 \xrightarrow{2} 2566 \xrightarrow{2}{4} 4397 \xrightarrow{2}{2} 2087 \xrightarrow{2}{3} 3341 \xrightarrow{2}{2}$

4. Enumerate floor using the action of β_{ℓ_0} $3188 \xrightarrow{2}{2} 945 \xrightarrow{2}{2} 3144 \xrightarrow{2}{2} 3508 \xrightarrow{2}{2} 2843 \xrightarrow{2}{2} 1502 \xrightarrow{2}{2} 676 \xrightarrow{2}{2}$ $2970 \xrightarrow{2}{2} 3497 \xrightarrow{2}{2} 1180 \xrightarrow{2}{2} 2464 \xrightarrow{2}{2} 4221 \xrightarrow{2}{2} 4228 \xrightarrow{2}{2} 2434 \xrightarrow{2}{2}$ $1478 \xrightarrow{2}{2} 3244 \xrightarrow{2}{2} 2255 \xrightarrow{2}{2} 2976 \xrightarrow{2}{2} 3345 \xrightarrow{2}{2} 1064 \xrightarrow{2}{2} 1868 \xrightarrow{2}{2}$ $3328 \xrightarrow{2}{2} 291 \xrightarrow{2}{3147} \xrightarrow{2} 2566 \xrightarrow{2}{4397} \xrightarrow{2} 2087 \xrightarrow{2}{3341} \xrightarrow{2}$

4. Enumerate floor using the action of β_{ℓ_0} $3188 \xrightarrow{2}{2} 945 \xrightarrow{2}{2} 3144 \xrightarrow{2}{2} 3508 \xrightarrow{2}{2} 2843 \xrightarrow{2}{2} 1502 \xrightarrow{2}{2} 676 \xrightarrow{2}{2}$ $2970 \xrightarrow{2}{3} 3497 \xrightarrow{2}{2} 1180 \xrightarrow{2}{2} 2464 \xrightarrow{2}{2} 4221 \xrightarrow{2}{2} 4228 \xrightarrow{2}{2} 2434 \xrightarrow{2}{2}$ $1478 \xrightarrow{2}{2} 3244 \xrightarrow{2}{2} 2255 \xrightarrow{2}{2} 2976 \xrightarrow{2}{2} 3345 \xrightarrow{2}{2} 1064 \xrightarrow{2}{2} 1868 \xrightarrow{2}{2}$ $3328 \xrightarrow{2}{2} 291 \xrightarrow{2}{3} 3147 \xrightarrow{2} 2566 \xrightarrow{2}{3} 4397 \xrightarrow{2}{2} 2087 \xrightarrow{2}{3} 3341 \xrightarrow{2}{2}$

4. Enumerate floor using the action of β_{ℓ_0} $3188 \xrightarrow{2}{2} 945 \xrightarrow{2}{2} 3144 \xrightarrow{2}{2} 3508 \xrightarrow{2}{2} 2843 \xrightarrow{2}{2} 1502 \xrightarrow{2}{2} 676 \xrightarrow{2}{2}$ $2970 \xrightarrow{2}{2} 3497 \xrightarrow{2}{2} 1180 \xrightarrow{2}{2} 2464 \xrightarrow{2}{2} 4221 \xrightarrow{2}{2} 4228 \xrightarrow{2}{2} 2434 \xrightarrow{2}{2}$ $1478 \xrightarrow{2}{2} 3244 \xrightarrow{2}{2} 2255 \xrightarrow{2}{2} 2976 \xrightarrow{2}{2} 3345 \xrightarrow{2}{2} 1064 \xrightarrow{2}{2} 1868 \xrightarrow{2}{2}$ $3328 \xrightarrow{2}{2} 291 \xrightarrow{2}{3147} \xrightarrow{2} 2566 \xrightarrow{4} 4397 \xrightarrow{2} 2087 \xrightarrow{2} 3341 \xrightarrow{2}$

Interpolating $\Phi_\ell \mod p$

$$\begin{split} \Phi_5(X, \ 901) &= (X - \ 701)(X - \ 351)(X - \ 3188)(X - \ 2970)(X - \ 1478)(X - \ 3328) \\ \Phi_5(X, \ 351) &= (X - \ 901)(X - \ 2215)(X - \ 3508)(X - \ 2464)(X - \ 2976)(X - \ 2566) \\ \Phi_5(X, \ 2215) &= (X - \ 351)(X - \ 2501)(X - \ 3341)(X - \ 1868)(X - \ 2434)(X - \ 676) \\ \Phi_5(X, \ 2501) &= (X - \ 2215)(X - \ 2872)(X - \ 3147)(X - \ 2255)(X - \ 1180)(X - \ 3144) \\ \Phi_5(X, \ 2872) &= (X - \ 2501)(X - \ 1582)(X - \ 1502)(X - \ 4228)(X - \ 1064)(X - \ 2087) \\ \Phi_5(X, \ 1582) &= (X - \ 2872)(X - \ 701)(X - \ 945)(X - \ 3497)(X - \ 3244)(X - \ 291) \\ \Phi_5(X, \ 701) &= (X - \ 1582)(X - \ 901)(X - \ 2843)(X - \ 4221)(X - \ 3345)(X - \ 4397) \\ \end{split}$$

Interpolating $\Phi_\ell \mod p$

$$\begin{split} \Phi_5(X, \ 901) &= X^6 + 1337X^5 + 543X^4 + 497X^3 + 4391X^2 + 3144X + 3262 \\ \Phi_5(X, \ 351) &= X^6 + 3174X^5 + 1789X^4 + 3373X^3 + 3972X^2 + 2932X + 4019 \\ \Phi_5(X, 2215) &= X^6 + 2182X^5 + 512X^4 + 435X^3 + 2844X^2 + 2084X + 2709 \\ \Phi_5(X, 2501) &= X^6 + 2991X^5 + 3075X^5 + 3918X^3 + 2241X^2 + 3755X + 1157 \\ \Phi_5(X, 2872) &= X^6 + 389X^5 + 3292X^4 + 3909X^3 + 161X^2 + 1003X + 2091 \\ \Phi_5(X, 1582) &= X^6 + 1803X^5 + 794X^4 + 3584X^3 + 225X^2 + 1530X + 1975 \\ \Phi_5(X, \ 701) &= X^6 + 515X^5 + 1419X^4 + 941X^3 + 4145X^2 + 2722X + 2754 \end{split}$$

Interpolating $\Phi_\ell \mod p$

$$\begin{split} \Phi_5(X,Y) &= X^6 + (4450Y^5 + 3720Y^4 + 2433Y^3 + 3499Y^2 + & 70Y + 3927)X^5 \\ &(3720Y^5 + 3683Y^4 + 2348Y^3 + 2808Y^2 + 3745Y + & 233)X^4 \\ &(2433Y^5 + 2348Y^4 + 2028Y^3 + 2025Y^2 + 4006Y + 2211)X^3 \\ &(3499Y^5 + 2808Y^4 + 2025Y^3 + 4378Y^2 + 3886Y + 2050)X^2 \\ &(& 70Y^5 + 3745Y^4 + 4006Y^3 + 3886Y^2 + & 905Y + 2091)X \\ &(& Y^6 + & 3927Y^5 + & 233Y^4 + 2211Y^3 + 2050Y^2 + 2091Y + 2108) \end{split}$$

Computational results

Level records

- **1. 10009**: Φ_ℓ
- **2. 20011**: $\Phi_{\ell} \mod q$
- **3.** 60013: Φ_{ℓ}^{f}

Speed records

1. 251: Φ_{ℓ} in 28s Φ_{ℓ} mod q in 4.8s(vs 688s)2. 1009: Φ_{ℓ} in 2830s Φ_{ℓ} mod q in 265s(vs 107200s)3. 1009: Φ_{ℓ}^{f} in 2.8s

Effective throughput when computing $\Phi_{1009} \mod q$ is 100Mb/s.

Single core CPU times (AMD 3.0 GHz), using prime $q \approx 2^{256}$. Polynomials Φ_{ℓ}^{f} for $\ell < 5000$ available at http://math.mit.edu/~drew.

Application: point counting

Modular polynomials are the key ingredient to the Schoof-Elkies-Atkin (SEA) algorithm for computing $\#E(\mathbb{F}_q)$. Computing modular polynomials dominates the time and space complexity of SEA.

But the SEA algorithm does not actually require the full modular polynomial $\Phi_{\ell}(X, Y)$, it only needs the instantiated polynomials

 $\phi_{\ell}(Y) = \Phi_{\ell}(j(E), Y).$

Using an isogeny volcano approach combined with the CRT, it is possible to directly compute ϕ_{ℓ} without computing Φ_{ℓ} [S 2012].

This dramatically reduces the space required by the SEA algorithm, and has led to several new point-counting records.

Elliptic curve point counting record

The number of points on the elliptic curve

 $y^2 = x^3 + 2718281828x + 3141592653$

modulo the 5011 digit prime $16219299585 \cdot 2^{16612} - 1$ is