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The action of Galois

Let y2 = x3 +Ax +B be an elliptic curve over a number field K .

Let K (E [m]) be the extension of K obtained by adjoining the
coordinates of all the m-torsion points of E(K ).

This is a Galois extension, and Gal(K (E [m])/K ) acts on

E [m] ' Z/m ⊕ Z/m

via its action on points, σ : (x : y : z) 7→ (xσ : yσ : zσ).

This induces a group representation

Gal(K (E [m])/K )→ Aut(E [m]) ' GL2(Z/m).



Galois representations

The action of Gal(K (E [m])/K ) extends to GK := Gal(K/K ):

ρE ,m : GK −→ Aut(E [m]) ' GL2(Z/m),

The ρE ,m are compatible; they determine a representation

ρE : GK −→ GL2(Ẑ)

satisfying ρE ,m = πm ◦ ρE , where πm : GL2(Ẑ)� GL2(Z/m).

Theorem (Serre’s open image theorem)
For E/K without CM, the index of ρE(GK ) in GL2(Ẑ) is finite.

Thus for any E/K without CM there is a minimal mE ∈ N such
that ρE(GK ) = π−1

mE
(ρE ,mE (GK )).



Mod-` representations

A first step toward computing mE and ρE(GK ) is to determine
the primes ` and groups ρE ,`(GK ) where ρE ,` is non-surjective.1

By Serre’s theorem, if E does not have CM, this is a finite list
(henceforth we assume that E does not have CM).

Under the GRH, the largest such ` is quasi-linear in the bit-size
of E (this follows from the conductor bound in [LV 14]). If we put

‖E‖ := max(|NK/Q(A)|, |NK/Q(B)|).

then ` is bounded by (log ‖E‖)1+o(1). Conjecturally this bound
depends only on K ; for K = Q we believe the bound to be 37.

1This does not determine mE , not even when mE is squarefree.



Non-surjectivity

Typically ρE ,` (and ρE ,`∞) is essentially surjective2 for every
prime `. We are interested in the exceptions.

If E has a rational point of order `, then ρE ,` is not surjective.
For E/Q this occurs for ` ≤ 7 (Mazur).

If E admits a rational `-isogeny, then ρE ,` is not surjective.
For E/Q without CM, this occurs for ` ≤ 17 and ` = 37 (Mazur).

But ρE ,` may be non-surjective even when E does not admit a
rational `-isogeny, and even when E has a rational `-torsion
point, this does not determine the image of ρE ,`.

Classifying the possible images of ρE ,` that can arise may be
viewed as a refinement of Mazur’s theorems.

2Contains SL2(Z/`) with im det ρE,` ' Gal
(
Q(ζ`)/(K ∩Q(ζ`))

)
.



Applications

There are many practical and theoretical reasons for wanting to
compute the image of ρE , and for determining the elliptic curves
with a particular mod-` or mod-m Galois image.

I Explicit BSD computations

I Modularity lifting

I Computing Lang-Trotter constants

I The Koblitz-Zywina conjecture

I Optimizing the elliptic curve factorization method (ECM)

I Local-global questions



Computing the image of Galois the hard way

In principle, there is a completely straight-forward algorithm to
compute ρE ,m(GK ) up to conjugacy in GL2(Z/m):

1. Construct the field L = K (E [m]) as an (at most quadratic)
extension of the splitting field of E ’s m th division
polynomial.

2. Pick a basis (P,Q) for E [m] and determine the action of
each element of Gal(L/K ) on P and Q.

The complexity can be bounded by Õ(m18[K : Q]9).
It is only practical for very small cases (say m ≤ 7).

We need something faster, especially if we want to compute
ρE ,`(GK ) for many E and ` (which we do!).



Main results

I (GRH) Las-Vegas algorithm to compute ρE ,`(GK ) up to
local conjugacy for all primes ` in expected time

(log ‖E‖)11+o(1).

I (GRH) Monte-Carlo algorithm to compute ρE ,`(GK ) up to
local conjugacy for all primes ` in time

(log ‖E‖)1+o(1).

I Complete classification of subgroups of GL2(Z/`) up to
conjugacy and an algorithm to recognize or enumerate
them (with generators) in quasi-linear time.

I Conjecturally complete list of 63 possibilities for ρE ,`(GQ).

I Conjecturally complete list of 63+68+29=160 possibilities
for ρE ,`(GK ) when K/Q is quadratic and j(E) ∈ Q.



Locally conjugate groups

Definition
Subgroups H1 and H2 of GL2(Z/`) are locally conjugate if there
is a bijection between them that preserves GL2-conjugacy.

Theorem
Up to conjugacy, each subgroup H1 of GL2(Z/`) has at most
one non-conjugate locally conjugate subgroup H2. The groups
H1 and H2 are isomorphic and agree up to semisimplification.

Theorem
If ρE1,`(GK ) = H1 is locally conjugate but not conjugate to H2
then there is an `n-isogenous E2 such that ρE2,`(GK ) = H2.
The curve E2 is defined over K and unique up to isomorphism.

14a4
3←→ 14a1

3←→ 14a3〈( 1 0
0 2

)
,
(

1 1
0 1

)〉 〈( 1 0
0 2

)〉
∼

〈( 2 0
0 1

)〉 〈( 2 0
0 1

)
,
(

1 1
0 1

)〉



Computations

We have computed all the mod-` Galois images of every elliptic
curve in the Cremona and Stein-Watkins databases.

This includes about 140 million curves of conductor up to 1010,
including all curves of conductor ≤ 360,000. The results have
been incorporated into the LMFDB (http://lmfdb.org).

We also analyzed more than 1010 curves in various families.

The result is a conjecturally complete classification of 63
non-surjective mod-` Galois images that can arise for an elliptic
curve E/Q without CM (as expected, they all occur for ` ≤ 37).

We have also run the algorithm on all of the elliptic curves
defined over quadratic and cubic fields in the LMFDB.

http://lmfdb.org


A probabilistic approach

Let Ep be the reduction of E modulo a good prime p of K that
does not divide `, and let p := Np (wlog, assume p is prime).

The action of the Frobenius endomorphism on Ep[`] is given by
(the conjugacy class of) a matrix A ∈ ρE ,`(GK ) with

tr A ≡ ap mod ` and det A ≡ p mod `,

where ap := p + 1−#Ep(Fp) is the trace of Frobenius.

By varying p, we can “randomly” sample ρE ,`(GK ); the
Čebotarev density theorem implies equidistribution.

Under the GRH we may assume log p = O(log `), which implies
log p = O(log log ||E ||); this means that any computation with
complexity subexponential in log p takes negligible time.



Example: ` = 2

GL2(Z/2) ' S3 has 6 subgroups in 4 conjugacy classes.
For H ⊆ GL2(Z/2), let ta(H) = #{A ∈ H : tr A = a}.
Consider the trace frequencies t(H) = (t0(H), t1(H)):

1. For GL2(Z/2) we have t(H) = (4,2).
2. The subgroup of order 3 has t(H) = (1,2).
3. The 3 conjugate subgroups of order 2 have t(H) = (2,0)
4. The trivial subgroup has t(H) = (1,0).

1,2 are distinguished from 3,4 by a trace 1 element (easy).
We can distinguish 1 from 2 by comparing frequencies (harder).
We cannot distinguish 3 from 4 (impossible).

Sampling traces does not give enough information!



Using the 1-eigenspsace space of A

The `-torsion points fixed by the Frobenius endomorphism
form the Fp-rational subgroup Ep[`](Fp) of Ep[`]. Thus

fix A := ker(A− I) = Ep[`](Fq) = Ep(Fp)[`]

Equivalently, fix A is the 1-eigenspace of A.
It is easy to compute Ep(Fp)[`] (e.g., use the Weil pairing), and
this gives us information that cannot be derived from ap alone.

We can now distinguish the subgroups of GL2(Z/2Z) by
looking at pairs (ap, rp), where rp ∈ {0,1,2} is the rank of fix A.

There are three possible pairs, (0,2), (0,1), and (1,0).
The subgroups of order 2 contain (0,2) and (0,1) but not (1,0).
The subgroup of order 3 contains (0,2) and (1,0) but not (0,1).
The trivial subgroup contains only (0,2).



Identifying subgroups by their signatures

The signature of a subgroup H of GL2(Z/`) is defined as

sH := {
(
det A, tr A, rk fix A

)
: A ∈ H}.

We also define the trace-zero ratio of H,

zH := #{A : tr A = 0}/#H.

Given sH there are at most two possibilities for zH .
There exist O(1) elements of H that determine sH .
O(`) random elements determine sH , zH with high probability.

Theorem
If H1 and H2 are subgroups of GL2(Z/`) for which sH1 = sH2

and zH1 = zH2 then H1 and H2 are locally conjugate.



Efficient implementation

Asymptotic optimization
There is an integer matrix Ap for which Ap ≡ Ap,` mod ` for all
primes `. The matrix Ap is determined by End(Ep), and under
the GRH it can be computed in time subexponential in log p,
which is asymptotically negligible [DT02, B11, BS11].

Practical optimization
By precomputing Ap for every elliptic curve over Fp, say for all
primes p up to 218, the algorithm reduces to a sequence of
table-lookups. This makes it extremely fast.

It takes less than 2 minutes to analyze all 2,247,187 curves
in Cremona’s tables (typically ≤ 10 table lookups per curve).



Distinguishing locally-conjugate non-conjugate groups

In GL2(Z/3) the subgroups

H1 = 〈
(

1 1
0 1

)
,
(

1 0
0 2

)
〉 and H2 = 〈

(
1 1
0 1

)
,
(

2 0
0 1

)
〉

have signature sH = {(1,2,1), (2,0,1), (1,2,2)} and trace zero
ratio tH = 1/2. Both are isomorphic to S3.

Every element of H1 and H2 has 1 as an eigenvalue, but in H1
the 1-eigenspaces all coincide, while in H2 they do not.

H1 corresponds to 14a4, which has a rational point of order 3,
whereas H2 corresponds to 14a3, which has a rational point of
order 3 locally everywhere, but not globally.



Distinguishing locally-conjugate non-conjugate groups

Let d1(H) denote the least index of a subgroup of H that fixes a
nonzero vector in (Z/`)2. Then d1(H1) = 1, but d1(H2) = 2.

For H = ρE ,`(GK ), the quantity d1(H) is the degree of the
minimal extension L/K over which E has an L-rational point of
order `. This can be done using the `-division polynomial, but in
fact, we can use X0(`), since H1 and H2 must lie in a Borel.

We just need to determine the degree of the smallest factor of a
polynomial of degree (`− 1)/2, which is not hard.

Using d1(H) we can distinguish locally conjugate but
non-conjugate ρE ,`(GQ) in all but one case that arises over Q.

To address this one remaining case we look at twists.



The effect of twisting on the image of Galois

Theorem
Let E be an elliptic curve over a number field K and let E ′ be a
quadratic twist of E. Let G = 〈ρE ,`(GK ),−1〉. Then ρE ′,`(GK ) is
conjugate to G or one of at most two index 2 subgroups of G.

Example
1089f1 and 1089f2 have locally conjugate mod-11 images

G1 := 〈±
(

6 0
0 4

)
,
(

1 1
0 1

)
〉 and G2 := 〈±

(
4 0
0 6

)
,
(

1 1
0 1

)
〉

with d1(G1) = 10 = d1(G2). Twisting by −3 yields 121a1 and 121a2
(respectively), with locally conjugate mod-11 images

H1 := 〈
(

6 0
0 4

)
,
(

1 1
0 1

)
〉 and H2 := 〈

(
4 0
0 6

)
,
(

1 1
0 1

)
〉,

but now d1(H1) = 10 6= 5 = d1(H2) (twisting by −33 also works).



Non-surjective mod-` images for E/Q without CM of conductor ≤ 360,000.

subgroup index generators -1 d0 d1 d curve

2Cs 6 - yes 1 1 1 15a1
2B 3 [1, 1, 0, 1] yes 1 1 2 14a1
2Cn 2 [0, 1, 1, 1] yes 3 3 3 196a1

3Cs.1.1 24 [1, 0, 0, 2] no 1 1 2 14a1
3Cs 12 [2, 0, 0, 1], [1, 0, 0, 2] yes 1 2 4 98a3{ 3B.1.1 8 [1, 0, 0, 2], [1, 1, 0, 1] no 1 1 6 14a4
3B.1.2 8 [2, 0, 0, 1], [1, 1, 0, 1] no 1 2 6 14a3
3Ns 6 [1, 0, 0, 2], [2, 0, 0, 1], [0, 1, 1, 0] yes 2 4 8 338d1
3B 4 [1, 0, 0, 2], [2, 0, 0, 1], [1, 1, 0, 1] yes 1 2 12 50b1
3Nn 3 [1, 2, 1, 1], [1, 0, 0, 2] yes 4 8 16 245a1

5Cs.1.1 120 [1, 0, 0, 2] no 1 1 4 11a1
5Cs.1.3 120 [3, 0, 0, 4] no 1 2 4 275b2
5Cs.4.1 60 [4, 0, 0, 4], [1, 0, 0, 2] yes 1 2 8 99d2
5Ns.2.1 30 [2, 0, 0, 3], [0, 1, 3, 0] yes 2 8 16 6975a1
5Cs 30 [1, 0, 0, 2], [2, 0, 0, 1] yes 1 4 16 18176b2{ 5B.1.1 24 [1, 0, 0, 2], [1, 1, 0, 1] no 1 1 20 11a3
5B.1.2 24 [2, 0, 0, 1], [1, 1, 0, 1] no 1 4 20 11a2{ 5B.1.3 24 [3, 0, 0, 4], [1, 1, 0, 1] no 1 4 20 50a1
5B.1.4 24 [4, 0, 0, 3], [1, 1, 0, 1] no 1 2 20 50a3
5Ns 15 [1, 0, 0, 2], [2, 0, 0, 1], [0, 1, 1, 0] yes 2 8 32 608b1{ 5B.4.1 12 [4, 0, 0, 4], [1, 0, 0, 2], [1, 1, 0, 1] yes 1 2 40 99d1
5B.4.2 12 [4, 0, 0, 4], [2, 0, 0, 1], [1, 1, 0, 1] yes 1 4 40 99d3
5Nn 10 [1, 4, 2, 1], [1, 0, 0, 4] yes 6 24 48 675b1
5B 6 [1, 0, 0, 2], [2, 0, 0, 1], [1, 1, 0, 1] yes 1 4 80 338d1
5S4 5 [1, 4, 1, 1], [1, 0, 0, 2] yes 6 24 96 324b1



Non-surjective mod-` images for E/Q without CM of conductor ≤ 360,000.

subgroup index generators -1 d0 d1 d curve

7Ns.2.1 112 [2, 0, 0, 4], [0, 1, 4, 0] no 2 6 18 2450ba1
7Ns.3.1 56 [3, 0, 0, 5], [0, 1, 4, 0] yes 2 12 36 2450a1{ 7B.1.1 48 [1, 0, 0, 3], [1, 1, 0, 1] no 1 1 42 26b1
7B.1.3 48 [3, 0, 0, 1], [1, 1, 0, 1] no 1 6 42 26b2{ 7B.1.2 48 [2, 0, 0, 5], [1, 1, 0, 1] no 1 3 42 637a1
7B.1.5 48 [5, 0, 0, 2], [1, 1, 0, 1] no 1 6 42 637a2{ 7B.1.4 48 [4, 0, 0, 6], [1, 1, 0, 1] no 1 3 42 294a1
7B.1.6 48 [6, 0, 0, 4], [1, 1, 0, 1] no 1 2 42 294a2
7Ns 28 [1, 0, 0, 3], [3, 0, 0, 1], [0, 1, 1, 0] yes 2 12 72 9225a1{ 7B.6.1 24 [6, 0, 0, 6], [1, 0, 0, 3], [1, 1, 0, 1] yes 1 2 84 208d1
7B.6.3 24 [6, 0, 0, 6], [3, 0, 0, 1], [1, 1, 0, 1] yes 1 6 84 208d2
7B.6.2 24 [6, 0, 0, 6], [2, 0, 0, 5], [1, 1, 0, 1] yes 1 6 84 5733d1
7Nn 21 [1, 3, 1, 1], [1, 0, 0, 6] yes 8 48 96 15341a1{ 7B.2.1 16 [2, 0, 0, 4], [1, 0, 0, 3], [1, 1, 0, 1] no 1 3 126 162b1
7B.2.3 16 [2, 0, 0, 4], [3, 0, 0, 1], [1, 1, 0, 1] no 1 6 126 162b3
7B 8 [3, 0, 0, 1], [1, 0, 0, 3], [1, 1, 0, 1] yes 1 6 252 162c1{ 11B.1.4 120 [4, 0, 0, 6], [1, 1, 0, 1] no 1 5 110 121a2
11B.1.6 120 [6, 0, 0, 4], [1, 1, 0, 1] no 1 10 110 121a1{ 11B.1.5 120 [5, 0, 0, 7], [1, 1, 0, 1] no 1 5 110 121c2
11B.1.7 120 [7, 0, 0, 5], [1, 1, 0, 1] no 1 10 110 121c1{ 11B.10.4 60 [10, 0, 0, 10], [4, 0, 0, 6], [1, 1, 0, 1] yes 1 10 220 1089f2
11B.10.5 60 [10, 0, 0, 10], [5, 0, 0, 7], [1, 1, 0, 1] yes 1 10 220 1089f1
11Nn 55 [2, 2, 1, 2], [1, 0, 0, 10] yes 12 120 240 232544f1



Non-surjective mod-` images for E/Q without CM of conductor ≤ 360,000.

subgroup index generators -1 d0 d1 d curve

13S4 91 [1, 12, 1, 1], [1, 0, 0, 8] yes 6 72 288 50700u1{ 13B.3.1 56 [3, 0, 0, 9], [1, 0, 0, 2], [1, 1, 0, 1] no 1 3 468 147b1
13B.3.2 56 [3, 0, 0, 9], [2, 0, 0, 1], [1, 1, 0, 1] no 1 12 468 147b2{ 13B.3.4 56 [3, 0, 0, 9], [4, 0, 0, 7], [1, 1, 0, 1] no 1 6 468 24843o1
13B.3.7 56 [3, 0, 0, 9], [7, 0, 0, 4], [1, 1, 0, 1] no 1 12 468 24843o2{ 13B.5.1 42 [5, 0, 0, 8], [1, 0, 0, 2], [1, 1, 0, 1] yes 1 4 624 2890d1
13B.5.2 42 [5, 0, 0, 8], [2, 0, 0, 1], [1, 1, 0, 1] yes 1 12 624 2890d2
13B.5.4 42 [5, 0, 0, 8], [4, 0, 0, 7], [1, 1, 0, 1] yes 1 12 624 216320i1{ 13B.4.1 28 [4, 0, 0, 10], [1, 0, 0, 2], [1, 1, 0, 1] yes 1 6 936 147c1
13B.4.2 28 [4, 0, 0, 10], [2, 0, 0, 1], [1, 1, 0, 1] yes 1 12 936 147c2
13B 14 [1, 0, 0, 2], [2, 0, 0, 1], [1, 1, 0, 1] yes 1 12 1872 2450l1{ 17B.4.2 72 [4, 0, 0, 13], [2, 0, 0, 10], [1, 1, 0, 1] yes 1 8 1088 14450n1
17B.4.6 72 [4, 0, 0, 13], [6, 0, 0, 9], [1, 1, 0, 1] yes 1 16 1088 14450n2{ 37B.8.1 114 [8, 0, 0, 14], [1, 0, 0, 2], [1, 1, 0, 1] yes 1 12 15984 1225e1
37B.8.2 114 [8, 0, 0, 14], [2, 0, 0, 1], [1, 1, 0, 1] yes 1 36 15984 1225e2
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