Computing L-Series of genus 3 curves

Andrew V. Sutherland

Massachusetts Institute of Technology

July 1, 2017

Joint work with David Harvey; David Harvey and Maike Massierer; David Harvey; Andrew Booker, and David Platt.

The L-series of a curve

Let X be a nice (smooth, projective, geometrically integral) curve of genus g over \mathbb{Q} . The L-series of X is the Dirichlet series

$$L(X,s) = L(\operatorname{Jac}(X),s) := \sum_{n>1} a_n n^{-s} := \prod_p L_p(p^{-s})^{-1}.$$

For primes p of good reduction for X we have the zeta function

$$Z(X_p; s) := \exp\left(\sum_{r \ge 1} \#X(\mathbb{F}_{p^r}) \frac{T^r}{r}\right) = \frac{L_p(T)}{(1 - T)(1 - pT)},$$

and the *L*-polynomial $L_p \in \mathbb{Z}[T]$ in the numerator satisfies

$$L_p(T) = T^{2g} \chi_p(1/T) = 1 - a_p T + \dots + p^g T^{2g}$$

where $\chi_p(T)$ is the charpoly of the Frobenius endomorphism of $\operatorname{Jac}(X_p)$.

The Selberg class with polynomial Euler factors

The Selberg class S^{poly} consists of Dirichlet series $L(s) = \sum_{n \geq 1} a_n n^{-s}$:

- L(s) has an analytic continuation that is holomorphic at $s \neq 1$;
- ② For some $\gamma(s) = Q^s \prod_{i=1}^r \Gamma(\lambda_i s + \mu_i)$ and ε , the completed L-function $\Lambda(s) := \gamma(s) L(s)$ satisfies the functional equation

$$\Lambda(s) = \varepsilon \overline{\Lambda(1-\overline{s})},$$

where $Q>0,\,\lambda_i>0,\,\operatorname{Re}(\mu_i)\geq 0,\,|\varepsilon|=1.$ Define $\deg L:=2\sum_i^r\lambda_i.$

- **3** $a_1 = 1$ and $a_n = O(n^{\epsilon})$ for all $\epsilon > 0$ (Ramanujan conjecture).
- ① $L(s) = \prod_p L_p(p^{-s})^{-1}$ for some $L_p \in \mathbb{Z}[T]$ with $\deg L_p \leq \deg L$ (has an Euler product).

The Dirichlet series $L_{\rm an}(s,X):=L(X,s+\frac{1}{2})$ satisfies (3) and (4), and conjecturally lies in $S^{\rm poly}$; for g=1 this is known (via modularity).

Strong multiplicity one

Theorem (Kaczorowski-Perelli 2001)

If $A(s) = \sum_{n \ge 1} a_n n^{-s}$ and $B(s) = \sum_{n \ge 1} b_n n^{-s}$ lie in S^{poly} and $a_p = b_p$ for all but finitely many primes p, then A(s) = B(s).

Corollary

If $L_{an}(s,X)$ lies in S^{poly} then it is completely determined by (any choice of) all but finitely many coefficients a_p .

Henceforth we assume that $L_{an}(s,X) \in S^{poly}$.

Let $\Gamma_{\mathbb{C}}(s)=2(2\pi)^s\Gamma(s)$ and define $\Lambda(X,s):=\Gamma_{\mathbb{C}}(s)^gL(X,s).$ Then

$$\Lambda(X,s) = \varepsilon N^{1-s} \Lambda(X,2-s).$$

where the root number $\varepsilon = \pm 1$ and the analytic conductor $N \in \mathbb{Z}_{\geq 1}$ are determined by the a_p values (we view these as definitions).

Testing the functional equation

Let G(x) be the inverse Mellin transform of $\Gamma_{\mathbb{C}}(s)^g = \int_0^\infty G(x) x^{s-1} dx$, and define

$$S(x) := \frac{1}{x} \sum a_n G(n/x),$$

so that $\Lambda(X,s) = \int_0^\infty S(x) x^{-s} dx$, and for all x > 0 we have

$$S(x) = \varepsilon S(N/x).$$

The function G(x) decays rapidly, and for sufficiently large c_0 we have

$$S(x) \approx S_0(x) := \frac{1}{x} \sum_{n < c_0 x} a_n G(n/x),$$

with an explicit bound on the error $|S(x) - S_0(x)|$.

Effective strong multiplicity one

Fix a finite set of small primes S (e.g. $S = \{2\}$) and an integer M that we know is a multiple of the conductor N (e.g. $M = \Delta(X)$).

There is a finite set of possibilities for $\varepsilon = \pm 1$, N|M, and the Euler factors $L_p \in \mathbb{Z}[T]$ for $p \in \mathcal{S}$ (the coefficients of $L_p(T)$ are bounded).

Suppose we can compute a_n for $n \le c_1 \sqrt{M}$ whenever $p \nmid n$ for $p \in \mathcal{S}$.

We now compute $\delta(x):=|S_0(x)-\varepsilon S_0(N/x)|$ with $x=c_1\sqrt{N})$ for every possible choice of ε , N, and $L_p(T)$ for $p\in\mathcal{S}$. If all but one choice makes $\delta(x)$ larger than our explicit error bound, we know the correct choice.

For a suitable choice of c_1 this is guaranteed to happen.¹ One can explicitly determine a set of $O(N^\epsilon)$ candidate values of c_1 , one of which is guaranteed to work; in practice the first one usually works.

¹Subject to our assumptions; if it does not happen then we have found an explicit counterexample to the conjectured Langlands correspondence.

Conductor bounds

The formula of Brumer and Kramer gives explicit bounds on the p-adic valuation of the algebraic conductor N of Jac(X):

$$v_p(N) \le 2g + pd + (p-1)\lambda_p(d),$$

where $d = \lfloor \frac{2g}{p-1} \rfloor$ and $\lambda_p(d) = \sum i d_i p^i$, with $d = \sum d_i p^i$ with $0 \le d_i < p$.

g	p=2	p=3	p=5	p = 7	<i>p</i> > 7
1	8	5	2	2	2
2	20	10	9	4	4
3	28	21	11	13	6

For $g \le 2$ these bounds are tight (see www.lmfdb.org for examples).

For hyperelliptic curves N divides $\Delta(X)$. Smooth plane curves?

Algorithms to compute zeta functions

Given X/\mathbb{Q} of genus g, we want to compute $L_p(T)$ for all good $p \leq B$.

	complexity per prime (ignoring factors of $O(\log \log p)$)			
algorithm	g=1	g=2	g = 3	
point enumeration group computation p-adic cohomology CRT (Schoof-Pila) average poly-time	$p \log p$ $p^{1/4} \log p$ $p^{1/2} (\log p)^2$ $(\log p)^5$ $(\log p)^4$	$p^{2} \log p$ $p^{3/4} \log p$ $p^{1/2} (\log p)^{2}$ $(\log p)^{8}$ $(\log p)^{4}$	$p^{3}(\log p)^{2}$ $p(\log p)^{2}$ $p^{1/2}(\log p)^{2}$ $(\log p)^{12?}$ $(\log p)^{4}$	

For $L(X,s) = \sum a_n n^{-s}$, we only need a_{p^2} for $p^2 \leq B$, and a_{p^3} for $p^3 \leq B$. For $1 < r \leq g$ we can compute all a_{p^r} with $p^r \leq B$ in time $O(B \log B)$.

The bottom line: it all comes down to computing a_p 's.

Warmup: average polynomial-time in genus 1

Let $X: y^2 = f(x)$ with $\deg f = 3, 4$ and $f(0) \neq 0$, and let f_k^n be the coefficient of x^k in f^n . Then $a_p \equiv f_{p-1}^{(p-1)/2} \mod p$ for all good p.

The relations $f^{n+1} = f \cdot f^n$ and $(f^{n+1})' = (n+1)f' \cdot f^n$ yield the identity

$$kf_0f_k^n = \sum_{1 \le i \le d} (n+1) - k)f_if_{k-i}^n,$$

for all $k, n \ge 0$. Suppose for simplicity $\deg f = 3$, and define

$$v_k^n := [f_{k-2}^n, f_{k-1}^n, f_k^n], \qquad M_k^n := \begin{bmatrix} 0 & 0 & (3n+3-k)f_3 \\ kf_0 & 0 & (2n+2-k)f_2 \\ 0 & kf_0 & (n+1-k)f_1 \end{bmatrix},$$

so that we have the recurrence $v_k^n = \frac{1}{kf_0} v_{k-1}^n M_k^n$.

Warmup: average polynomial-time in genus 1

We then have

$$v_k^n = \frac{1}{(f_0)^k k!} v_0^n M_1^n \cdots M_k^n.$$

We want to compute $a_p \equiv f_{2n}^n \mod p$ with n := (p-1)/2. This is just the last entry of the vector v_{2n}^n reduced modulo p = 2n + 1.

Observe that $2(n+1) \equiv 1 \mod p$, so $2M_k^n \equiv M_k \mod p$, where

$$M_k := \begin{bmatrix} 0 & 0 & (3-2k)f_3 \\ kf_0 & 0 & (2-2k)f_2 \\ 0 & kf_0 & (1-2k)f_1 \end{bmatrix}$$

is an integer matrix whose entries do not depend on p = 2n + 1, and

$$v_{2n}^n \equiv -\left(\frac{f_0}{n}\right) V_0 M_1 \cdots M_{p-1} \bmod p$$
 (where $V_0 = [0, 0, 1]$).

Accumulating remainder tree

Given matrices M_0, \ldots, M_{n-1} and moduli m_1, \ldots, m_n , to compute

$$M_0 \mod m_1$$
 $M_0M_1 \mod m_2$
 $M_0M_1M_2 \mod m_3$
 $M_0M_1M_2M_3 \mod m_4$
 \dots
 $M_0M_1 \cdots M_{n-2}M_{n-1} \mod m_n$

multiply adjacent pairs and recursively compute

$$(M_0M_1) \mod m_2m_3$$
 $(M_0M_1)(M_2M_3) \mod m_4m_5$
 \dots
 $(M_0M_1)\cdots(M_{n-2}M_{n-1}) \mod m_n$

and adjust the results as required (for better results, use a forest).

Complexity analysis

Assume $\log |f_i| = O(\log B)$. The recursion has depth $O(\log B)$ and in each recursive step we multiply and reduce 3×3 matrices with integer entries whose total bitsize is $O(B \log B)$.

We can do all the multiplications/reductions at any given level of the recursion in $O(M(B \log B)) = B(\log B)^{2+o(1)}$.

Total complexity is $B(\log B)^{3+o(1)}$, or $(\log p)^{4+o(1)}$ per prime $p \leq B$.

For a single prime p we do not have a polynomial-time algorithm, but we can give an $O(p^{1/2}(\log p)^{1+o(1)})$ algorithm using the same matrices.

This is a silly way to compute a_p in genus 1, but it turns out to be much faster than any other method currently available in genus 3.

Efficiently handling a single prime

Simply computing $V_0M_1\cdots M_{p-1}$ modulo p is surprisingly quick (faster than semi-naïve point-counting); it takes $p(\log p)^{1+o(1)}$ time. But we can do better.

Viewing $M_k \mod p$ as $M \in \mathbb{F}_p[k]^{3 \times 3}$, we compute

$$A(k) := M(k)M(k+1)\cdots M(k+r-1) \in \mathbb{F}_p[k]^{3\times 3}$$

with $r \approx \sqrt{p}$ and then instantiate A(k) at roughly r points to get

$$M_1M_2\cdots M_{p-1} \equiv_p A(1)A(r+1)A(2r+1)\cdots A(p-r).$$

Using standard product tree and multipoint evaluation techniques this takes $O(\mathsf{M}(p^{1/2})\log p) = p^{1/2}(\log p)^{2+o(1)}$ time.

Bostan-Gaudry-Schost: $p^{1/2}(\log p)^{1+o(1)}$ time.

Genus 3 curves

The canonical embedding of a genus 3 curve into \mathbb{P}^2 is either

- a degree-2 cover of a smooth conic (hyperelliptic case);
- a smooth plane quartic (generic case).

Average polynomial-time implementations available for the first case:

- rational hyperelliptic model [Harvey-S 2014]
- no rational hyperelliptic model [Harvey-Massierer-S 2016].

New result (joint with Harvey): smooth plane quartics.

Prior work has all been based on *p*-adic cohomology:

[Lauder 2004], [Castryck-Denef-Vercauteren 2006], [Abott-Kedlaya-Roe 2006], [Harvey 2010], [Tuitman-Pancrantz 2013], [Tuitman 2015], [Costa 2015], [Tuitman-Castryck 2016], [Shieh 2016]

Current implementations of these algorithms are all $O(p^{1+o(1)})$.

The Hasse-Witt matrix of a hyperelliptic curve

Let X_p/\mathbb{F}_p be a hyperelliptic curve $y^2 = f(x)$ of genus g (assume p odd). As in the warmup, let f_k^n denote the coefficient of x^k in f^n .

The Hasse–Witt matrix of X_p is $W_p := [f_{pi-j}^n]_{ij} \in \mathbb{F}_p^{g \times g}$ with n = (p-1)/2. In genus g = 3 we have

$$W_p := \begin{bmatrix} f_{p-1}^n & f_{p-2}^n & f_{p-3}^n \\ f_{2p-1}^n & f_{2p-2}^n & f_{2p-3}^n \\ f_{3p-1}^n & f_{3p-2}^n & f_{3p-3}^n \end{bmatrix}.$$

This is the matrix of the p-power Frobenius acting on $H^1(C_p, \mathcal{O}_{C_p})$ (and the Cartier-Manin operator acting on regular differentials). As proved by Manin, we have

$$L_p(T) \equiv \det(I - TW_p) \bmod p;$$

in particular, $a_p \equiv \operatorname{tr} W_p \mod p$. For p > 144 this yields $a_p \in [-6\sqrt{p}, 6\sqrt{p}]$.

Hyperelliptic average polynomial-time

As in our warmup, assume $f(0) \neq 0$ and define $v_k^n := [f_{k-d+1}^n, \dots, f_k^n]$. The last g entries of v_{2n}^n form the first row of W_p , and we have

$$v_{2n}^n = -\left(\frac{f_0}{p}\right)V_0M_1\cdots M_{p-1} \ \mathrm{mod}\ p \qquad (\mathsf{where}\ V_0 = [0,\dots,0,1]).$$

Compute the first row of W_p for good $p \leq B$ in $O(g^2B(\log B)^{3+o(1)})$ time.

To get the remaining rows, consider the isomorphic curve $y^2 = f(x+a)$ whose Hasse-Witt matrix $W_p(a) = T(a)W_pT(-a)$ is conjugate to W_p via

$$T(a) := \left[\binom{j-1}{i-1} a^{j-1} \right]_{ii} \in \mathbb{F}_p^{g \times g}.$$

Given the first row of $W_p(a)$ for g distinct values of a we can compute all the rows of W_p . Total complexity is $O(g^3B(\log B)^{3+o(1)})$.

The Hasse-Witt matrix of a smooth plane quartic

Let X_p/\mathbb{F}_p be a smooth plane quartic defined by f(x,y,z)=0. For $n\geq 0$ let $f_{i,j,k}^n$ denote the coefficient of $x^iy^jz^k$ in f^n .

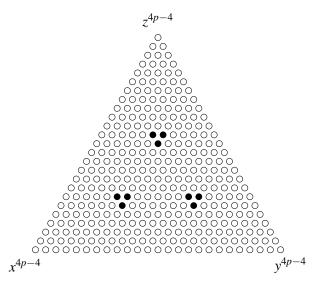
The Hasse–Witt matrix of X_p is the 3×3 matrix

$$W_p := \begin{bmatrix} f_{p-1,p-1,2p-2}^{p-1} & f_{2p-1,p-1,p-2}^{p-1} & f_{p-1,2p-1,p-2}^{p-1} \\ f_{p-2,p-1,2p-1}^{p-1} & f_{2p-2,p-1,p-1}^{p-1} & f_{p-2,2p-1,p-1}^{p-1} \\ f_{p-1,p-2,2p-1}^{p-1} & f_{2p-1,p-2,p-1}^{p-1} & f_{p-1,2p-2,p-1}^{p-1} \end{bmatrix}.$$

This case of smooth plane curves of degree d > 4 is similar.

More generally, given a singular plane model for any nice curve (equivalently, a defining polynomial for its function field) one can use the methods of Stohr-Voloch to explicitly determine W_p .

Target coefficients of f^{p-1} for p=7:



Coefficient relations

Let $\partial_x = x \frac{\partial}{\partial x}$ (degree-preserving). The relations

$$f^{p-1} = f \cdot f^{p-2}$$
 and $\partial_x f^{p-1} = -(\partial_x f) f^{p-2}$

yield the relation

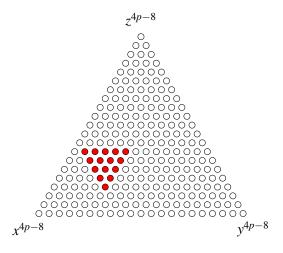
$$\sum_{i'+j'+k'=4} (i+i')f_{i',j',k'}f_{i-i',j-j',k-k'}^{p-2} = 0.$$

among nearby coefficients of f^{p-2} (a triangle of side length 5).

Replacing ∂_x by ∂_y yields a similar relation (replace i + i' with j + j').

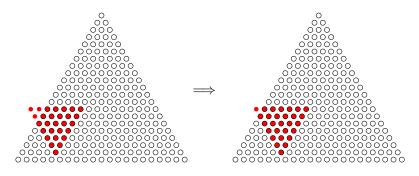
Coefficient triangle

For p = 7 with i = 12, j = 5, k = 7 the related coefficients of f^{p-2} are:



Moving the triangle

Now consider a bigger triangle with side length 7. Our relations allow us to move the triangle around:



An initial "triangle" at the edge can be efficiently computed using coefficients of $f(x, 0, z)^{p-2}$.

Computing one Hasse-Witt matrix

Nondegeneracy: we need f(1,0,0), f(0,1,0), f(0,0,1) nonzero and f(0,y,z), f(x,0,z), f(x,y,0) squarefree (easily achieved for large p).

The basic strategy to compute W_p is as follows:

- There is a 28×28 matrix M_j that shifts our 7-triangle from y-coordinate j to j+1; its coefficients depend on j and f. In fact a 16×16 matrix M_i suffices (use smoothness of C).
- Applying the product $M_0 \cdots M_{p-2}$ to an initial triangle on the edge and applying a final adjustment to shift from f^{p-2} to f^{p-1} gets us one column of the Hasse-Witt matrix W_p .
- By applying the same product (or its inverse) to different initial triangles we can compute all three columns of W_p .

We have thus reduced the problem to computing $M_1\cdots M_{p-2} \bmod p$, which we already know how to do, either in $p^{1/2}(\log p)^{1+o(1)}$ time, or in average polynomial time $(\log p)^{4+o(1)}$.

Cumulative timings for genus 3 curves

Time to compute $L_p(T) \mod p$ for all good $p \leq B$.

\boldsymbol{B}	spq-Costa-AKR	spq-HS	ghyp-MHS	hyp-HS	hyp-Harvey
2^{12}	18	1.4	0.3	0.1	1.3
2^{13}	49	2.4	0.7	0.2	2.6
2^{14}	142	4.6	1.7	0.5	5.4
2^{15}	475	9.4	4.6	1.0	12
2^{16}	1,670	21	11	2.1	29
2^{17}	5,880	47	27	5.3	74
2^{18}	22,300	112	62	14	192
2^{19}	78,100	241	153	37	532
2^{20}	297,000	551	370	97	1,480
2^{21}	1,130,000	1,240	891	244	4,170
2^{22}	4,280,000	2,980	2,190	617	12,200
2^{23}	16,800,000	6,330	5,110	1,500	36,800
2^{24}	66,800,000	14,200	11,750	3,520	113,000
2^{25}	244,000,000	31,900	28,200	8,220	395,000
2^{26}	972,000,000	83,300	62,700	19,700	1,060,000

(Intel Xeon E7-8867v3 3.3 GHz CPU seconds).