Computing the image of Galois representations attached to elliptic curves

Andrew V. Sutherland

Massachusetts Institute of Technology

January 11, 2013

Definitions

Let E be an elliptic curve over a number field K.

Let $L = K(E[\ell])$ be the Galois extension of K obtained by adjoining the coordinates of the ℓ -torsion points of $E(\bar{K})$ to K.

The Galois group Gal(L/K) acts linearly on the ℓ -torsion points

 $\boldsymbol{E}[\ell] \simeq \mathbb{Z}/\ell\mathbb{Z} \oplus \mathbb{Z}/\ell\mathbb{Z},$

yielding a group representation

 $\rho_{E,\ell}$: $\operatorname{Gal}(L/K) \longrightarrow \operatorname{Aut}(E[\ell]) \simeq \operatorname{GL}_2(\mathbb{Z}/\ell\mathbb{Z}).$

This is the *mod*- ℓ *Galois representation* attached to *E*. This works for any integer $\ell > 1$, but we shall assume ℓ is prime.

Surjectivity

For *E* without complex multiplication, $\rho_{E,\ell}$ is usually surjective. Conversely, if *E* has CM then $\rho_{E,\ell}$ is never surjective for $\ell > 2$.

Theorem (Serre)

Let *K* be a number field and assume E/K does not have *CM*. Then im $\rho_{E,\ell} = \operatorname{GL}_2(\mathbb{Z}/\ell\mathbb{Z})$ for all sufficiently large primes ℓ .

Conjecture

For each number field K there is a uniform bound ℓ_{max} such that im $\rho_{E,\ell} = GL_2(\mathbb{Z}/\ell\mathbb{Z})$ for all E/K and all primes $\ell > \ell_{max}$.

For $K = \mathbb{Q}$, it is believed that $\ell_{max} = 37$.

Non-surjectivity

If *E* has a rational point of order ℓ , then $\rho_{E,\ell}$ is not surjective. For E/\mathbb{Q} this occurs for $\ell \leq 7$ (Mazur).

If *E* admits a rational ℓ -isogeny, then $\rho_{E,\ell}$ is not surjective. For E/\mathbb{Q} without CM, this occurs for $\ell \leq 17$ and $\ell = 37$ (Mazur).

Non-surjectivity

If *E* has a rational point of order ℓ , then $\rho_{E,\ell}$ is not surjective. For E/\mathbb{Q} this occurs for $\ell \leq 7$ (Mazur).

If *E* admits a rational ℓ -isogeny, then $\rho_{E,\ell}$ is not surjective. For E/\mathbb{Q} without CM, this occurs for $\ell \leq 17$ and $\ell = 37$ (Mazur).

But $\rho_{E,\ell}$ may be non-surjective even when *E* does not admit a rational ℓ -isogeny. Even when *E* has a rational ℓ -torsion point, this does not determine the image of $\rho_{E,\ell}$.

Classifying the possible images of $\rho_{E,\ell}$ that arise over \mathbb{Q} may be viewed as a refinement of Mazur's theorems.

One can consider the same question for any number field K, but we will focus on $K = \mathbb{Q}$.

Computing the image of Galois the hard way

In principle, there is a very simple algorithm to compute the image of $\rho_{E,\ell}$ in $\text{GL}_2(\mathbb{Z}/\ell\mathbb{Z})$ (up to conjugacy):

- 1. Construct the field $L = K(E[\ell])$ as an (at most quadratic) extension of the splitting field of *E*'s ℓ th division polynomial.
- 2. Pick a basis (P, Q) for $E[\ell]$ and determine the action of each element of Gal(L/K) on P and Q.

Computing the image of Galois the hard way

In principle, there is a very simple algorithm to compute the image of $\rho_{E,\ell}$ in $GL_2(\mathbb{Z}/\ell\mathbb{Z})$ (up to conjugacy):

- 1. Construct the field $L = K(E[\ell])$ as an (at most quadratic) extension of the splitting field of *E*'s ℓ th division polynomial.
- 2. Pick a basis (P, Q) for $E[\ell]$ and determine the action of each element of Gal(L/K) on P and Q.

In practice this is computationally feasible only for very small ℓ (say $\ell \leq 7$); the degree of *L* is typically on the order of ℓ^4 .

Indeed, this is substantially more difficult than "just" computing the Galois group, which is already a hard problem.

We need something faster, especially if we want to compute *lots* of Galois images (which we do!).

Main results

A very fast algorithm to compute im $\rho_{E,\ell}$ up to isomorphism, (and usually up to conjugacy), for elliptic curves over number fields of low degree and moderate values of ℓ (say $\ell < 200$).

If $\rho_{E,\ell}$ is surjective, the algorithm proves this unconditionally. If not, its output is heuristically correct with very high probability (in principle, this can also be made unconditional).

The current implementation handles elliptic curves over \mathbb{Q} and quadratic number fields, and all primes $\ell < 80$.

The algorithm can be extended to handle composite values of ℓ (this is work in progress).

Main results

We have used the algorithm to compute the mod- ℓ Galois image of every elliptic curve in the Cremona and Stein-Watkins databases for all primes $\ell < 80$.

This includes some 139 million curves, including all curves of conductor \leq 300,000.

We also analyzed more than 10¹⁰ curves in various families.

The result is a conjecturally complete classification of 63 non-surjective mod- ℓ Galois images that can arise for an elliptic curve E/\mathbb{Q} without CM.

A probabilistic approach

Let E_p denote the reduction of E modulo a good prime $p \neq \ell$.

The action of the Frobenius endomorphism on $E_p[\ell]$ is given by (the conjugacy class of) an element $A_{p,\ell} \in \text{im } \rho_{E,\ell}$ with

tr $A_{p,\ell} \equiv a_p \mod \ell$ and $\det A_{p,\ell} \equiv p \mod \ell$,

where $a_{\rho} = \rho + 1 - \# E_{\rho}(\mathbb{F}_{\rho})$ is the trace of Frobenius.

By varying p, we can "randomly" sample im $\rho_{E,\ell}$. The Čebotarev density theorem implies equidistribution.

Example: $\ell = 2$

 $GL_2(\mathbb{Z}/2\mathbb{Z}) \simeq S_3$ has 6 subgroups in 4 conjugacy classes. For $H \subseteq GL_2(\mathbb{Z}/2\mathbb{Z})$, let $t_a(H) = \#\{A \in H : \text{tr } A = a\}$. Consider the trace frequencies $t(H) = (t_0(H), t_1(H))$:

- 1. For $GL_2(\mathbb{Z}/2\mathbb{Z})$ we have t(H) = (4, 2).
- 2. The subgroup of order 3 has t(H) = (1, 2).
- 3. The 3 conjugate subgroups of order 2 have t(H) = (2, 0)
- 4. The trivial subgroup has t(H) = (1, 0).

Example: $\ell = 2$

 $\operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z}) \simeq S_3$ has 6 subgroups in 4 conjugacy classes. For $H \subseteq \operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z})$, let $t_a(H) = \#\{A \in H : \operatorname{tr} A = a\}$. Consider the trace frequencies $t(H) = (t_0(H), t_1(H))$:

- 1. For $GL_2(\mathbb{Z}/2\mathbb{Z})$ we have t(H) = (4, 2).
- 2. The subgroup of order 3 has t(H) = (1, 2).
- 3. The 3 conjugate subgroups of order 2 have t(H) = (2, 0)
- 4. The trivial subgroup has t(H) = (1, 0).

1,2 are distinguished from 3,4 by a trace 1 element (easy). We can distinguish 1 from 2 by comparing frequencies (harder). We cannot distinguish 3 from 4 at all (impossible).

Sampling traces does not give enough information!

Using the fixed space of A_{ρ}

The ℓ -torsion points fixed by the Frobenius endomorphism form the \mathbb{F}_p -rational subgroup $E_p[\ell](\mathbb{F}_p)$ of $E_p[\ell]$. Thus

$$\operatorname{fix} A_{\rho} = \operatorname{ker}(A_{\rho} - I) = E_{\rho}[\ell](\mathbb{F}_{\rho}) = E_{\rho}(\mathbb{F}_{\rho})[\ell]$$

It is easy to compute $E_{\rho}(\mathbb{F}_{\rho})[\ell]$, and this gives us information that cannot be derived from a_{ρ} alone.

Using the fixed space of A_{ρ}

The ℓ -torsion points fixed by the Frobenius endomorphism form the \mathbb{F}_p -rational subgroup $E_p[\ell](\mathbb{F}_p)$ of $E_p[\ell]$. Thus

$$\mathsf{fix}\, \textit{A}_{\rho} = \mathsf{ker}(\textit{A}_{\rho} - \textit{I}) = \textit{E}_{\rho}[\ell](\mathbb{F}_{\rho}) = \textit{E}_{\rho}(\mathbb{F}_{\rho})[\ell]$$

It is easy to compute $E_{\rho}(\mathbb{F}_{\rho})[\ell]$, and this gives us information that cannot be derived from a_{ρ} alone.

We can now easily distinguish the subgroups of $GL_2(\mathbb{Z}/2\mathbb{Z})$ by looking at pairs (a_p, r_p) , where r_p is the ℓ -rank of fix A_p .

There are three possible pairs, (0, 2), (0, 1), and (1, 0). The subgroups of order 2 contain (0, 2) and (0, 1). The subgroup of order 3 contains (0, 2) and (1, 0). The trivial subgroup contains (0, 2).

Subgroup signatures

The *signature* of a subgroup *H* of $GL_2(\mathbb{Z}/\ell\mathbb{Z})$ is defined by

$$s_H = \{ (\det A, \operatorname{tr} A, \operatorname{rk} \operatorname{fix} A) : A \in H \}.$$

Note that s_H is invariant under conjugation. Remarkably, s_H determines the isomorphism class of H.

Theorem

Let ℓ be a prime and let G and H be subgroups of $GL_2(\mathbb{Z}/\ell\mathbb{Z})$ with surjective determinant maps. If $s_G = s_H$ then $G \simeq H$.

The subgroup lattice of $GL_2(\mathbb{Z}/\ell\mathbb{Z})$

Our strategy is to determine im $\rho_{E,\ell}$ by identifying its location in the lattice of (conjugacy classes of) subgroups of $GL_2(\mathbb{Z}/\ell\mathbb{Z})$.

For any subgroup $H \subseteq GL_2(\mathbb{Z}/\ell\mathbb{Z})$, we say that a set of triples s is *minimally covered* by s_H if we have $s \subset s_H$, and also $s \subset s_G \implies s_H \subset s_G$ for all subgroups $G \subseteq GL_2(\mathbb{Z}/\ell\mathbb{Z})$.

If *s* is minimally covered by both s_G and s_H , then $G \simeq H$.

The algorithm

Given an elliptic curve E/\mathbb{Q} , a prime ℓ , and $\epsilon > 0$, set $s \leftarrow \emptyset$, $k \leftarrow 0$, and for each good prime $p \neq \ell$:

- 1. Compute $a_{\rho} = \rho + 1 \#E(\mathbb{F}_{\rho})$ and $r_{\rho} = \operatorname{rk}(E(\mathbb{F}_{\rho})[\ell])$.
- 2. Set $s \leftarrow s \cup (p \mod \ell, a_p \mod \ell, r_p)$ and increment *k*.
- 3. If *s* is minimally covered by s_H , for some $H \subseteq GL_2(\mathbb{Z}/\ell\mathbb{Z})$, and if $\delta_H^k < \epsilon$, then output *H* and terminate.

Here δ_H is the maximum over $G \supseteq H$ of the probability that the triple of a random $A \in G$ lies in s_H (zero if $H = \text{GL}_2(\mathbb{Z}/\ell\mathbb{Z})$).

The values of s_H and δ_H are precomputed all H.

Efficient implementation

If $\rho_{E,\ell}$ is surjective, we expect the algorithm to terminate in $O(\log \ell)$ iterations, typically less than 10 for $\ell < 80$.

Otherwise, if $\epsilon = 2^{-n}$ we expect to need $O(\log \ell + n)$ iterations, typically less than 2n (we use n = 256).

By precomputing the values a_p and r_p for every elliptic curve E/\mathbb{F}_p for all primes p up to, say, 2^{16} , the algorithm is essentially just a sequence of table-lookups, which makes it *very fast*.

It takes just *two minutes* to analyze all 1,887,909 curves in Cremona's tables for all $\ell < 80$ (on a single core).

Precomputing the s_H and δ_H is non-trivial, but this only ever needs to be done once for each prime ℓ .

Among the non-surjective Galois images that arise with $\ell < 80$ for elliptic curves over \mathbb{Q} without CM and conductor \leq 300000, there are 45 distinct signatures.

These correspond to 63 possible conjugacy classes.

How can we determine which of these actually occur?

Example: $\ell = 3$

In $GL_2(\mathbb{Z}/3\mathbb{Z})$ both of the subgroups

 $H_1 = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \rangle$ and $H_2 = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \rangle$

have signature $\{(1,2,1), (2,0,1), (1,2,2)\}$, isomorphic to S_3 .

Every element of H_1 and H_2 has 1 as an eigenvalue. In H_1 the 1-eigenspaces all coincide, but in H_2 they do not.

Example: $\ell = 3$

In $GL_2(\mathbb{Z}/3\mathbb{Z})$ both of the subgroups

 $H_{1} = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \rangle \quad \text{and} \quad H_{2} = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \rangle$

have signature $\{(1, 2, 1), (2, 0, 1), (1, 2, 2)\}$, isomorphic to S_3 .

Every element of H_1 and H_2 has 1 as an eigenvalue. In H_1 the 1-eigenspaces all coincide, but in H_2 they do not.

 H_1 corresponds to an elliptic curve with a rational point of order 3, whereas H_2 corresponds to an elliptic curve that has a rational point of order 3 locally everywhere, but not globally.

Distinguishing conjugacy classes

Let d_H denote the least index of a subgroup of H that fixes a nonzero vector in $(\mathbb{Z}/\ell\mathbb{Z})^2$. Then $d_{H_1} = 1$, but $d_{H_2} = 2$.

For $H = \operatorname{im} \rho_{E,\ell}$, the quantity d_H is the degree of the minimal extension L/K over which *E* has an *L*-rational point of order ℓ . This can be determined using the ℓ -division polynomial.

Using d_H and s_H we can determine the conjugacy class of $H = \text{im } \rho_{E,\ell}$ in all but one case that arises among the 45 signatures we have found. In this one case, we compute im $\rho_{E,\ell}$ the hard way (for just a few curves).

It turns out that all 63 of the identified conjugacy classes do arise as the Galois image of an elliptic curve over \mathbb{Q} .

ℓ	gap id	index	d _H	δ_H	<i>- » a</i> _p	→ N _p	type	-1	count
2	1.1	6	1	.50	no	no	C_s	yes	67231
	2.1	3	1	.50	no	no	В	yes	772463
	3.1	2	3	.33	yes	yes	Cns	yes	3652
3	2.1	24	1	.25	no	no	$\subset C_{s}$	no	1772
	4.2	12	2	.17	yes	no	C_s	yes	3468
	6.1	8	1	.25	no	no	$\subset B$	no	38202
	6.1	8	2	.25	no	no	$\subset B$	no	38202
	8.3	6	4	.25	yes	yes	$N(C_s)$	yes	1394
	12.4	4	2	.38	yes	no	В	yes	91594
	16.8	3	8	.17	yes	yes	$N(C_{ns})$	yes	3178
5	4.1	120	1	.20	no	no	$\subset C_s$	no	7
	4.1	120	2	.20	no	no	$\subset C_s$	no	4
	8.2	60	2	.10	yes	no	$\subset C_s$	yes	174
	16.2	30	4	.05	yes	yes	C_s	yes	26
	16.6	30	8	.25	yes	yes	$\subset N(C_{ns})$	yes	40
	20.3	24	4	.38	no	no	$\subset B$	no	1158
	20.3	24	4	.38	no	no	$\subset B$	no	455
	20.3	24	1	.38	no	no	$\subset B$	no	1158
	20.3	24	2	.38	no	no	$\subset B$	no	455
	32.11	15	8	.33	yes	yes	$N(C_s)$	yes	288
	40.12	12	4	.25	yes	no	$\subset B$	yes	3657
	40.12	12	2	.25	yes	no	$\subset B$	yes	3657
	48.5	10	24	.33	yes	yes	$N(C_{ns})$	yes	266

Non-surjective Galois images for E/\mathbb{Q} w/o CM and conductor \leq 300000.

Andrew V. Sutherland (MIT) Computing the image of Galois

Non-surjective Galois images for E/\mathbb{Q} w/o CM and conductor \leq 300000.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ount
7 18.3 112 6 .25 yes no $\subset N(C_s)$ no 36.12 56 12 .33 yes no $\subset N(C_s)$ yes yes 42.4 48 3 .25 no no $\subset B$ no 42.4 48 6 .25 no no $\subset B$ no	352
36.125612.33yesno $\subset N(C_s)$ yes42.4483.25nono $\subset B$ no42.4486.25nono $\subset B$ no	844
42.4483.25nono $\subset B$ no42.4486.25nono $\subset B$ no	2
42.4 48 6 .25 no no ⊂ <i>B</i> no	26
	18
421 48 1 42 no no $\subset B$ no (18
	66
42.1 48 6 .42 no no $\subset B$ no G	66
42.1 48 2 .42 no no $\subset B$ no \mathbb{C}	29
42.1 48 3 .42 no no $\subset B$ no \mathbb{C}	29
72.30 28 12 .40 yes yes <i>N</i> (<i>C_s</i>) yes	32
84.12 24 6 .67 yes no $\subset B$ yes	76
84.7 24 2 .44 yes no $\subset B$ yes 44	495
84.7 24 6 .44 yes no $\subset B$ yes 44	495
96.62 21 48 .36 yes yes <i>N</i> (<i>C</i> _{ns}) yes	36
126.7 16 3 .25 yes yes $\subset B$ no 14	143
126.7 16 6 .25 yes yes $\subset B$ no 14	143
252.28 8 6 .44 yes yes B yes 4	495
11 110.1 120 10 .45 no no \sub{B} no	1
110.1 120 5 .45 no no $\subset B$ no	1
110.1 120 10 .45 no no $\subset B$ no	1
110.1 120 5 .45 no no \sub{B} no	1
220.7 60 10 .64 no no $\subset B$ yes	54

Non-surjective Galois images for E/\mathbb{Q} w/o CM and conductor \leq 300000.

ℓ	gap id	index	d _H	δ_H	<i>→</i> a _p	→ Np	type	-1	count
	220.7	60	10	.64	no	no	$\subset B$	yes	54
	240.51	55	120	.41	yes	yes	$N(C_{ns})$	yes	4
13	288.400	91	72	.25	yes	yes	$\twoheadrightarrow S_4$	yes	20
	468.29	56	12	.38	yes	yes	$\subset B$	no	4
	468.29	56	3	.38	yes	yes	$\subset B$	no	4
	468.29	56	12	.38	yes	yes	$\subset B$	no	1
	468.29	56	6	.38	yes	yes	$\subset B$	no	1
	624.155	42	12	.67	yes	no	$\subset B$	yes	12
	624.119	42	4	.44	yes	yes	$\subset B$	yes	20
	624.119	42	12	.44	yes	yes	$\subset B$	yes	20
	936.171	28	12	.25	yes	yes	$\subset B$	yes	85
	936.171	28	6	.25	yes	yes	$\subset B$	yes	85
	1872.576	14	12	.46	yes	yes	В	yes	192
17	1088.1674	8	72	.38	yes	yes	$\subset B$	yes	12
	1088.1674	16	72	.38	yes	yes	$\subset B$	yes	12
37	15984	114	36	.44	yes	yes	$\subset B$	yes	20
	15984	114	12	.44	yes	yes	$\subset B$	yes	20