Computing the image of Galois representations attached to elliptic curves

Andrew V. Sutherland
Massachusetts Institute of Technology

July 29, 2015

http://arxiv.org/abs/1504.07618

The action of Galois

Let $y^{2}=x^{3}+A x+B$ be an elliptic curve over a number field K.
Let $K(E[m])$ be the extension of K obtained by adjoining the coordinates of all the m-torsion points of $E(\bar{K})$.

This is a Galois extension, and $\operatorname{Gal}(K(E[m]) / K)$ acts on

$$
E[m] \simeq \mathbb{Z} / m \oplus \mathbb{Z} / m
$$

via its action on points, $\sigma:(x: y: z) \mapsto\left(x^{\sigma}: y^{\sigma}: z^{\sigma}\right)$.
This induces a group representation

$$
\operatorname{Gal}(K(E[m]) / K) \rightarrow \operatorname{Aut}(E[m]) \simeq \mathrm{GL}_{2}(\mathbb{Z} / m)
$$

Galois representations

The action of $\operatorname{Gal}(K(E[m]) / K)$ extends to $G_{K}:=\operatorname{Gal}(\bar{K} / K)$:

$$
\rho_{E, m}: G_{K} \longrightarrow \operatorname{Aut}(E[m]) \simeq \mathrm{GL}_{2}(\mathbb{Z} / m)
$$

The $\rho_{E, m}$ are compatible; they determine a representation

$$
\rho_{E}: G_{K} \longrightarrow \mathrm{GL}_{2}(\hat{\mathbb{Z}})
$$

satisfying $\rho_{E, m}=\pi_{m} \circ \rho_{E}$, where $\pi_{m}: \mathrm{GL}_{2}(\hat{\mathbb{Z}}) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / m)$.
Theorem (Serre's open image theorem)
For E / K without $C M$, the index of $\rho_{E}\left(G_{K}\right)$ in $\mathrm{GL}_{2}(\hat{\mathbb{Z}})$ is finite.
Thus for any E / K without $C M$ there is a minimal $m_{E} \in \mathbb{N}$ such that $\rho_{E}\left(G_{K}\right)=\pi_{m_{E}}^{-1}\left(\rho_{E, m_{E}}\left(G_{K}\right)\right)$.

Mod- ℓ representations

A first step toward computing m_{E} and $\rho_{E}\left(G_{K}\right)$ is to determine the primes ℓ and groups $\rho_{E, \ell}\left(G_{K}\right)$ where $\rho_{E, \ell}$ is non-surjective. ${ }^{1}$

By Serre's theorem, if E does not have CM, this is a finite list (henceforth we assume that E does not have CM).

Under the GRH, the largest such ℓ is quasi-linear in the bit-size of E (this follows from the conductor bound in [LV 14]). If we put

$$
\|E\|:=\max \left(\left|N_{K / \mathbb{Q}}(A)\right|,\left|N_{K / \mathbb{Q}}(B)\right|\right)
$$

then ℓ is bounded by $(\log \|E\|)^{1+o(1)}$. Conjecturally this bound depends only on K; for $K=\mathbb{Q}$ we believe the bound to be 37 .

[^0]
Non-surjectivity

Typically $\rho_{E, \ell}$ (and $\rho_{E, \ell \infty}$) is essentially surjective ${ }^{2}$ for every prime ℓ. We are interested in the exceptions.
If E has a rational point of order ℓ, then $\rho_{E, \ell}$ is not surjective. For E / \mathbb{Q} this occurs for $\ell \leq 7$ (Mazur).
If E admits a rational ℓ-isogeny, then $\rho_{E, \ell}$ is not surjective.
For E / \mathbb{Q} without $C M$, this occurs for $\ell \leq 17$ and $\ell=37$ (Mazur).
But $\rho_{E, \ell}$ may be non-surjective even when E does not admit a rational ℓ-isogeny, and even when E has a rational ℓ-torsion point, this does not determine the image of $\rho_{E, \ell}$.
Classifying the possible images of $\rho_{E, \ell}$ that can arise may be viewed as a refinement of Mazur's theorems.

Applications

There are many practical and theoretical reasons for wanting to compute the image of ρ_{E}, and for determining the elliptic curves with a particular mod- ℓ or mod- m Galois image.

- Explicit BSD computations
- Modularity lifting
- Computing Lang-Trotter constants
- The Koblitz-Zywina conjecture
- Optimizing the elliptic curve factorization method (ECM)
- Local-global questions

Computing the image of Galois the hard way

In principle, there is a completely straight-forward algorithm to compute $\rho_{E, m}\left(G_{K}\right)$ up to conjugacy in $\mathrm{GL}_{2}(\mathbb{Z} / m)$:

1. Construct the field $L=K(E[m])$ as an (at most quadratic) extension of the splitting field of E 's m th division polynomial.
2. Pick a basis (P, Q) for $E[m]$ and determine the action of each element of $\operatorname{Gal}(L / K)$ on P and Q.

The complexity can be bounded by $\tilde{O}\left(m^{18}[K: \mathbb{Q}]^{9}\right)$. It is only practical for very small cases (say $m \leq 7$).

We need something faster, especially if we want to compute $\rho_{E, \ell}\left(G_{K}\right)$ for many E and ℓ (which we do!).

Main results

- (GRH) Las-Vegas algorithm to compute $\rho_{E, \ell}\left(G_{K}\right)$ up to local conjugacy for all primes ℓ in expected time

$$
(\log \|E\|)^{11+o(1)}
$$

- (GRH) Monte-Carlo algorithm to compute $\rho_{E, \ell}\left(G_{K}\right)$ up to local conjugacy for all primes ℓ in time

$$
(\log \|E\|)^{1+o(1)}
$$

- Complete classification of subgroups of $\mathrm{GL}_{2}(\mathbb{Z} / \ell)$ up to conjugacy and an algorithm to recognize or enumerate them (with generators) in quasi-linear time.
- Conjecturally complete list of 63 possibilities for $\rho_{E, \ell}\left(G_{\mathbb{Q}}\right)$.
- Conjecturally complete list of $63+68+29=160$ possibilities for $\rho_{E, \ell}\left(G_{K}\right)$ when K / \mathbb{Q} is quadratic and $j(E) \in \mathbb{Q}$.

Locally conjugate groups

Definition

Subgroups H_{1} and H_{2} of $\mathrm{GL}_{2}(\mathbb{Z} / \ell)$ are locally conjugate if there is a bijection between them that preserves GL_{2}-conjugacy.

Theorem

Up to conjugacy, each subgroup H_{1} of $\mathrm{GL}_{2}(\mathbb{Z} / \ell)$ has at most one non-conjugate locally conjugate subgroup H_{2}. The groups H_{1} and H_{2} are isomorphic and agree up to semisimplification.

Theorem

If $\rho_{E_{1}, \ell}\left(G_{K}\right)=H_{1}$ is locally conjugate but not conjugate to H_{2} then there is an ℓ^{n}-isogenous E_{2} such that $\rho_{E_{2}, \ell}\left(G_{K}\right)=H_{2}$.
The curve E_{2} is defined over K and unique up to isomorphism.

$$
\left.\underset{\substack{14 a 4 \\
\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right\rangle}}{ } \stackrel{3}{\longleftrightarrow} \quad \begin{array}{c}
14 a 1
\end{array} \stackrel{3}{\longleftrightarrow} \quad \begin{array}{c}
14 a 3 \\
\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)\right\rangle \sim\left\langle\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)\right\rangle
\end{array}\right)
$$

Computations

We have computed all the mod- ℓ Galois images of every elliptic curve in the Cremona and Stein-Watkins databases.

This includes about 140 million curves of conductor up to 10^{10}, including all curves of conductor $\leq 360,000$. The results have been incorporated into the LMFDB (http://lmfdb.org).

We also analyzed more than 10^{10} curves in various families.
The result is a conjecturally complete classification of 63 non-surjective mod- ℓ Galois images that can arise for an elliptic curve E / \mathbb{Q} without $C M$ (as expected, they all occur for $\ell \leq 37$).

We have also run the algorithm on all of the elliptic curves defined over quadratic and cubic fields in the LMFDB.

A probabilistic approach

Let $E_{\mathfrak{p}}$ be the reduction of E modulo a good prime \mathfrak{p} of K that does not divide ℓ, and let $p:=N \mathfrak{p}$ (wlog, assume p is prime).

The action of the Frobenius endomorphism on $E_{p}[\ell]$ is given by (the conjugacy class of) a matrix $A \in \rho_{E, \ell}\left(G_{K}\right)$ with

$$
\operatorname{tr} A \equiv a_{\mathfrak{p}} \bmod \ell \quad \text { and } \quad \operatorname{det} A \equiv p \bmod \ell
$$

where $a_{\mathfrak{p}}:=p+1-\# E_{\mathfrak{p}}\left(\mathbb{F}_{p}\right)$ is the trace of Frobenius.
By varying \mathfrak{p}, we can "randomly" sample $\rho_{E, \ell}\left(G_{K}\right)$; the Čebotarev density theorem implies equidistribution.

Under the GRH we may assume $\log p=O(\log \ell)$, which implies $\log p=O(\log \log \|E\|)$; this means that any computation with complexity subexponential in $\log p$ takes negligible time.

Example: $\ell=2$

$\mathrm{GL}_{2}(\mathbb{Z} / 2) \simeq S_{3}$ has 6 subgroups in 4 conjugacy classes.
For $H \subseteq \mathrm{GL}_{2}(\mathbb{Z} / 2)$, let $t_{a}(H)=\#\{A \in H: \operatorname{tr} A=a\}$.
Consider the trace frequencies $t(H)=\left(t_{0}(H), t_{1}(H)\right)$:

1. For $\mathrm{GL}_{2}(\mathbb{Z} / 2)$ we have $t(H)=(4,2)$.
2. The subgroup of order 3 has $t(H)=(1,2)$.
3. The 3 conjugate subgroups of order 2 have $t(H)=(2,0)$
4. The trivial subgroup has $t(H)=(1,0)$.

1,2 are distinguished from 3,4 by a trace 1 element (easy).
We can distinguish 1 from 2 by comparing frequencies (harder).
We cannot distinguish 3 from 4 (impossible).
Sampling traces does not give enough information!

Using the 1 -eigenspsace space of A

The ℓ-torsion points fixed by the Frobenius endomorphism form the \mathbb{F}_{p}-rational subgroup $E_{p}[\ell]\left(\mathbb{F}_{p}\right)$ of $E_{p}[\ell]$. Thus

$$
\operatorname{fix} A:=\operatorname{ker}(A-I)=E_{p}[\ell]\left(\mathbb{F}_{q}\right)=E_{p}\left(\mathbb{F}_{p}\right)[\ell]
$$

Equivalently, fix A is the 1-eigenspace of A. It is easy to compute $E_{p}\left(\mathbb{F}_{p}\right)[\ell]$ (e.g., use the Weil pairing), and this gives us information that cannot be derived from a_{p} alone.

We can now distinguish the subgroups of $\mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z})$ by looking at pairs $\left(a_{\mathfrak{p}}, r_{\mathfrak{p}}\right)$, where $r_{\mathfrak{p}} \in\{0,1,2\}$ is the rank of fix A.
There are three possible pairs, $(0,2),(0,1)$, and $(1,0)$.
The subgroups of order 2 contain $(0,2)$ and $(0,1)$ but not $(1,0)$. The subgroup of order 3 contains $(0,2)$ and $(1,0)$ but not $(0,1)$. The trivial subgroup contains only $(0,2)$.

Identifying subgroups by their signatures

The signature of a subgroup H of $\mathrm{GL}_{2}(\mathbb{Z} / \ell)$ is defined as

$$
s_{H}:=\{(\operatorname{det} A, \operatorname{tr} A, \operatorname{rkfix} A): A \in H\} .
$$

We also define the trace-zero ratio of H,

$$
z_{H}:=\#\{A: \operatorname{tr} A=0\} / \# H
$$

Given s_{H} there are at most two possibilities for z_{H}.
There exist $O(1)$ elements of H that determine s_{H}.
$O(\ell)$ random elements determine s_{H}, z_{H} with high probability.

Theorem
If H_{1} and H_{2} are subgroups of $\mathrm{GL}_{2}(\mathbb{Z} / \ell)$ for which $s_{H_{1}}=s_{H_{2}}$ and $z_{H_{1}}=z_{H_{2}}$ then H_{1} and H_{2} are locally conjugate.

Efficient implementation

Asymptotic optimization

There is an integer matrix $A_{\mathfrak{p}}$ for which $A_{\mathfrak{p}} \equiv A_{\mathfrak{p}, \ell} \bmod \ell$ for all primes ℓ. The matrix $A_{\mathfrak{p}}$ is determined by $\operatorname{End}\left(E_{\mathfrak{p}}\right)$, and under the GRH it can be computed in time subexponential in $\log p$, which is asymptotically negligible [DT02, B11, BS11].

Practical optimization

By precomputing $A_{\mathfrak{p}}$ for every elliptic curve over \mathbb{F}_{p}, say for all primes p up to 2^{18}, the algorithm reduces to a sequence of table-lookups. This makes it extremely fast.

It takes less than 2 minutes to analyze all 2,247,187 curves in Cremona's tables (typically ≤ 10 table lookups per curve).

Distinguishing locally-conjugate non-conjugate groups

In $\mathrm{GL}_{2}(\mathbb{Z} / 3)$ the subgroups

$$
H_{1}=\left\langle\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)\right\rangle \quad \text { and } \quad H_{2}=\left\langle\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)\right\rangle
$$

have signature $s_{H}=\{(1,2,1),(2,0,1),(1,2,2)\}$ and trace zero ratio $t_{H}=1 / 2$. Both are isomorphic to S_{3}.

Every element of H_{1} and H_{2} has 1 as an eigenvalue, but in H_{1} the 1-eigenspaces all coincide, while in H_{2} they do not.
H_{1} corresponds to 14 a4, which has a rational point of order 3, whereas H_{2} corresponds to 14a3, which has a rational point of order 3 locally everywhere, but not globally.

Distinguishing locally-conjugate non-conjugate groups

Let $d_{1}(H)$ denote the least index of a subgroup of H that fixes a nonzero vector in $(\mathbb{Z} / \ell)^{2}$. Then $d_{1}\left(H_{1}\right)=1$, but $d_{1}\left(H_{2}\right)=2$.

For $H=\rho_{E, \ell}\left(G_{K}\right)$, the quantity $d_{1}(H)$ is the degree of the minimal extension L / K over which E has an L-rational point of order ℓ. This can be done using the ℓ-division polynomial, but in fact, we can use $X_{0}(\ell)$, since H_{1} and H_{2} must lie in a Borel.

We just need to determine the degree of the smallest factor of a polynomial of degree $(\ell-1) / 2$, which is not hard.

Using $d_{1}(H)$ we can distinguish locally conjugate but non-conjugate $\rho_{E, \ell}\left(G_{\mathbb{Q}}\right)$ in all but one case that arises over \mathbb{Q}.

To address this one remaining case we look at twists.

The effect of twisting on the image of Galois

Theorem

Let E be an elliptic curve over a number field K and let E^{\prime} be a quadratic twist of E. Let $G=\left\langle\rho_{E, \ell}\left(G_{K}\right),-1\right\rangle$. Then $\rho_{E^{\prime}, \ell}\left(G_{K}\right)$ is conjugate to G or one of at most two index 2 subgroups of G.

Example

$1089 f 1$ and 1089f2 have locally conjugate mod-11 images

$$
G_{1}:=\left\langle \pm\left(\begin{array}{ll}
6 & 0 \\
0 & 4
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right\rangle \quad \text { and } \quad G_{2}:=\left\langle \pm\left(\begin{array}{ll}
4 & 0 \\
0 & 6
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right\rangle
$$

with $d_{1}\left(G_{1}\right)=10=d_{1}\left(G_{2}\right)$. Twisting by -3 yields 121 a1 and 121 a2 (respectively), with locally conjugate mod-11 images

$$
H_{1}:=\left\langle\left(\begin{array}{ll}
6 & 0 \\
0 & 4
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right\rangle \quad \text { and } \quad H_{2}:=\left\langle\left(\begin{array}{ll}
4 & 0 \\
0 & 6
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right\rangle,
$$

but now $d_{1}\left(H_{1}\right)=10 \neq 5=d_{1}\left(H_{2}\right)$ (twisting by -33 also works).

Non-surjective mod- ℓ images for E / \mathbb{Q} without CM of conductor $\leq 360,000$.

subgroup
index
2Cs
2B
2Cn

Non-surjective mod- ℓ images for E / \mathbb{Q} without CM of conductor $\leq 360,000$.

subgroup	index	generators	-1	d_{0}	d_{1}	d	curve
7Ns.2.1	112	[2, 0, 0, 4], [0, 1, 4, 0]	no	2	6	18	2450bal
7Ns. 3.1	56	[3, 0, 0, 5], [0, 1, 4, 0]	yes	2	12	36	2450a1
7B.1.1	48	$[1,0,0,3],[1,1,0,1]$	no	1	1	42	26 b 1
7B.1.3	48	$[3,0,0,1],[1,1,0,1]$	no	1	6	42	26b2
7B.1.2	48	[2, 0, 0, 5], [1, 1, 0, 1]	no	1	3	42	637 a 1
7B.1.5	48	$[5,0,0,2],[1,1,0,1]$	no	1	6	42	637 a 2
7B.1.4	48	$[4,0,0,6],[1,1,0,1]$	no	1	3	42	294a1
7B. 1.6	48	$[6,0,0,4],[1,1,0,1]$	no	1	2	42	294a2
7 Ns	28	$[1,0,0,3],[3,0,0,1],[0,1,1,0]$	yes	2	12	72	$9225 a 1$
7B. 6.1	24	$[6,0,0,6],[1,0,0,3],[1,1,0,1]$	yes	1	2	84	208d1
7B.6.3	24	$[6,0,0,6],[3,0,0,1],[1,1,0,1]$	yes	1	6	84	208d2
7B. 6.2	24	$[6,0,0,6],[2,0,0,5],[1,1,0,1]$	yes	1	6	84	5733d1
7 Nn	21	$[1,3,1,1],[1,0,0,6]$	yes	8	48	96	15341a1
7B. 2.1	16	$[2,0,0,4],[1,0,0,3],[1,1,0,1]$	no	1	3	126	162b1
7B. 2.3	16	$[2,0,0,4],[3,0,0,1],[1,1,0,1]$	no	1	6	126	162b3
7B	8	$[3,0,0,1],[1,0,0,3],[1,1,0,1]$	yes	1	6	252	162c1
11B.1.4	120	$[4,0,0,6],[1,1,0,1]$	no	1	5	110	121a2
11B.1.6	120	$[6,0,0,4],[1,1,0,1]$	no	1	10	110	121a1
11B.1.5	120	$[5,0,0,7],[1,1,0,1]$	no	1	5	110	121c2
11B.1.7	120	[7, 0, 0, 5], [1, 1, 0, 1]	no	1	10	110	121c1
11B.10.4	60	$[10,0,0,10],[4,0,0,6],[1,1,0,1]$	yes	1	10	220	1089f2
11B.10.5	60	$[10,0,0,10],[5,0,0,7],[1,1,0,1]$	yes	1	10	220	1089f1
11 Nn	55	[2, 2, 1, 2], [1, 0, 0, 10]	yes	12	120	240	232544 fl

Non-surjective mod- ℓ images for E / \mathbb{Q} without CM of conductor $\leq 360,000$.

subgroup	index	generators	-1	d_{0}	d_{1}	d	curve
13S4	91	$[1,12,1,1],[1,0,0,8]$	yes	6	72	288	50700u1
\{ 13B.3.1	56	$[3,0,0,9],[1,0,0,2],[1,1,0,1]$	no	1	3	468	147b1
\{ 13B.3.2	56	$[3,0,0,9],[2,0,0,1],[1,1,0,1]$	no	1	12	468	147 b 2
\{ 13B.3.4	56	[3, 0, 0, 9], [4, 0, 0, 7], [1, 1, 0, 1]	no	1	6	468	2484301
\{ 13B.3.7	56	$[3,0,0,9],[7,0,0,4],[1,1,0,1]$	no	1	12	468	2484302
\{ 13B.5.1	42	[$5,0,0,8],[1,0,0,2],[1,1,0,1]$	yes	1	4	624	2890d1
\{ 13B.5.2	42	$[5,0,0,8],[2,0,0,1],[1,1,0,1]$	yes	1	12	624	2890 d2
13B. 5.4	42	$[5,0,0,8],[4,0,0,7],[1,1,0,1]$	yes	1	12	624	216320i1
$\{13 \mathrm{~B} .4 .1$	28	$[4,0,0,10],[1,0,0,2],[1,1,0,1]$	yes	1	6	936	147 c 1
$\{13 \mathrm{~B} .4 .2$	28	$[4,0,0,10],[2,0,0,1],[1,1,0,1]$	yes	1	12	936	147 c 2
13B	14	$[1,0,0,2],[2,0,0,1],[1,1,0,1]$	yes	1	12	1872	245011
17B.4.2	72	$[4,0,0,13],[2,0,0,10],[1,1,0,1]$	yes	1	8	1088	14450n1
$\{17 \mathrm{~B} .4 .6$	72	$[4,0,0,13],[6,0,0,9],[1,1,0,1]$	yes	1	16	1088	$14450 n 2$
$\{37 \mathrm{~B} .8 .1$	114	$[8,0,0,14],[1,0,0,2],[1,1,0,1]$	yes	1	12	15984	1225 e 1
$\{37 \mathrm{~B} .8 .2$	114	$[8,0,0,14],[2,0,0,1],[1,1,0,1]$	yes	1	36	15984	1225 e2

References

[B11] G. Bisson, Computing endomorphism rings of elliptic curves under the GRH, Journal of Mathematical Cryptology 5 (2011), 101-113.
[BS11] G. Bisson and A.V. Sutherland, Computing the endomorphism ring of an ordinary elliptic curve over a finite field, Journal of Number Theory 131 (2011), 815-831.
[DT02] W. Duke and A. Toth, The splitting of primes in division fields of elliptic curves, Experimental Mathematics 11 (2002), 555-565.
[LV14] E. Larson and D. Vaintrob, On the surjectivity of Galois representations associated to elliptic curves over number fields, Bulletin of the London Mathematical Society 46 (2014) 197-209.
[S68] Jean-Pierre Serre, Abelian ℓ-adic representations and elliptic curves (revised reprint of 1968 original), A.K. Peters, Wellesley MA, 1998.
[Z15] D. Zywina, The possible images of the mod- ℓ representations associated to elliptic curves over \mathbb{Q}, preprint (2015).

[^0]: ${ }^{1}$ This does not determine m_{E}, not even when m_{E} is squarefree.

