Computing L-Series of genus 3 curves

Andrew V. Sutherland

Massachusetts Institute of Technology

$$
\text { July 1, } 2017
$$

Joint work with David Harvey; David Harvey and Maike Massierer; David Harvey; Andrew Booker, and David Platt.

The L-series of a curve

Let X be a nice (smooth, projective, geometrically integral) curve of genus g over \mathbb{Q}. The L-series of X is the Dirichlet series

$$
L(X, s)=L(\operatorname{Jac}(X), s):=\sum_{n \geq 1} a_{n} n^{-s}:=\prod_{p} L_{p}\left(p^{-s}\right)^{-1}
$$

For primes p of good reduction for X we have the zeta function

$$
Z\left(X_{p} ; s\right):=\exp \left(\sum_{r \geq 1} \# X\left(\mathbb{F}_{p^{r}}\right) \frac{T^{r}}{r}\right)=\frac{L_{p}(T)}{(1-T)(1-p T)},
$$

and the L-polynomial $L_{p} \in \mathbb{Z}[T]$ in the numerator satisfies

$$
L_{p}(T)=T^{2 g} \chi_{p}(1 / T)=1-a_{p} T+\cdots+p^{g} T^{2 g}
$$

where $\chi_{p}(T)$ is the charpoly of the Frobenius endomorphism of $\operatorname{Jac}\left(X_{p}\right)$.

The Selberg class with polynomial Euler factors

The Selberg class $S^{\text {poly }}$ consists of Dirichlet series $L(s)=\sum_{n \geq 1} a_{n} n^{-s}$:
(1) $L(s)$ has an analytic continuation that is holomorphic at $s \neq 1$;
(2) For some $\gamma(s)=Q^{s} \prod_{i=1}^{r} \Gamma\left(\lambda_{i} s+\mu_{i}\right)$ and ε, the completed L-function $\Lambda(s):=\gamma(s) L(s)$ satisfies the functional equation

$$
\Lambda(s)=\varepsilon \overline{\Lambda(1-\bar{s})},
$$

where $Q>0, \lambda_{i}>0, \operatorname{Re}\left(\mu_{i}\right) \geq 0,|\varepsilon|=1$. Define $\operatorname{deg} L:=2 \sum_{i}^{r} \lambda_{i}$.
(3) $a_{1}=1$ and $a_{n}=O\left(n^{\epsilon}\right)$ for all $\epsilon>0$ (Ramanujan conjecture).
(4) $L(s)=\prod_{p} L_{p}\left(p^{-s}\right)^{-1}$ for some $L_{p} \in \mathbb{Z}[T]$ with $\operatorname{deg} L_{p} \leq \operatorname{deg} L$ (has an Euler product).

The Dirichlet series $L_{\mathrm{an}}(s, X):=L\left(X, s+\frac{1}{2}\right)$ satisfies (3) and (4), and conjecturally lies in $S^{\text {poly }}$; for $g=1$ this is known (via modularity).

Strong multiplicity one

Theorem (Kaczorowski-Perelli 2001)

If $A(s)=\sum_{n \geq 1} a_{n} n^{-s}$ and $B(s)=\sum_{n \geq 1} b_{n} n^{-s}$ lie in $S^{\text {poly }}$ and $a_{p}=b_{p}$ for all but finitely many primes p, then $\overline{A(s)}=B(s)$.

Corollary

If $L_{\mathrm{an}}(s, X)$ lies in S ${ }^{\text {poly }}$ then it is completely determined by (any choice of) all but finitely many coefficients a_{p}.

Henceforth we assume that $L_{\text {an }}(s, X) \in S^{\text {poly }}$.
Let $\Gamma_{\mathbb{C}}(s)=2(2 \pi)^{s} \Gamma(s)$ and define $\Lambda(X, s):=\Gamma_{\mathbb{C}}(s)^{g} L(X, s)$. Then

$$
\Lambda(X, s)=\varepsilon N^{1-s} \Lambda(X, 2-s) .
$$

where the root number $\varepsilon= \pm 1$ and the analytic conductor $N \in \mathbb{Z}_{\geq 1}$ are determined by the a_{p} values (we view these as definitions).

Testing the functional equation

Let $G(x)$ be the inverse Mellin transform of $\Gamma_{\mathbb{C}}(s)^{g}=\int_{0}^{\infty} G(x) x^{s-1} d x$, and define

$$
S(x):=\frac{1}{x} \sum a_{n} G(n / x)
$$

so that $\Lambda(X, s)=\int_{0}^{\infty} S(x) x^{-s} d x$, and for all $x>0$ we have

$$
S(x)=\varepsilon S(N / x)
$$

The function $G(x)$ decays rapidly, and for sufficiently large c_{0} we have

$$
S(x) \approx S_{0}(x):=\frac{1}{x} \sum_{n \leq c_{0} x} a_{n} G(n / x)
$$

with an explicit bound on the error $\left|S(x)-S_{0}(x)\right|$.

Effective strong multiplicity one

Fix a finite set of small primes \mathcal{S} (e.g. $\mathcal{S}=\{2\}$) and an integer M that we know is a multiple of the conductor N (e.g. $M=\Delta(X)$).

There is a finite set of possibilities for $\varepsilon= \pm 1, N \mid M$, and the Euler factors $L_{p} \in \mathbb{Z}[T]$ for $p \in \mathcal{S}$ (the coefficients of $L_{p}(T)$ are bounded).

Suppose we can compute a_{n} for $n \leq c_{1} \sqrt{M}$ whenever $p \nmid n$ for $p \in \mathcal{S}$.
We now compute $\delta(x):=\left|S_{0}(x)-\varepsilon S_{0}(N / x)\right|$ with $\left.x=c_{1} \sqrt{N}\right)$ for every possible choice of ε, N, and $L_{p}(T)$ for $p \in \mathcal{S}$. If all but one choice makes $\delta(x)$ larger than our explicit error bound, we know the correct choice.

For a suitable choice of c_{1} this is guaranteed to happen. ${ }^{1}$ One can explicitly determine a set of $O\left(N^{\epsilon}\right)$ candidate values of c_{1}, one of which is guaranteed to work; in practice the first one usually works.

[^0]
Conductor bounds

The formula of Brumer and Kramer gives explicit bounds on the p-adic valuation of the algebraic conductor N of $\operatorname{Jac}(X)$:

$$
v_{p}(N) \leq 2 g+p d+(p-1) \lambda_{p}(d)
$$

where $d=\left\lfloor\frac{2 g}{p-1}\right\rfloor$ and $\lambda_{p}(d)=\sum i d_{i} p^{i}$, with $d=\sum d_{i} p^{i}$ with $0 \leq d_{i}<p$.

g	$p=2$	$p=3$	$p=5$	$p=7$	$p>7$
1	8	5	2	2	2
2	20	10	9	4	4
3	28	21	11	13	6

For $g \leq 2$ these bounds are tight (see www. lmfdb. org for examples).
For hyperelliptic curves N divides $\Delta(X)$. Smooth plane curves?

Algorithms to compute zeta functions

Given X / \mathbb{Q} of genus g, we want to compute $L_{p}(T)$ for all $\operatorname{good} p \leq B$.
complexity per prime
(ignoring factors of $O(\log \log p)$)

algorithm	$g=1$	$g=2$	$g=3$
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3}(\log p)^{2}$
group computation	$p^{1 / 4} \log p$	$p^{3 / 4} \log p$	$p(\log p)^{2}$
p-adic cohomology	$p^{1 / 2}(\log p)^{2}$	$p^{1 / 2}(\log p)^{2}$	$p^{1 / 2}(\log p)^{2}$
CRT (Schoof-Pila)	$(\log p)^{5}$	$(\log p)^{8}$	$(\log p)^{12 ?}$
average poly-time	$(\log p)^{4}$	$(\log p)^{4}$	$(\log p)^{4}$

For $L(X, s)=\sum a_{n} n^{-s}$, we only need $a_{p^{2}}$ for $p^{2} \leq B$, and $a_{p^{3}}$ for $p^{3} \leq B$. For $1<r \leq g$ we can compute all $a_{p^{r}}$ with $p^{r} \leq B$ in time $O(B \log B)$.

The bottom line: it all comes down to computing a_{p} 's.

Warmup: average polynomial-time in genus 1

Let $X: y^{2}=f(x)$ with $\operatorname{deg} f=3,4$ and $f(0) \neq 0$, and let f_{k}^{n} be the coefficient of x^{k} in f^{n}. Then $a_{p} \equiv f_{p-1}^{(p-1) / 2} \bmod p$ for all good p.

The relations $f^{n+1}=f \cdot f^{n}$ and $\left(f^{n+1}\right)^{\prime}=(n+1) f^{\prime} \cdot f^{n}$ yield the identity

$$
\left.k f_{0} f_{k}^{n}=\sum_{1 \leq i \leq d}(n+1)-k\right) f_{i} f_{k-i}^{n}
$$

for all $k, n \geq 0$. Suppose for simplicity $\operatorname{deg} f=3$, and define

$$
v_{k}^{n}:=\left[f_{k-2}^{n}, f_{k-1}^{n}, f_{k}^{n}\right], \quad M_{k}^{n}:=\left[\begin{array}{ccc}
0 & 0 & (3 n+3-k) f_{3} \\
k f_{0} & 0 & (2 n+2-k) f_{2} \\
0 & k f_{0} & (n+1-k) f_{1}
\end{array}\right],
$$

so that we have the recurrence $v_{k}^{n}=\frac{1}{k f_{0}} v_{k-1}^{n} M_{k}^{n}$.

Warmup: average polynomial-time in genus 1

We then have

$$
v_{k}^{n}=\frac{1}{\left(f_{0}\right)^{k} k!} v_{0}^{n} M_{1}^{n} \cdots M_{k}^{n}
$$

We want to compute $a_{p} \equiv f_{2 n}^{n} \bmod p$ with $n:=(p-1) / 2$.
This is just the last entry of the vector $v_{2 n}^{n}$ reduced modulo $p=2 n+1$.
Observe that $2(n+1) \equiv 1 \bmod p$, so $2 M_{k}^{n} \equiv M_{k} \bmod p$, where

$$
M_{k}:=\left[\begin{array}{ccc}
0 & 0 & (3-2 k) f_{3} \\
k f_{0} & 0 & (2-2 k) f_{2} \\
0 & k f_{0} & (1-2 k) f_{1}
\end{array}\right]
$$

is an integer matrix whose entries do not depend on $p=2 n+1$, and

$$
v_{2 n}^{n} \equiv-\left(\frac{f_{0}}{p}\right) V_{0} M_{1} \cdots M_{p-1} \bmod p \quad\left(\text { where } V_{0}=[0,0,1]\right)
$$

Accumulating remainder tree

Given matrices M_{0}, \ldots, M_{n-1} and moduli m_{1}, \ldots, m_{n}, to compute

$$
\begin{array}{r}
M_{0} \bmod m_{1} \\
M_{0} M_{1} \bmod m_{2} \\
M_{0} M_{1} M_{2} \bmod m_{3} \\
M_{0} M_{1} M_{2} M_{3} \bmod m_{4} \\
\cdots \\
M_{0} M_{1} \cdots M_{n-2} M_{n-1} \bmod m_{n}
\end{array}
$$

multiply adjacent pairs and recursively compute

$$
\begin{array}{r}
\left(M_{0} M_{1}\right) \bmod m_{2} m_{3} \\
\left(M_{0} M_{1}\right)\left(M_{2} M_{3}\right) \bmod m_{4} m_{5}
\end{array}
$$

$$
\left(M_{0} M_{1}\right) \cdots\left(M_{n-2} M_{n-1}\right) \bmod m_{n}
$$

and adjust the results as required (for better results, use a forest).

Complexity analysis

Assume $\log \left|f_{i}\right|=O(\log B)$. The recursion has depth $O(\log B)$ and in each recursive step we multiply and reduce 3×3 matrices with integer entries whose total bitsize is $O(B \log B)$.

We can do all the multiplications/reductions at any given level of the recursion in $O(\mathrm{M}(B \log B))=B(\log B)^{2+o(1)}$.

Total complexity is $B(\log B)^{3+o(1)}$, or $(\log p)^{4+o(1)}$ per prime $p \leq B$.
For a single prime p we do not have a polynomial-time algorithm, but we can give an $O\left(p^{1 / 2}(\log p)^{1+o(1)}\right)$ algorithm using the same matrices.

This is a silly way to compute a_{p} in genus 1 , but it turns out to be much faster than any other method currently available in genus 3.

Efficiently handling a single prime

Simply computing $V_{0} M_{1} \cdots M_{p-1}$ modulo p is surprisingly quick (faster than semi-naïve point-counting); it takes $p(\log p)^{1+o(1)}$ time.
But we can do better.
Viewing $M_{k} \bmod p$ as $M \in \mathbb{F}_{p}[k]^{3 \times 3}$, we compute

$$
A(k):=M(k) M(k+1) \cdots M(k+r-1) \in \mathbb{F}_{p}[k]^{3 \times 3}
$$

with $r \approx \sqrt{p}$ and then instantiate $A(k)$ at roughly r points to get

$$
M_{1} M_{2} \cdots M_{p-1} \equiv_{p} A(1) A(r+1) A(2 r+1) \cdots A(p-r)
$$

Using standard product tree and multipoint evaluation techniques this takes $O\left(\mathrm{M}\left(p^{1 / 2}\right) \log p\right)=p^{1 / 2}(\log p)^{2+o(1)}$ time.

Bostan-Gaudry-Schost: $p^{1 / 2}(\log p)^{1+o(1)}$ time.

Genus 3 curves

The canonical embedding of a genus 3 curve into \mathbb{P}^{2} is either
(1) a degree-2 cover of a smooth conic (hyperelliptic case);
(2) a smooth plane quartic (generic case).

Average polynomial-time implementations available for the first case:

- rational hyperelliptic model [Harvey-S 2014]
- no rational hyperelliptic model [Harvey-Massierer-S 2016].

New result (joint with Harvey): smooth plane quartics.
Prior work has all been based on p-adic cohomology:
[Lauder 2004], [Castryck-Denef-Vercauteren 2006],
[Abott-Kedlaya-Roe 2006], [Harvey 2010], [Tuitman-Pancrantz 2013],
[Tuitman 2015], [Costa 2015], [Tuitman-Castryck 2016], [Shieh 2016]
Current implementations of these algorithms are all $O\left(p^{1+o(1)}\right)$.

The Hasse-Witt matrix of a hyperelliptic curve

Let X_{p} / \mathbb{F}_{p} be a hyperelliptic curve $y^{2}=f(x)$ of genus g (assume p odd). As in the warmup, let f_{k}^{n} denote the coefficient of x^{k} in f^{n}.

The Hasse-Witt matrix of X_{p} is $W_{p}:=\left[f_{p i-j}^{n}\right]_{i j} \in \mathbb{F}_{p}^{g \times g}$ with $n=(p-1) / 2$. In genus $g=3$ we have

$$
W_{p}:=\left[\begin{array}{ccc}
f_{p-1}^{n} & f_{p-2}^{n} & f_{p-3}^{n} \\
f_{2 p-1}^{n} & f_{2 p-2}^{n} & f_{2 p-3}^{n} \\
f_{3 p-1}^{n} & f_{3 p-2}^{n} & f_{3 p-3}^{n}
\end{array}\right] .
$$

This is the matrix of the p-power Frobenius acting on $H^{1}\left(C_{p}, \mathcal{O}_{C_{p}}\right)$ (and the Cartier-Manin operator acting on regular differentials). As proved by Manin, we have

$$
L_{p}(T) \equiv \operatorname{det}\left(I-T W_{p}\right) \bmod p
$$

in particular, $a_{p} \equiv \operatorname{tr} W_{p} \bmod p$. For $p>144$ this yields $a_{p} \in[-6 \sqrt{p}, 6 \sqrt{p}]$.

Hyperelliptic average polynomial-time

As in our warmup, assume $f(0) \neq 0$ and define $\nu_{k}^{n}:=\left[f_{k-d+1}^{n}, \ldots, f_{k}^{n}\right]$. The last g entries of $v_{2 n}^{n}$ form the first row of W_{p}, and we have

$$
v_{2 n}^{n}=-\left(\frac{f_{0}}{p}\right) V_{0} M_{1} \cdots M_{p-1} \bmod p \quad\left(\text { where } V_{0}=[0, \ldots, 0,1]\right) .
$$

Compute the first row of W_{p} for $\operatorname{good} p \leq B$ in $O\left(g^{2} B(\log B)^{3+o(1)}\right)$ time.
To get the remaining rows, consider the isomorphic curve $y^{2}=f(x+a)$ whose Hasse-Witt matrix $W_{p}(a)=T(a) W_{p} T(-a)$ is conjugate to W_{p} via

$$
T(a):=\left[\binom{j-1}{i-1} a^{j-1}\right]_{i j} \in \mathbb{F}_{p}^{g \times g} .
$$

Given the first row of $W_{p}(a)$ for g distinct values of a we can compute all the rows of W_{p}. Total complexity is $O\left(g^{3} B(\log B)^{3+o(1)}\right)$.

The Hasse-Witt matrix of a smooth plane quartic

Let X_{p} / \mathbb{F}_{p} be a smooth plane quartic defined by $f(x, y, z)=0$. For $n \geq 0$ let $f_{i, j, k}^{n}$ denote the coefficient of $x^{i} y^{j} z^{k}$ in f^{n}.

The Hasse-Witt matrix of X_{p} is the 3×3 matrix

$$
W_{p}:=\left[\begin{array}{lll}
f_{p-1, p-1,2 p-2}^{p-1} & f_{2 p}^{p-1}-1, p-1, p-2 & f_{p-1,2 p-1, p-2}^{p-1} \\
f_{p-1}^{p-1, p-1,2 p-1} & f_{2 p}^{p-1, p-1, p-1} & f_{p-2,2 p-1, p-1}^{p-1} \\
f_{p-1, p-2,2 p-1}^{p-1} & f_{2 p-1, p-2, p-1}^{p-1} & f_{p-1,2 p-2, p-1}^{p-1}
\end{array}\right] .
$$

This case of smooth plane curves of degree $d>4$ is similar.
More generally, given a singular plane model for any nice curve (equivalently, a defining polynomial for its function field) one can use the methods of Stohr-Voloch to explicitly determine W_{p}.

Target coefficients of f^{p-1} for $p=7$:

Coefficient relations

Let $\partial_{x}=x \frac{\partial}{\partial x}$ (degree-preserving). The relations

$$
f^{p-1}=f \cdot f^{p-2} \quad \text { and } \quad \partial_{x} f^{p-1}=-\left(\partial_{x} f\right) f^{p-2}
$$

yield the relation

$$
\sum_{i^{\prime}+j^{\prime}+k^{\prime}=4}\left(i+i^{\prime}\right) f_{i^{\prime}, j^{\prime}, k^{\prime}} f_{i-i^{\prime}, j-j^{\prime}, k-k^{\prime}}^{p-2}=0
$$

among nearby coefficients of f^{p-2} (a triangle of side length 5).
Replacing ∂_{x} by ∂_{y} yields a similar relation (replace $i+i^{\prime}$ with $j+j^{\prime}$).

Coefficient triangle

For $p=7$ with $i=12, j=5, k=7$ the related coefficients of f^{p-2} are:

Moving the triangle

Now consider a bigger triangle with side length 7 . Our relations allow us to move the triangle around:

An initial "triangle" at the edge can be efficiently computed using coefficients of $f(x, 0, z)^{p-2}$.

Computing one Hasse-Witt matrix

Nondegeneracy: we need $f(1,0,0), f(0,1,0), f(0,0,1)$ nonzero and $f(0, y, z), f(x, 0, z), f(x, y, 0)$ squarefree (easily achieved for large p).

The basic strategy to compute W_{p} is as follows:

- There is a 28×28 matrix M_{j} that shifts our 7-triangle from y-coordinate j to $j+1$; its coefficients depend on j and f. In fact a 16×16 matrix M_{i} suffices (use smoothness of C).
- Applying the product $M_{0} \cdots M_{p-2}$ to an initial triangle on the edge and applying a final adjustment to shift from f^{p-2} to f^{p-1} gets us one column of the Hasse-Witt matrix W_{p}.
- By applying the same product (or its inverse) to different initial triangles we can compute all three columns of W_{p}.

We have thus reduced the problem to computing $M_{1} \cdots M_{p-2} \bmod p$, which we already know how to do, either in $p^{1 / 2}(\log p)^{1+o(1)}$ time, or in average polynomial time $(\log p)^{4+o(1)}$.

Cumulative timings for genus 3 curves

Time to compute $L_{p}(T) \bmod p$ for all $\operatorname{good} p \leq B$.

B	spq-Costa-AKR	spq-HS	ghyp-MHS	hyp-HS	hyp-Harvey
2^{12}	18	1.4	0.3	0.1	1.3
2^{13}	49	2.4	0.7	0.2	2.6
2^{14}	142	4.6	1.7	0.5	5.4
2^{15}	475	9.4	4.6	1.0	12
2^{16}	1,670	21	11	2.1	29
2^{17}	5,880	47	27	5.3	74
2^{18}	22,300	112	62	14	192
2^{19}	78,100	241	153	37	532
2^{20}	297,000	551	370	97	1,480
2^{21}	$1,130,000$	1,240	891	244	4,170
2^{22}	$4,280,000$	2,980	2,190	617	12,200
2^{23}	$16,800,000$	6,330	5,110	1,500	36,800
2^{24}	$66,800,000$	14,200	11,750	3,520	113,000
2^{25}	$244,000,000$	31,900	28,200	8,220	395,000
2^{26}	$972,000,000$	83,300	62,700	19,700	$1,060,000$

(Intel Xeon E7-8867v3 3.3 GHz CPU seconds).

[^0]: ${ }^{1}$ Subject to our assumptions; if it does not happen then we have found an explicit counterexample to the conjectured Langlands correspondence.

