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A Diophantine problem
Many of the oldest problems in number theory involve equations of the form

P(x1, . . . , xn) = k

where P is a polynomial with integer coefficients and k is a fixed integer.
We seek integer solutions in x1, . . . , xn. Some notable examples:

x2 + y2 = z2 [Babylonians?]
(119, 120, 169), (4601, 4800, 6649), . . . [Babylonians ∼1800 BCE]

x2 − 4729494y2 = 1 [Archimedes 251 BCE]
776 . . . 800 cattle [Amthor 1880, German-Williams-Zarnke, 1965]

x3 + y3 = z3 [Fermat 1637]
No solutions with xyz 6= 0. [Euler 1753]

v5 + w5 + x5 + y5 = z5 [Euler 1769]
(27, 84, 110, 133, 144) [Lander-Parkin 1966]

w4 + x4 + y4 = z4 [Euler 1769]
(2682440, 15365639, 18796760, 20615673) [Elkies 1986]



Algorithm to find (or determine existence of) solutions?

Q: Is there an algorithm that can answer all such questions? [Hilbert 1900]
A: No! [Davis, Robinson, Davis-Putnam, Robinson, Matiyasevich 1970]

What if we restrict the degree of the polynomial P? Maybe that will help!

Q: How about degree one? [Euclid ∼250 BCE, Diophantus ∼250]
A: Yes! [Euclid ∼250 BCE, Brahmagupta 628]

Q: How about degree two? [Babylonians, Diophantus, Hilbert 1900]
A: Yes! [Babylonians, Diophantus, Fermat, Euler, Legendre, Lagrange]

[Siegel 1972]

Q: How about degree three? [Waring 1770]
A: We have no idea.



Sums of two cubes

Q: Which primes are sums of two cubes?
A: The prime 2 and primes of the form 3x2 − 3x + 1 for some integer x.

This list of primes begins 2, 7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, . . .
We believe this list to be infinite, but this is not known.

Proof:
x3 + y3 = (x + y)(x2 − xy + y2), so either x + y = 1 or x2 − xy + y2 = 1.
If x2 − xy + y2 = 1 then x = y = 1, in which case x3 + y3 = 2.
If x + y = 1 then x2 − x(1− x) + (1− x)2 = 3x2 − 3x + 1 must be prime.

There are infinitely many primes of the form x3 + 2y3 [Heath-Brown 2001].
This implies that infinitely many primes are the sum of three cubes.



Digression
What happens if we allow rational cubes? For example

13 =

(
2
3

)3

+

(
7
3

)3

is a sum of rational cubes, but 13 is not a sum of integer cubes.

This amounts to finding rational points on the elliptic curve x3 + y3 = n,
which can also be written as En : Y2 = X3 − 432n2.

We know that E(Q) ' T ⊕ Zr, where #T ≤ 16 and r := r(E) is the rank of E.
Under the Birch and Swinnerton-Dyer conjecture, r(E) > 0 if and only if

LE(s) :=
∏

p

(1− app−s + χ(p)p1−2s)−1

has a zero at s = 1 (here ap := p + 1−#E(Fp) and χ(p) = 1 for p - ∆(E)).
If p ≡ 4, 7, 8 mod 9 then r(Ep) > 0 and if p ≡ 2, 5 mod 9 then r(Ep) = 0.1

The case p ≡ 1 mod 9 is more complicated, but fairly well understood.

1Here we assume BSD, but see [Kriz20] for recent progress on removing this assumption.

https://arxiv.org/abs/2002.04767


Sums of two cubes
Let us now consider an arbitrary integer k. If we have

k = x3 + y3 = (x + y)(x2 − xy + y2),

then we can write k = rs with r = x + y and s = x2 − xy + y2.
If we now put y = r − x, we obtain the quadratic equation

s = 3x2 − 3rx + r2,

whose integer solutions we can find using the quadratic formula.

This yields an algorithm to determine all integer solutions to x3 + y3 = k:
Factor the integer k.
Use this factorization to enumerate all r, s ∈ Z for which k = rs.
If t :=

√
12s− 3r2 ∈ Z then output x = (3r + t)/6 and y = (3r − t)/6.

Example:
For k = 1729 = 19 · 91 we find t = 3, yielding x = 10 and y = 9.
For k = 1729 = 13 · 133 we find t = 33, yielding x = 12 and y = 1.



Sums of four or more cubes

Every integer has infinitely many representations as the sum of five cubes.
This follows from the identity

6m = (m + 1)3 + (m− 1)3 − m3 − m3.

If we write k = 6a + r, then r3 ≡ r mod 6 and, we can apply this identity to
m = f (n) := (k − (6n + r)3)/6 for any integer n, yielding the parameterization

k = (6n + r)3 + (f (n) + 1)3 + (f (n)− 1)3 − f (n)3 − f (n)3.

A more complicated collection of similar identities (and extra work in one
particularly annoying case) shows that all k 6≡ ±4 mod 9 can be represented
as a sum of four cubes in infinitely many ways [Demjanenko 1966].

It is conjectured that in fact every integer k has infinitely many representations
as a sum of four cubes [Sierpinski], but the case k ≡ ±4 mod 9 remains open.



Sums of three cubes
Not every integer is the sum of three cubes. Indeed, if x3 + y3 + z3 = k then

x3 + y3 + z3 ≡ k mod 9

The cubes modulo 9 are 0,±1; there is no way to write ±4 as a sum of three.
This rules out all k ≡ ±4 mod 9, including 4, 5, 13, 14, 22, 23, 31, 32, . . .

There are infinitely many ways to write k = 0, 1, 2 as sums of three cubes.
For all n ∈ Z we have

n3 + (−n)3 + 03 = 0,

(9n4)3 + (3n− 9n4)3 + (1− 9n3)3 = 1,

(1 + 6n3)3 + (1− 6n3)3 + (−6n2)3 = 2.

Multiplying by m3 yields similar parameterizations for k of the form m3 or 2m3.
For k 6≡ ±4 mod 9 not of the form m3 or 2m3 the question is completely open.

Remark 1: The parameterizations above are not exhaustive [Payne,Vaserstein 1992].
Remark 2: Every k ∈ Z is the sum of three rational cubes [Ryley 1825].



Mordell’s challenge

There are two easy ways to write 3 as a sum of three cubes:

13 + 13 + 13 = 3,

(−5)3 + 43 + 43 = 3.

In a 1953 paper Mordell famously wrote:

I do not know anything about the integer solutions of x3 + y3 + z3 = 3
beyond the existence of. . . it must be very difficult indeed to find out
anything about any other solutions.

This remark sparked a 65 year search for additional solutions.

None were found, but researchers did find solutions for many other
values of k in the process of trying to answer Mordell’s challenge.



20th century timeline for sums of three cubes
Progress on x3 + y3 + z3 = k with k > 0 and |x|, |y|, |z| ≤ N:

1908 Werebrusov finds a parametric solution for k = 2.
1936 Mahler finds a parametric solution for k = 1.
1942 Mordell proves any other parameterization has degree at least five (likely none exist).
1953 Mordell asks about k = 3.
1955 Miller, Woollett check k ≤ 100, N = 3200, solve all but nine k ≤ 100.
1963 Gardiner, Lazarus, Stein: k ≤ 1000, N = 216, crack k = 87, all but seventy k ≤ 1000.
1992 Heath-Brown, Lioen, te Riele crack k = 39.
1992 Heath-Brown conjectures infinity of solutions for all k 6≡ ±4 mod 9.
1994 Koyama checks k ≤ 1000, N = 221 − 1, finds 16 new solutions.
1994 Koyama checks k ≤ 1000, N = 3414387, finds 2 new solutions.
1994 Conn, Vaserstein crack k = 84.
1995 Jagy cracks k = 478.
1995 Bremner cracks k = 75 and k = 768.
1995 Lukes cracks k = 110, k = 435, and k = 478.
1996 Elkies checks k ≤ 1000, N = 107 finding several new solutions (follow up by Bernstein).
1997 Koyama, Tsuruoka, Sekigawa check k ≤ 1000, N = 2 · 107 finding five new solutions.
1999-2000 Bernstein checks k ≤ 1000, N ≥ 2 · 109, cracks k = 30 and ten other k ≤ 1000.
1999-2000 Beck, Pine, Tarrant, Yarbrough Jensen also crack k = 30, and k = 52.

At the end of the millennium, only 33, 42, 74 and twenty-four other k ≤ 1000 were open.



Poonen’s challenge
To add further fuel to the fire, Bjorn Poonen opened his AMS Notices article
“Undecidability in number theory” with the following paragraph:

Does the equation x3 + y3 + z3 = 29 have a solution in integers?
Yes: (3, 1, 1), for instance. How about x3 + y3 + z3 = 30?
Again yes, although this was not known until 1999: the smallest
solution is (283059965,−2218888517, 2220422932).
And how about 33? This is an unsolved problem.

This spurred another 10 years of searches, with 33 nearly as desirable as 3.

Elsenhans and Jahnel searched to N = 1014 cracking nine more k ≤ 1000.
Huisman pushed on to N = 1015 and cracked k = 74 in 2016.

In spring 2019 Andrew Booker finally answered Poonen’s challenge with

88661289752875283 − 87784054428622393 − 27361114688070403 = 33,

leaving 42 as the only unresolved case below 100 (and ten other k ≤ 1000).
But still no progress on Mordell’s challenge, even with N = 1016 [Booker].



Popularization

Brady Haran 74 is Cracked!
(Sander Huisman)

The uncracked problem with 33 42 is the new 33
(Tim Browning) (Andrew Booker)

Mathematician solves 64-year-old ‘Diophantine puzzle’ (Newsweek)

“. . . the mathematician [Andrew Booker] is now working with [S] of MIT in an attempt to find the solution for
the final unsolved number below a hundred: 42.”



The significance of 42 [Douglas Adams]

“O Deep Thought computer. . . We want you to tell us....The Answer.”
“The Answer to what?” asked Deep Thought.
“Life!” urged Fook. “The Universe!” said Lunkwill.
“Everything!” they said in chorus.

Deep Thought paused for a moment’s reflection. . .
“There is an answer. But, I’ll have to think about it.”

seven and a half million years pass

“Good Morning,” said Deep Thought at last. “Er...good morning, O Deep
Thought” said Loonquawl nervously, “do you have...”
“An Answer for you?” interrupted Deep Thought. “Yes, I have.”

“Forty-two,” said Deep Thought, with infinite majesty and calm.

Deep Thought designs Earth to compute the Ultimate Question whose answer is 42.
Mice (the most intelligent beings on earth) take charge of this ten million year project.
Unfortunately, Earth is destroyed by the Vogons before the project is completed.



Search algorithms

We seek solutions to x3 + y3 + z3 = k for some fixed k (such as k = 3 or k = 42).
How long does it take to check all x, y, z ∈ Z with max(|x|, |y|, |z|) ≤ N?

1 Naive brute force: O(N3) arithmetic operations.
2 Less naive brute force (is x3 + y3 − k a cube?): O(N2+o(1)).
3 Apply sum of two cubes algorithm to k − z3: O(N1+o(1)) (expected).

None of these is fast enough to go past N = 1016 in a reasonable time frame.

We instead follow an approach suggested by Heath-Brown, Lioen, and
te Riele, that seeks solutions for a fixed value of k (in contrast to Elkies’
approach, which seeks solutions to x3 + y3 + z3 ≤ b with b small).

With suitable optimizations this gives a heuristic complexity of
O(N(log log N)1+o(1)) arithmetic operations (in our range of interest
these are 64-bit or 128-bit word operations using 1-3 clock cycles).



The setup and the strategy
Assume x3 + y3 + z3 = k > 0, |x| > |y| > |z| ≥

√
k, k ≡ ±3 mod 9 cube free.

k − z3 = x3 + y3 = (x + y)(x2 − xy + y2)

Define d := |x + y| so that z is a cube root of k modulo d.

{x, y} =

{
sgn(k − z3)

2

(
d ±

√
4|k − z3| − d3

3d

)}
,

Thus d, z determine x, y, and one finds that d < α|z|, where α := 3
√

2− 1 ≈ 0.26.
One also finds that 3 - d and sgn(z) is determined by d mod 3 and k mod 9.

Given N, our strategy is to enumerate all d ∈ Z ∩ (0, αN) coprime to 3, and for
each d enumerate all z ∈ Z satisfying z3 ≡ k mod d with |z| ≤ N such that

3d(4sgn(z)(z3 − k)− d3) = � (1)

is a square. Every such (d, z) yields a solution (x, y, z), and we will find all
solutions satisfying our assumptions with |z| ≤ N (even if |x|, |y| > N).



Elliptic curves again

With k fixed and d as above, if we put Bd := −2(6d)3(d3 + 4sgn(z)k), then the
solutions to (1) are precisely the affine integral points on the elliptic curve

Ed : Y2 = X3 + Bd.

For small values of d it may be feasible to determine the integral points on Ed.

Doing so addresses infinitely many possibilities for z in one fell swoop.
But this is typically feasible only when d is quite small, say d ≤ 40.
(d ≤ 100 using Bremner’s 3-isogeny trick, d ≤ 20, 000 under GRH).

The problem of finding integral representations for k as a sum of three
cubes can thus be reduced to the problem of finding integral points on a
one-parameter family of CM elliptic curves over Q.

This does not make the problem any easier, it only highlights the challenge.
Finding the integral points on even a single Ed with d ≈ 1016 is almost never
feasible, and there are 1016 such Ed to consider.



Complexity obstacles

problem: To compute cube roots of k mod d we need the factorization of d.
solution: Enumerate d combinatorially, as a product of prime powers along

with cube roots of k mod d (also lets us efficiently skip useless d).

problem: There are Ω(N log N) pairs (d, z) we potentially need to consider.
solution: For d ≤ N3/4 (say) we sieve arithmetic progressions of z mod d

using small auxiliary primes p - d. Each p reduces the number of
pairs (d, z) by a factor of about 2, and O(log log N) such p suffice.

We don’t literally sieve, we use the CRT to lift progressions modulo d to
progressions modulo pd, but only use the lifts that yield solutions modulo p
(about half, on average, and we can select p that give less than half).

With this approach the total number of pairs (d, z) with d ≤ N3/4 we need to
consider becomes o(N), and for d > N3/4 we heuristically expect O(N).



Cube roots mod primes, prime powers, composites
For p ≡ 2 mod 3 cubing is 1-to-1, since 3 is invertible modulo p− 1, and

z ≡ k(2p−1)/3 mod p ⇐⇒ z3 ≡ k2p−1 ≡ k mod p

Compute k(2p−1)/3 mod p using O(log p) multiplications (square-and-multiply).

For p ≡ 1 mod 3 cubing is 3-to-1. Let p = 3wm + 1 with 3 - m, and b ≡ km mod p.
Compute b3, b32

, . . . b3v
mod p until b3v ≡ 1 mod p. Cube roots exist iff v < w.

Pick random x until a := xm mod p has order 3w, then compute n := loga b,
so that an ≡ b mod p. Then 3|n, and an/3 is a cube root of b modulo p.

Now chose e ∈ {1, 2} so that 3|(p− em). Then a3ne ≡ be ≡ kem mod p and

z ≡ anek(p−em)/3 =⇒ z3 ≡ a3nekp−em ≡ kp ≡ k mod p.

The other two cube roots are ζ3z and ζ2
3 z, where ζ3 := a3w−1

.

Use Hensel lifting for prime powers, CRT for products of prime powers.



CRT sieving
For k = 33 and d = 5 we must have z ≡ 2 mod d and sgn(z) = +1.
But we also know z ≡ k + d ≡ 0 mod 2, and only z ≡ 0 mod 7 satisfies

3d(4sgn(z)(z3 − k)− d3) = � mod 7.

p modulus residue classes |z| ≤ 1016 to check

5 1 2.0× 1015

2 10 1 1.0× 1015

7 70 1 1.4× 1014

13 910 3 3.3× 1013

17 15470 27 1.7× 1013

23 355810 324 9.1× 1012

29 10318490 4860 4.7× 1012

43 443695070 92340 2.1× 1012

67 29727569690 2493180 8.4× 1011

103 3061939678070 107206740 3.5× 1011

Cubic reciprocity constraints allow only 14 residue classes modulo 27k = 891,
and this further reduces the number of z to check by another factor of 63.6.
This leaves only 5.5× 109 values of z to check, which takes about a minute.



Implementation
Heavily optimized C code using GCC intrinsics to access particular
features of the Intel instruction set (including 80-bit long doubles).

Batch modular inversions (a la Montgomery), Montgomery and Barrett
modular reduction (Montgomery for exponentiation, Barrett for CRT).

smalljac/ffpoly finite field implementation to compute cube roots
modulo primes and lift them modulo prime powers.

primesieve library to enumerate primes [Walisch].

gmp multiprecision library for testing solutions over Z, but only after
passing precomputed filters (bitmap checks) modulo auxiliary primes.

cygwin to create a Microsoft Windows compatible executable so we can
take full advantage of Charity Engine’s crowd-sourced compute grid.

Parallelization is achieved by partitioning d by largest prime factor.
We split the work into jobs that only take a few hours (millions of jobs).

We used two cores on each compute node and try to keep the memory
footprint under 1GB per core (share all precomputed tables).



The conjecture of Heath-Brown
Heath-Brown’s conjecture uses products of local densities to estimate

Rk(N1,N2) := #{(x, y, z) ∈ Z3 : x3 + y3 + z3 = k, N1 ≤ max(|x|, |y|, |z|) ≤ N2}

as N →∞. Assume k is cube free, and p prime and n ≥ 1 define

N(pn) := #{(x, y, z) mod pn : x3 + y3 + z3 ≡ k mod pn},

σp :=
N(p)

p2 (p 6= 3), σ3 =
N(9)

81
, σ∞ := 6

∫ N2

N1

∫ z

0

dy
3(z3 − y3)2/3 dz = c log

N2

N1
,

where c = 2Γ(1/3)2

3Γ(2/3) ≈ 3.5332. For N2 � N1 � 0 we should then expect

Rk(N1,N2) ∼
∏

p≤∞

σp = δk log
N2

N1
,

where δk is an explicit constant that depends only on k.

For k = 3 we should expect one solution |x| > |y| > |z| in [N, αN] for α ≈ 107



Heath-Brown vs Huisman for 3 ≤ k < 100
N = 105 N = 1010 N = 1015

k δk/6 N0 expect actual expect actual expect actual

3 0.061 12969857 0.7 2 1.4 2 2.1 2
93 0.072 1185438 0.8 2 1.6 3 2.5 3
74 0.086 106692 1.0 0 2.0 0 3.0 1
33 0.089 77368 1.0 0 2.0 0 3.1 0
30 0.090 68020 1.0 0 2.1 1 3.1 3
39 0.090 68358 1.0 0 2.1 1 3.1 1
12 0.100 22518 1.1 1 2.3 2 3.4 2
87 0.104 14593 1.2 1 2.4 2 3.6 3
75 0.112 7287 1.3 0 2.6 1 3.9 4
42 0.113 6728 1.3 0 2.6 0 3.9 0
60 0.119 4531 1.4 3 2.7 5 4.1 8
· · ·
37 0.335 20 3.9 3 7.7 6 11.6 8
82 0.406 12 4.7 3 9.3 8 14.0 13
9 0.427 11 4.9 3 9.8 8 14.8 15

44 0.434 11 5.0 1 10.0 7 15.0 16
7 0.437 10 5.0 3 10.1 11 15.1 18

57 0.458 9 5.3 10 10.6 17 15.8 23
· · ·
62 1.000 3 11.5 10 23.0 21 34.6 33
97 1.074 3 12.4 10 24.7 24 37.1 37
63 1.200 3 13.8 8 27.6 18 41.4 26
83 1.210 3 13.9 16 27.9 32 41.8 49
90 1.854 2 21.3 20 42.7 36 64.0 48
99 1.989 2 22.9 21 45.8 35 68.7 56



The search for 42

Each dot represents 50 cores, approximately 90 core-years.



The result for 42

−805387388120759743 + 804357581458175153 + 126021232973356313 = 42

d = |x + y| = 11 · 43 · 215921 · 1008323 = 102980666258459 ≈ 1.030× 1014

x ≈ −8.053873× 1016, y ≈ 8.043575× 1016, z ≈ 1.260212× 1016

−522413599036979150280966144853653247149764362110424
+520412211582497361738652718463552780369306583065875
+ 2001387454481788542313426390100466780457779044591

42



The result for 3

5699368212219623807203−5699368211135634935093−4727154934533270323 = 3

d = |x + y| = 167 · 649095133 = 108398887211 ≈ 1.084× 1011

x ≈ 5.699368× 1020, y ≈ −5.699368× 1020, z ≈ −4.727155× 1017

185131426470358721030003064550489120286063150089838997749248000
−185131426364725746289073278168542399539619802127338908944671229
− 105632974740929786381946720746443347962500088804576768

3



Heath-Brown vs Huisman 100 ≤ k < 1000 (selected)
N = 105 N = 1010 N = 1015

k δk/6 N0 expect actual expect actual expect actual

858 0.029 1720798182665417 0.3 1 0.7 2 1.0 2
276 0.032 42958715811596 0.4 1 0.7 1 1.1 2
390 0.033 15332443619105 0.4 0 0.8 0 1.1 0
516 0.033 13632255817671 0.4 0 0.8 1 1.1 1
663 0.033 12076668982001 0.4 0 0.8 1 1.1 1
975 0.039 163996624946 0.5 0 0.9 0 1.3 0
165 0.040 90472906051 0.5 0 0.9 0 1.4 0
555 0.043 14746456526 0.5 1 1.0 2 1.5 2
921 0.044 6885076231 0.5 0 1.0 0 1.5 0
348 0.045 5369191063 0.5 2 1.0 2 1.5 3
906 0.050 536676769 0.6 0 1.1 0 1.7 0
366 0.051 324767552 0.6 0 1.2 0 1.8 1
579 0.051 348505529 0.6 0 1.2 0 1.8 0
654 0.057 46795226 0.7 2 1.3 2 2.0 3
114 0.058 26824751 0.7 0 1.3 0 2.0 0
705 0.062 8959243 0.7 1 1.4 2 2.2 2
732 0.063 7553865 0.7 0 1.5 0 2.2 0
402 0.079 321328 0.9 1 1.8 2 2.7 3
633 0.080 282820 0.9 0 1.8 0 2.8 0
537 0.089 80345 1.0 2 2.0 3 3.1 3
795 0.089 71223 1.0 0 2.1 0 3.1 0
641 0.128 2519 1.5 1 2.9 1 4.4 2
627 0.130 2248 1.5 0 3.0 0 4.5 0
956 0.217 102 2.5 3 5.0 6 7.5 8
782 0.453 10 5.2 3 10.4 5 15.7 11
855 2.641 2 30.4 27 60.8 51 91.2 77



A better search strategy
To check |z| ≤ N we need to check d ≤ B := ( 3

√
2− 1)N ≈ N/4.

The value of B determines the number of arithmetic progressions (about B/2).
The value of N/B determines the length of these arithmetic progressions.

It is much cheaper to increase N than it is to increase B. Indeed, for N � B
the cost is O(Nε) (due to sieving) versus O(B).

On the other hand, one heuristically expects the density of solutions to decay
exponentially with N/B. This leads to an optimization problem. We want to
choose R := N/B to minimize T(B,N) = T(B,RB). The optimal R should satisfy

TB(B,RB)
∂B
∂R

+ TN(B,RB)(B + R
∂B
∂R

) = 0,

where TB and TN denote partial derivatives of T(B,N). We typically want
R ∈ [50, 250] (this depends heavily on the implementation, and also on k).

We should also skip prime values of d close to B, which produce few
progressions (an average of one for p > B/2). Better to wait for larger B.



The search for 42 redux

Each dot represents 2 cores, approximately 0.7 core years.



The search for 42 redux


