Computing the image of Galois representations attached to elliptic curves

Andrew V. Sutherland Massachusetts Institute of Technology

July 29, 2015

http://arxiv.org/abs/1504.07618

The action of Galois

Let $y^2 = x^3 + Ax + B$ be an elliptic curve over a number field *K*.

Let K(E[m]) be the extension of K obtained by adjoining the coordinates of all the *m*-torsion points of $E(\overline{K})$.

This is a Galois extension, and Gal(K(E[m])/K) acts on

 $E[m] \simeq \mathbb{Z}/m \oplus \mathbb{Z}/m$

via its action on points, $\sigma : (x : y : z) \mapsto (x^{\sigma} : y^{\sigma} : z^{\sigma})$.

This induces a group representation

 $\operatorname{Gal}(K(E[m])/K) \to \operatorname{Aut}(E[m]) \simeq \operatorname{GL}_2(\mathbb{Z}/m).$

Galois representations

The action of Gal(K(E[m])/K) extends to $G_K := Gal(\overline{K}/K)$:

$$\rho_{E,m} \colon G_{\mathcal{K}} \longrightarrow \operatorname{Aut}(E[m]) \simeq \operatorname{GL}_2(\mathbb{Z}/m),$$

The $\rho_{E,m}$ are compatible; they determine a representation

$$\rho_E \colon G_K \longrightarrow \operatorname{GL}_2(\hat{\mathbb{Z}})$$

satisfying $\rho_{E,m} = \pi_m \circ \rho_E$, where π_m : $GL_2(\hat{\mathbb{Z}}) \twoheadrightarrow GL_2(\mathbb{Z}/m)$.

Theorem (Serre's open image theorem) For E/K without CM, the index of $\rho_E(G_K)$ in $GL_2(\hat{\mathbb{Z}})$ is finite.

Thus for any E/K without CM there is a minimal $m_E \in \mathbb{N}$ such that $\rho_E(G_K) = \pi_{m_E}^{-1}(\rho_{E,m_E}(G_K))$.

Mod-*l* representations

A first step toward computing m_E and $\rho_E(G_K)$ is to determine the primes ℓ and groups $\rho_{E,\ell}(G_K)$ where $\rho_{E,\ell}$ is non-surjective.¹

By Serre's theorem, if E does not have CM, this is a finite list (henceforth we assume that E does not have CM).

Under the GRH, the largest such ℓ is quasi-linear in the bit-size of *E* (this follows from the conductor bound in [LV 14]). If we put

$$\|E\| := \max(|N_{K/\mathbb{Q}}(A)|, |N_{K/\mathbb{Q}}(B)|).$$

then ℓ is bounded by $(\log ||E||)^{1+o(1)}$. Conjecturally this bound depends only on *K*; for $K = \mathbb{Q}$ we believe the bound to be 37.

¹This does not determine m_E , not even when m_E is squarefree.

Non-surjectivity

Typically $\rho_{E,\ell}$ (and $\rho_{E,\ell^{\infty}}$) is essentially surjective² for every prime ℓ . We are interested in the exceptions.

If *E* has a rational point of order ℓ , then $\rho_{E,\ell}$ is not surjective. For E/\mathbb{Q} this occurs for $\ell \leq 7$ (Mazur).

If *E* admits a rational ℓ -isogeny, then $\rho_{E,\ell}$ is not surjective. For E/\mathbb{Q} without CM, this occurs for $\ell \leq 17$ and $\ell = 37$ (Mazur).

But $\rho_{E,\ell}$ may be non-surjective even when *E* does not admit a rational ℓ -isogeny, and even when *E* has a rational ℓ -torsion point, this does not determine the image of $\rho_{E,\ell}$.

Classifying the possible images of $\rho_{E,\ell}$ that can arise may be viewed as a refinement of Mazur's theorems.

²Contains SL₂(\mathbb{Z}/ℓ) with im det $\rho_{E,\ell} \simeq \text{Gal}(\mathbb{Q}(\zeta_{\ell})/(K \cap \mathbb{Q}(\zeta_{\ell})))$.

Applications

There are many practical and theoretical reasons for wanting to compute the image of ρ_E , and for determining the elliptic curves with a particular mod- ℓ or mod-m Galois image.

- Explicit BSD computations
- Modularity lifting
- Computing Lang-Trotter constants
- The Koblitz-Zywina conjecture
- Optimizing the elliptic curve factorization method (ECM)
- Local-global questions

Computing the image of Galois the hard way

In principle, there is a completely straight-forward algorithm to compute $\rho_{E,m}(G_K)$ up to conjugacy in $GL_2(\mathbb{Z}/m)$:

- 1. Construct the field L = K(E[m]) as an (at most quadratic) extension of the splitting field of *E*'s *m*th division polynomial.
- 2. Pick a basis (P, Q) for E[m] and determine the action of each element of Gal(L/K) on P and Q.

The complexity can be bounded by $\tilde{O}(m^{18}[K : \mathbb{Q}]^9)$. It is only practical for very small cases (say $m \leq 7$).

We need something faster, especially if we want to compute $\rho_{E,\ell}(G_K)$ for many *E* and ℓ (which we do!).

Main results

► (GRH) Las-Vegas algorithm to compute \(\rho_{E,\ell}(G_K)\) up to local conjugacy for all primes \(\ell\) in expected time

 $(\log ||E||)^{11+o(1)}.$

► (GRH) Monte-Carlo algorithm to compute \(\rho_{E,l}(G_K)\) up to local conjugacy for all primes \(l \) in time

 $(\log ||E||)^{1+o(1)}.$

- Complete classification of subgroups of GL₂(Z/l) up to conjugacy and an algorithm to recognize or enumerate them (with generators) in quasi-linear time.
- Conjecturally complete list of 63 possibilities for $\rho_{E,\ell}(G_{\mathbb{Q}})$.
- Conjecturally complete list of 63+68+29=160 possibilities for ρ_{E,ℓ}(G_K) when K/Q is quadratic and j(E) ∈ Q.

Locally conjugate groups

Definition

Subgroups H_1 and H_2 of $GL_2(\mathbb{Z}/\ell)$ are *locally conjugate* if there is a bijection between them that preserves GL_2 -conjugacy.

Theorem

Up to conjugacy, each subgroup H_1 of $GL_2(\mathbb{Z}/\ell)$ has at most one non-conjugate locally conjugate subgroup H_2 . The groups H_1 and H_2 are isomorphic and agree up to semisimplification.

Theorem

If $\rho_{E_1,\ell}(G_K) = H_1$ is locally conjugate but not conjugate to H_2 then there is an ℓ^n -isogenous E_2 such that $\rho_{E_2,\ell}(G_K) = H_2$. The curve E_2 is defined over K and unique up to isomorphism.

Computations

We have computed all the mod- ℓ Galois images of every elliptic curve in the Cremona and Stein-Watkins databases.

This includes about 140 million curves of conductor up to 10^{10} , including all curves of conductor $\leq 360,000$. The results have been incorporated into the LMFDB (http://lmfdb.org).

We also analyzed more than 10¹⁰ curves in various families.

The result is a conjecturally complete classification of 63 non-surjective mod- ℓ Galois images that can arise for an elliptic curve E/\mathbb{Q} without CM (as expected, they all occur for $\ell \leq 37$).

We have also run the algorithm on all of the elliptic curves defined over quadratic and cubic fields in the LMFDB.

A probabilistic approach

Let E_p be the reduction of E modulo a good prime p of K that does not divide ℓ , and let p := Np (wlog, assume p is prime).

The action of the Frobenius endomorphism on $E_p[\ell]$ is given by (the conjugacy class of) a matrix $A \in \rho_{E,\ell}(G_K)$ with

tr $A \equiv a_p \mod \ell$ and $\det A \equiv p \mod \ell$,

where $a_{\mathfrak{p}} := \rho + 1 - \# E_{\mathfrak{p}}(\mathbb{F}_{\rho})$ is the trace of Frobenius.

By varying \mathfrak{p} , we can "randomly" sample $\rho_{E,\ell}(G_K)$; the Čebotarev density theorem implies equidistribution.

Under the GRH we may assume $\log p = O(\log \ell)$, which implies $\log p = O(\log \log ||E||)$; this means that any computation with complexity subexponential in $\log p$ takes negligible time.

Example: $\ell = 2$

 $\operatorname{GL}_2(\mathbb{Z}/2) \simeq S_3$ has 6 subgroups in 4 conjugacy classes. For $H \subseteq \operatorname{GL}_2(\mathbb{Z}/2)$, let $t_a(H) = \#\{A \in H : \operatorname{tr} A = a\}$. Consider the trace frequencies $t(H) = (t_0(H), t_1(H))$:

- 1. For $GL_2(\mathbb{Z}/2)$ we have t(H) = (4, 2).
- 2. The subgroup of order 3 has t(H) = (1, 2).
- 3. The 3 conjugate subgroups of order 2 have t(H) = (2, 0)
- 4. The trivial subgroup has t(H) = (1, 0).

1,2 are distinguished from 3,4 by a trace 1 element (easy).We can distinguish 1 from 2 by comparing frequencies (harder).We cannot distinguish 3 from 4 (impossible).

Sampling traces does not give enough information!

Using the 1-eigenspsace space of A

The ℓ -torsion points fixed by the Frobenius endomorphism form the \mathbb{F}_p -rational subgroup $E_p[\ell](\mathbb{F}_p)$ of $E_p[\ell]$. Thus

fix
$$A := \ker(A - I) = E_{\mathfrak{p}}[\ell](\mathbb{F}_q) = E_{\mathfrak{p}}(\mathbb{F}_p)[\ell]$$

Equivalently, fix A is the 1-eigenspace of A.

It is easy to compute $E_{\mathfrak{p}}(\mathbb{F}_{p})[\ell]$ (e.g., use the Weil pairing), and this gives us information that cannot be derived from $a_{\mathfrak{p}}$ alone.

We can now distinguish the subgroups of $GL_2(\mathbb{Z}/2\mathbb{Z})$ by looking at pairs (a_p, r_p) , where $r_p \in \{0, 1, 2\}$ is the rank of fix *A*.

There are three possible pairs, (0, 2), (0, 1), and (1, 0). The subgroups of order 2 contain (0, 2) and (0, 1) but not (1, 0). The subgroup of order 3 contains (0, 2) and (1, 0) but not (0, 1). The trivial subgroup contains only (0, 2).

Identifying subgroups by their signatures

The *signature* of a subgroup *H* of $GL_2(\mathbb{Z}/\ell)$ is defined as

 $s_H := \{ (\det A, \operatorname{tr} A, \operatorname{rk} \operatorname{fix} A) : A \in H \}.$

We also define the trace-zero ratio of H,

$$z_H := \# \{ A : \text{tr } A = 0 \} / \# H.$$

Given s_H there are at most two possibilities for z_H . There exist O(1) elements of H that determine s_H . $O(\ell)$ random elements determine s_H, z_H with high probability.

Theorem

If H_1 and H_2 are subgroups of $GL_2(\mathbb{Z}/\ell)$ for which $s_{H_1} = s_{H_2}$ and $z_{H_1} = z_{H_2}$ then H_1 and H_2 are locally conjugate.

Efficient implementation

Asymptotic optimization

There is an integer matrix A_p for which $A_p \equiv A_{p,\ell} \mod \ell$ for all primes ℓ . The matrix A_p is determined by End(E_p), and under the GRH it can be computed in time subexponential in log *p*, which is asymptotically negligible [DT02, B11, BS11].

Practical optimization

By precomputing A_p for *every* elliptic curve over \mathbb{F}_p , say for all primes p up to 2^{18} , the algorithm reduces to a sequence of table-lookups. This makes it extremely fast.

It takes less than 2 minutes to analyze all 2,247,187 curves in Cremona's tables (typically \leq 10 table lookups per curve).

Distinguishing locally-conjugate non-conjugate groups

In $GL_2(\mathbb{Z}/3)$ the subgroups

 $H_{1} = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \rangle \quad \text{and} \quad H_{2} = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \rangle$

have signature $s_H = \{(1, 2, 1), (2, 0, 1), (1, 2, 2)\}$ and trace zero ratio $t_H = 1/2$. Both are isomorphic to S_3 .

Every element of H_1 and H_2 has 1 as an eigenvalue, but in H_1 the 1-eigenspaces all coincide, while in H_2 they do not.

 H_1 corresponds to 14a4, which has a rational point of order 3, whereas H_2 corresponds to 14a3, which has a rational point of order 3 locally everywhere, but not globally.

Distinguishing locally-conjugate non-conjugate groups

Let $d_1(H)$ denote the least index of a subgroup of H that fixes a nonzero vector in $(\mathbb{Z}/\ell)^2$. Then $d_1(H_1) = 1$, but $d_1(H_2) = 2$.

For $H = \rho_{E,\ell}(G_K)$, the quantity $d_1(H)$ is the degree of the minimal extension L/K over which *E* has an *L*-rational point of order ℓ . This can be done using the ℓ -division polynomial, but in fact, we can use $X_0(\ell)$, since H_1 and H_2 must lie in a Borel.

We just need to determine the degree of the smallest factor of a polynomial of degree $(\ell - 1)/2$, which is not hard.

Using $d_1(H)$ we can distinguish locally conjugate but non-conjugate $\rho_{E,\ell}(G_{\mathbb{Q}})$ in all but one case that arises over \mathbb{Q} .

To address this one remaining case we look at twists.

The effect of twisting on the image of Galois

Theorem

Let *E* be an elliptic curve over a number field *K* and let *E'* be a quadratic twist of *E*. Let $G = \langle \rho_{E,\ell}(G_K), -1 \rangle$. Then $\rho_{E',\ell}(G_K)$ is conjugate to *G* or one of at most two index 2 subgroups of *G*.

Example

1089f1 and 1089f2 have locally conjugate mod-11 images

 $G_1 := \langle \pm \begin{pmatrix} 6 & 0 \\ 0 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rangle \quad \text{and} \quad G_2 := \langle \pm \begin{pmatrix} 4 & 0 \\ 0 & 6 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rangle$

with $d_1(G_1) = 10 = d_1(G_2)$. Twisting by -3 yields 121a1 and 121a2 (respectively), with locally conjugate mod-11 images

 $H_1 := \langle \begin{pmatrix} 6 & 0 \\ 0 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rangle \quad \text{and} \quad H_2 := \langle \begin{pmatrix} 4 & 0 \\ 0 & 6 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rangle,$

but now $d_1(H_1) = 10 \neq 5 = d_1(H_2)$ (twisting by -33 also works).

Non-surjective mod- ℓ images for E/\mathbb{Q} without CM of conductor \leq 360,000.

subgroup	index	generators	-1	d ₀	<i>d</i> ₁	d	curve
2Cs 2B 2Cn	6 3 2	- [1, 1, 0, 1] [0, 1, 1, 1]	yes yes yes	1 1 3	1 1 3	1 2 3	15a1 14a1 196a1
3Cs.1.1 3Cs 3B.1.1 3B.1.2 3Ns 3B 3Nn	24 12 8 6 4 3		no yes no no yes yes yes	1 1 1 2 1 4	1 2 1 2 4 2 8	2 4 6 8 12 16	14a1 98a3 14a4 14a3 338d1 50b1 245a1
5Cs.1.1 5Cs.1.3 5Cs.4.1 5Ns.2.1 5Cs 5B.1.1 5B.1.2 5B.4.2 5Nn 5B 5S4	120 120 60 30 24 24 24 24 15 12 12 12 10 6 5	$ \begin{bmatrix} 1, 0, 0, 2 \\ [3, 0, 0, 4] \\ [4, 0, 0, 4], [1, 0, 0, 2] \\ [2, 0, 0, 3], [0, 1, 3, 0] \\ [1, 0, 0, 2], [2, 0, 0, 1] \\ [1, 0, 0, 2], [1, 1, 0, 1] \\ [2, 0, 0, 1], [1, 1, 0, 1] \\ [3, 0, 0, 4], [1, 1, 0, 1] \\ [4, 0, 0, 3], [1, 1, 0, 1] \\ [1, 0, 0, 2], [2, 0, 0, 1], [0, 1, 1, 0] \\ [4, 0, 0, 4], [1, 0, 0, 2], [1, 1, 0, 1] \\ [4, 0, 0, 4], [1, 0, 0, 2], [1, 1, 0, 1] \\ [1, 4, 2, 1], [1, 0, 0, 4] \\ [1, 0, 0, 2], [2, 0, 0, 1], [1, 1, 0, 1] \\ [1, 4, 1], [1, 1, 0, 1] \\ [1, 4, 1], [1, 1, 0, 0, 4] \\ [1, 0, 1], [1, 1, 0, 1] \\ [1, 4, 1], [1, 0, 0, 4] \\ [1, 0, 1], [1, 1, 0, 1] \\ [1, 4, 1], [1, 0, 0, 4] \\ [1, 0, 1], [1, 1], [1, 0, 1] \\ [1, 4, 1], [1, 0, 0, 4] \\ [1, 4, 1], [1, 0, 0, 4] \\ [1, 4, 1], [1, 0, 0, 2] \\ [1, 4, 1], [1,$	no yes yes no no no yes yes yes yes yes	1 1 1 1 1 1 1 1 1 6 1 6	1 2 8 4 1 4 4 2 8 2 4 24 24 24	4 8 16 16 20 20 20 20 32 40 40 48 80 96	11a1 275b2 99d2 6975a1 18176b2 11a3 11a2 50a1 50a3 608b1 99d3 675b1 338d1 324b1

Non-surjective mod- ℓ images for E/\mathbb{Q} without CM of conductor \leq 360,000.

_	subgroup	index	generators	-1	d ₀	d ₁	d	curve
	7Ns.2.1 7Ns.3.1	112 56	[2, 0, 0, 4], [0, 1, 4, 0] [3, 0, 0, 5], [0, 1, 4, 0]	no yes	2 2	6 12	18 36	2450ba1 2450a1
{	7B.1.1 7B.1.3	48 48	[1, 0, 0, 3], [1, 1, 0, 1] [3, 0, 0, 1], [1, 1, 0, 1]	no no	1	1	42 42	26b1 26b2
Ì	7B.1.2	48	[2, 0, 0, 5], [1, 1, 0, 1]	no	1	3	42	637a1
l	7B.1.5	48 48	[5, 0, 0, 2], [1, 1, 0, 1]	no	1	6 3	42	637a2
{	7B.1.6	48	[6, 0, 0, 4], [1, 1, 0, 1]	no	1	2	42	294a1 294a2
	7Ns	28	[1, 0, 0, 3], [3, 0, 0, 1], [0, 1, 1, 0]	yes	2	12	72	9225a1
{	7B.6.1 7B.6.3	24 24	[6, 0, 0, 6], [1, 0, 0, 3], [1, 1, 0, 1]	yes	1	2	84 84	208d1 208d2
Ċ	7B.6.2	24	[6, 0, 0, 6], [2, 0, 0, 5], [1, 1, 0, 1]	yes	1	6	84	5733d1
	7Nn	21	[1,3,1,1], [1,0,0,6]	yes	8	48	96	15341a1
{	/B.2.1 7B 2 3	16	[2, 0, 0, 4], [1, 0, 0, 3], [1, 1, 0, 1] [2, 0, 0, 4], [3, 0, 0, 1], [1, 1, 0, 1]	no	1	3	126	162b1 162b3
	7B	8	[3, 0, 0, 1], [1, 0, 0, 3], [1, 1, 0, 1]	yes	1	6	252	162c1
ſ	11B.1.4	120	[4, 0, 0, 6], [1, 1, 0, 1]	no	1	5	110	121a2
l	11B.1.6	120	[6, 0, 0, 4], [1, 1, 0, 1]	no	1	10	110	121a1
{	11B.1.5 11B 1 7	120	[5, 0, 0, 7], [1, 1, 0, 1] [7 0 0 5] [1 1 0 1]	no	1	10	110	121c2 121c1
ì	11B.10.4	60	[10, 0, 0, 10], [4, 0, 0, 6], [1, 1, 0, 1]	yes	1	10	220	1089f2
ĺ	11B.10.5	60	[10, 0, 0, 10], [5, 0, 0, 7], [1, 1, 0, 1]	yes	1	10	220	1089f1
	11Nn	55	[2, 2, 1, 2], [1, 0, 0, 10]	yes	12	120	240	232544f1

Non-surjective mod- ℓ images for E/\mathbb{Q} without CM of conductor \leq 360,000.

	subgroup	index	generators	-1	d ₀	<i>d</i> ₁	d	curve
ſ	1354 13B.3.1	91 56	[1, 12, 1, 1], [1, 0, 0, 8] [3, 0, 0, 9], [1, 0, 0, 2], [1, 1, 0, 1]	yes no	6 1	72 3	288 468	50700u1 147b1
ĺ	13B.3.2	56	[3, 0, 0, 9], [2, 0, 0, 1], [1, 1, 0, 1]	no	1	12	468	147b2
ſ	13B.3.4	56	[3, 0, 0, 9], [4, 0, 0, 7], [1, 1, 0, 1]	no	1	6	468	2484301
ĺ	13B.3.7	56	[3, 0, 0, 9], [7, 0, 0, 4], [1, 1, 0, 1]	no	1	12	468	24843o2
ſ	13B.5.1	42	[5, 0, 0, 8], [1, 0, 0, 2], [1, 1, 0, 1]	yes	1	4	624	2890d1
ĺ	13B.5.2	42	[5, 0, 0, 8], [2, 0, 0, 1], [1, 1, 0, 1]	yes	1	12	624	2890d2
	13B.5.4	42	[5, 0, 0, 8], [4, 0, 0, 7], [1, 1, 0, 1]	yes	1	12	624	216320i1
ſ	13B.4.1	28	[4, 0, 0, 10], [1, 0, 0, 2], [1, 1, 0, 1]	yes	1	6	936	147c1
ĺ	13B.4.2	28	[4, 0, 0, 10], [2, 0, 0, 1], [1, 1, 0, 1]	yes	1	12	936	147c2
	13B	14	[1, 0, 0, 2], [2, 0, 0, 1], [1, 1, 0, 1]	yes	1	12	1872	245011
ſ	17B.4.2	72	[4, 0, 0, 13], [2, 0, 0, 10], [1, 1, 0, 1]	yes	1	8	1088	14450n1
ĺ	17B.4.6	72	[4, 0, 0, 13], [6, 0, 0, 9], [1, 1, 0, 1]	yes	1	16	1088	14450n2
{	37B.8.1 37B.8.2	114 114	$\begin{matrix} [8,0,0,14], \ [1,0,0,2], \ [1,1,0,1] \\ [8,0,0,14], \ [2,0,0,1], \ [1,1,0,1] \end{matrix}$	yes yes	1 1	12 36	15984 15984	1225e1 1225e2

References

[B11] G. Bisson, *Computing endomorphism rings of elliptic curves under the GRH*, Journal of Mathematical Cryptology **5** (2011), 101–113.

[BS11] G. Bisson and A.V. Sutherland, *Computing the endomorphism ring of an ordinary elliptic curve over a finite field*, Journal of Number Theory **131** (2011), 815–831.

[DT02] W. Duke and A. Toth, *The splitting of primes in division fields of elliptic curves*, Experimental Mathematics **11** (2002), 555–565.

[LV14] E. Larson and D. Vaintrob, *On the surjectivity of Galois representations associated to elliptic curves over number fields*, Bulletin of the London Mathematical Society **46** (2014) 197–209.

[S68] Jean-Pierre Serre, *Abelian ℓ-adic representations and elliptic curves* (revised reprint of 1968 original), A.K. Peters, Wellesley MA, 1998.

[Z15] D. Zywina, The possible images of the mod- ℓ representations associated to elliptic curves over \mathbb{Q} , preprint (2015).