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Sato-Tate in dimension 1

Let E/Q be an elliptic curve, which we can write in the form

y2 = x3 + ax + b.

Let p be a prime of good reduction for E.
The number of Fp-points on the reduction Ep of E modulo p is

#Ep(Fp) = p + 1− tp,

where the trace of Frobenius tp is an integer in [−2
√

p, 2
√

p].

We are interested in the limiting distribution of xp = −tp/
√

p ∈ [−2, 2],
as p varies over primes of good reduction.
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Example: y2 = x3 + x + 1
p tp xp p tp xp p tp xp

3 0 0.000000 71 13 −1.542816 157 −13 1.037513
5 −3 1.341641 73 2 −0.234082 163 −25 1.958151
7 3 −1.133893 79 −6 0.675053 167 24 −1.857176

11 −2 0.603023 83 −6 0.658586 173 2 −0.152057
13 −4 1.109400 89 −10 1.059998 179 0 0.000000
17 0 0.000000 97 1 −0.101535 181 −8 0.594635
19 −1 0.229416 101 −3 0.298511 191 −25 1.808937
23 −4 0.834058 103 17 −1.675060 193 −7 0.503871
29 −6 1.114172 107 3 −0.290021 197 −24 1.709929
37 −10 1.643990 109 −13 1.245174 199 −18 1.275986
41 7 −1.093216 113 −11 1.034793 211 −11 0.757271
43 10 −1.524986 127 2 −0.177471 223 −20 1.339299
47 −12 1.750380 131 4 −0.349482 227 0 0.000000
53 −4 0.549442 137 12 −1.025229 229 −2 0.132164
59 −3 0.390567 139 14 −1.187465 233 −3 0.196537
61 12 −1.536443 149 14 −1.146925 239 −22 1.423062
67 12 −1.466033 151 −2 0.162758 241 22 −1.417145

http://math.mit.edu/˜drew
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Sato-Tate distributions in dimension 1

1. Typical case (no CM)
Elliptic curves E/Q w/o CM have the semi-circular trace distribution.
(This is also known for E/k, where k is a totally real number field).

[Taylor et al.]

2. Exceptional cases (CM)
Elliptic curves E/k with CM have one of two distinct trace distributions,
depending on whether k contains the CM field or not.

[classical]
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Sato-Tate groups in dimension 1

The Sato-Tate group of E is a closed subgroup G of SU(2) = USp(2)
derived from the `-adic Galois representation attached to E.

The refined Sato-Tate conjecture implies that the normalized
trace distribution of E converges to the distribution of traces in G
given by Haar measure (the unique translation-invariant measure).

G G/G0 E k E[a0
1],E[a2

1],E[a4
1] . . .

U(1) C1 y2 = x3 + 1 Q(
√
−3) 1, 2, 6, 20, 70, 252, . . .

N(U(1)) C2 y2 = x3 + 1 Q 1, 1, 3, 10, 35, 126, . . .
SU(2) C1 y2 = x3 + x + 1 Q 1, 1, 2, 5, 14, 42, . . .

In dimension 1 there are three possible Sato-Tate groups, two of which
arise for elliptic curves defined over Q.
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Zeta functions and L-polynomials
For a smooth projective curve C/Q of genus g and each prime p of
good redution for C we have the zeta function

Z(Cp/Fp; T) := exp

( ∞∑
k=1

NkTk/k

)
,

where Nk = #Cp(Fpk). This is a rational function of the form

Z(Cp/Fp; T) =
Lp(T)

(1− T)(1− pT)
,

where Lp(T) is an integer polynomial of degree 2g.

For g = 1 we have Lp(t) = pT2 + c1T + 1, and for g = 2,

Lp(T) = p2T4 + c1pT3 + c2T2 + c1T + 1.
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Normalized L-polynomials

The normalized polynomial

L̄p(T) := Lp(T/
√

p) =

2g∑
i=0

aiT i ∈ R[T]

is monic, symmetric (ai = a2g−i), and unitary (roots on the unit circle).
The coefficients ai necessarily satisfy |ai| ≤

(2g
i

)
.

We now consider the limiting distribution of a1, a2, . . . , ag over all
primes p ≤ N of good reduction, as N →∞.

In this talk we will focus primarily on the case g = 2.

http://math.mit.edu/˜drew
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L-polynomials of Abelian varieties

Let A be an abelian variety of dimension g ≥ 1 over a number field k.

Let ρ` : Gk → AutQ`
(V`(A)) ' GSp2g(Q`) be the Galois representation

arising from the action of Gk = Gal(k̄/k) on the `-adic Tate module

V`(A) := lim
←−

A[`n].

For each prime p of good reduction for A we have the L-polynomial

Lp(T) := det(1− ρ`(Frobp)T),

L̄p(T) := Lp(T/
√
‖p‖) =

∑
aiT i.

In the case that A is the Jacobian of a genus g curve C, this agrees with
our earlier definition of Lp(T) as the numerator of the zeta function of C.
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The Sato-Tate problem for an abelian variety

For each prime p of k where A has good reduction, the polynomial
L̄p ∈ R[T] is monic, symmetric, unitary, and of degree 2g.

Every such polynomial arises as the characteristic polynomial of
a conjugacy class in the unitary symplectic group USp(2g).

Each probability measure on USp(2g) determines a distribution of
conjugacy classes (hence a distribution of characteristic polynomials).

The Sato-Tate problem, in its simplest form, is to find a measure for
which these classes are equidistributed. Conjecturally, such a measure
arises as the Haar measure of a compact subgroup STA of USp(2g).
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The Sato-Tate group of an abelian variety

Let ρ` : Gk → AutQ`
(V`(A)) ' GSp2g(Q`) be as above.

Let G1
k be the kernel of the cyclotomic character χ` : Gk → Q×` .

Let G1,Zar
` be the Zariski closure of ρ`(G1

k) in Sp2g(Q`).
Choose ι : Q` ↪→ C, and let G1 = G1,Zar

` ⊗ι C ⊆ Sp2g(C).

Definition [Serre]
STA ⊆ USp(2g) is a maximal compact subgroup of G1 ⊆ Sp2g(C).
For each prime p of good reduction for A, let s(p) denote the
conjugacy class of ρ`(Frobp)/

√
‖p‖ ∈ G1 in STA.

Conjecturally, STA does not depend on ` or ι; this is known for g ≤ 3.
In any case, the characteristic polynomial of s(p) is always L̄p(T).
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Equidistribution

Let µSTA denote the image of the Haar measure on Conj(STA)
(which does not depend on the choice of ` or ι).

Conjecture [Refined Sato-Tate]
The conjugacy classes s(p) are equidistributed with respect to µSTA .

In particular, the distribution of L̄p(T) matches the distribution of
characteristic polynomials of random matrices in STA.

We can test this numerically by comparing statistics of the coefficients
a1, . . . , ag of L̄p(T) over ‖p‖ ≤ N to the predictions given by µSTA .
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The Sato-Tate axioms for abelian varieties

1 G is closed.
2 G contains a subgroup H that is the image of a homomorphism
θ : U(1)→ G0 such that θ(u) has eigenvalues u and u−1 with
multiplicity g, and H can be chosen so that its conjugates generate
a dense subset of G0 (such an H is called a Hodge circle).

3 For each component H of G and every irreducible character χ of
GL2g(C) we have E[χ(γ) : γ ∈ H] ∈ Z.

For any fixed g, the set of subgroups G ⊆ USp(2g) that satisfy the
Sato-Tate axioms is finite (up to conjugacy).

Theorem
For g ≤ 3, the group STA satisfies the Sato-Tate axioms.

This follows from the Mumford-Tate and algebraic Sato-Tate
conjectures, which are known for g ≤ 3 (conjecturally true for all g).
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Sato-Tate groups in dimension 2

Theorem 1 [FKRS 2012]
Up to conjugacy, 55 subgroups of USp(4) satisfy the Sato-Tate axioms:

U(1) : C1,C2,C3,C4,C6,D2,D3,D4,D6,T,O,
J(C1), J(C2), J(C3), J(C4), J(C6),
J(D2), J(D3), J(D4), J(D6), J(T), J(O),
C2,1,C4,1,C6,1,D2,1,D3,2,D4,1,D4,2,D6,1,D6,2,O1

SU(2) : E1,E2,E3,E4,E6, J(E1), J(E2), J(E3), J(E4), J(E6)
U(1)× U(1) : F,Fa,Fc,Fa,b,Fab,Fac,Fab,c,Fa,b,c

U(1)× SU(2) : U(1)× SU(2), N(U(1)× SU(2))
SU(2)× SU(2) : SU(2)× SU(2), N(SU(2)× SU(2))

USp(4) : USp(4)

Of these, exactly 52 arise as STA for an abelian surface A (34 over Q).

Note that our theorem says nothing about equidistribution; this is
currently known in many special cases [FS 2012, Johansson 2013].
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Sato-Tate groups in dimension 2 with G0 = U(1).

d c G G/G0 z1 z2 M[a2
1] M[a2]

1 1 C1 C1 0 0, 0, 0, 0, 0 8, 96, 1280, 17920 4, 18, 88, 454
1 2 C2 C2 1 0, 0, 0, 0, 0 4, 48, 640, 8960 2, 10, 44, 230
1 3 C3 C3 0 0, 0, 0, 0, 0 4, 36, 440, 6020 2, 8, 34, 164
1 4 C4 C4 1 0, 0, 0, 0, 0 4, 36, 400, 5040 2, 8, 32, 150
1 6 C6 C6 1 0, 0, 0, 0, 0 4, 36, 400, 4900 2, 8, 32, 148
1 4 D2 D2 3 0, 0, 0, 0, 0 2, 24, 320, 4480 1, 6, 22, 118
1 6 D3 D3 3 0, 0, 0, 0, 0 2, 18, 220, 3010 1, 5, 17, 85
1 8 D4 D4 5 0, 0, 0, 0, 0 2, 18, 200, 2520 1, 5, 16, 78
1 12 D6 D6 7 0, 0, 0, 0, 0 2, 18, 200, 2450 1, 5, 16, 77
1 2 J(C1) C2 1 1, 0, 0, 0, 0 4, 48, 640, 8960 1, 11, 40, 235
1 4 J(C2) D2 3 1, 0, 0, 0, 1 2, 24, 320, 4480 1, 7, 22, 123
1 6 J(C3) C6 3 1, 0, 0, 2, 0 2, 18, 220, 3010 1, 5, 16, 85
1 8 J(C4) C4 × C2 5 1, 0, 2, 0, 1 2, 18, 200, 2520 1, 5, 16, 79
1 12 J(C6) C6 × C2 7 1, 2, 0, 2, 1 2, 18, 200, 2450 1, 5, 16, 77
1 8 J(D2) D2 × C2 7 1, 0, 0, 0, 3 1, 12, 160, 2240 1, 5, 13, 67
1 12 J(D3) D6 9 1, 0, 0, 2, 3 1, 9, 110, 1505 1, 4, 10, 48
1 16 J(D4) D4 × C2 13 1, 0, 2, 0, 5 1, 9, 100, 1260 1, 4, 10, 45
1 24 J(D6) D6 × C2 19 1, 2, 0, 2, 7 1, 9, 100, 1225 1, 4, 10, 44
1 2 C2,1 C2 1 0, 0, 0, 0, 1 4, 48, 640, 8960 3, 11, 48, 235
1 4 C4,1 C4 3 0, 0, 2, 0, 0 2, 24, 320, 4480 1, 5, 22, 115
1 6 C6,1 C6 3 0, 2, 0, 0, 1 2, 18, 220, 3010 1, 5, 18, 85
1 4 D2,1 D2 3 0, 0, 0, 0, 2 2, 24, 320, 4480 2, 7, 26, 123
1 8 D4,1 D4 7 0, 0, 2, 0, 2 1, 12, 160, 2240 1, 4, 13, 63
1 12 D6,1 D6 9 0, 2, 0, 0, 4 1, 9, 110, 1505 1, 4, 11, 48
1 6 D3,2 D3 3 0, 0, 0, 0, 3 2, 18, 220, 3010 2, 6, 21, 90
1 8 D4,2 D4 5 0, 0, 0, 0, 4 2, 18, 200, 2520 2, 6, 20, 83
1 12 D6,2 D6 7 0, 0, 0, 0, 6 2, 18, 200, 2450 2, 6, 20, 82
1 12 T A4 3 0, 0, 0, 0, 0 2, 12, 120, 1540 1, 4, 12, 52
1 24 O S4 9 0, 0, 0, 0, 0 2, 12, 100, 1050 1, 4, 11, 45
1 24 O1 S4 15 0, 0, 6, 0, 6 1, 6, 60, 770 1, 3, 8, 30
1 24 J(T) A4 × C2 15 1, 0, 0, 8, 3 1, 6, 60, 770 1, 3, 7, 29
1 48 J(O) S4 × C2 33 1, 0, 6, 8, 9 1, 6, 50, 525 1, 3, 7, 26
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Sato-Tate groups in dimension 2 with G0 6= U(1).

d c G G/G0 z1 z2 M[a2
1] M[a2]

3 1 E1 C1 0 0, 0, 0, 0, 0 4, 32, 320, 3584 3, 10, 37, 150
3 2 E2 C2 1 0, 0, 0, 0, 0 2, 16, 160, 1792 1, 6, 17, 78
3 3 E3 C3 0 0, 0, 0, 0, 0 2, 12, 110, 1204 1, 4, 13, 52
3 4 E4 C4 1 0, 0, 0, 0, 0 2, 12, 100, 1008 1, 4, 11, 46
3 6 E6 C6 1 0, 0, 0, 0, 0 2, 12, 100, 980 1, 4, 11, 44
3 2 J(E1) C2 1 0, 0, 0, 0, 0 2, 16, 160, 1792 2, 6, 20, 78
3 4 J(E2) D2 3 0, 0, 0, 0, 0 1, 8, 80, 896 1, 4, 10, 42
3 6 J(E3) D3 3 0, 0, 0, 0, 0 1, 6, 55, 602 1, 3, 8, 29
3 8 J(E4) D4 5 0, 0, 0, 0, 0 1, 6, 50, 504 1, 3, 7, 26
3 12 J(E6) D6 7 0, 0, 0, 0, 0 1, 6, 50, 490 1, 3, 7, 25
2 1 F C1 0 0, 0, 0, 0, 0 4, 36, 400, 4900 2, 8, 32, 148
2 2 Fa C2 0 0, 0, 0, 0, 1 3, 21, 210, 2485 2, 6, 20, 82
2 2 Fc C2 1 0, 0, 0, 0, 0 2, 18, 200, 2450 1, 5, 16, 77
2 2 Fab C2 1 0, 0, 0, 0, 1 2, 18, 200, 2450 2, 6, 20, 82
2 4 Fac C4 3 0, 0, 2, 0, 1 1, 9, 100, 1225 1, 3, 10, 41
2 4 Fa,b D2 1 0, 0, 0, 0, 3 2, 12, 110, 1260 2, 5, 14, 49
2 4 Fab,c D2 3 0, 0, 0, 0, 1 1, 9, 100, 1225 1, 4, 10, 44
2 8 Fa,b,c D4 5 0, 0, 2, 0, 3 1, 6, 55, 630 1, 3, 7, 26
4 1 G4 C1 0 0, 0, 0, 0, 0 3, 20, 175, 1764 2, 6, 20, 76
4 2 N(G4) C2 0 0, 0, 0, 0, 1 2, 11, 90, 889 2, 5, 14, 46
6 1 G6 C1 0 0, 0, 0, 0, 0 2, 10, 70, 588 2, 5, 14, 44
6 2 N(G6) C2 1 0, 0, 0, 0, 0 1, 5, 35, 294 1, 3, 7, 23

10 1 USp(4) C1 0 0, 0, 0, 0, 0 1, 3, 14, 84 1, 2, 4, 10
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Galois types

Let A be an abelian surface defined over a number field k.
Let K be the minimal extension of k for which End(AK) = End(AQ̄).
The group Gal(K/k) acts on the R-algebra End(AK)R = End(AK)⊗Z R.

Definition
The Galois type of A is the isomorphism class of [Gal(K/k),End(AK)R],
where [G,E] ' [G′,E′] if there is an isomorphism G ' G′ and a
compatible isomorphism E ' E′ of R-algebras.

(NB: G ' G′ and E ' E′ does not necessarily imply [G,E] ' [G′,E′]).
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Galois types and Sato-Tate groups in dimension 2

Theorem 2 [FKRS 2012]
Up to conjugacy, the Sato-Tate group G of an abelian surface A is
uniquely determined by its Galois type, and vice versa.

We also have G/G0 ' Gal(K/k), and G0 is uniquely determined by the
isomorphism class of End(AK)R, and vice versa:

U(1) M2(C) U(1)× SU(2) C× R
SU(2) M2(R) SU(2)× SU(2) R× R

U(1)× U(1) C× C USp(4) R

There are 52 distinct Galois types of abelian surfaces.

The proof uses the algebraic Sato-Tate group of Banaszak and
Kedlaya, which, for g ≤ 3, uniquely determines STA.
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Exhibiting Sato-Tate groups of abelian surfaces

Remarkably, the 34 Sato-Tate groups that can arise over Q can all be
realized as the Sato-Tate group of the Jacobian of a hyperelliptic curve.

The remaining 18 groups all arise as subgroups of these 34.

These subgroups can be obtained by extending the field of definition
appropriately (in fact, one can realize all 52 groups using just 9 curves).
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Genus 2 curves realizing Sato-Tate groups with G0 = U(1)

Group Curve y2 = f(x) k K
C1 x6 + 1 Q(

√
−3) Q(

√
−3)

C2 x5 − x Q(
√
−2) Q(i,

√
2)

C3 x6 + 4 Q(
√
−3) Q(

√
−3, 3
√

2)
C4 x6 + x5 − 5x4 − 5x2 − x + 1 Q(

√
−2) Q(

√
−2, a); a4 + 17a2 + 68 = 0

C6 x6 + 2 Q(
√
−3) Q(

√
−3, 6
√

2)
D2 x5 + 9x Q(

√
−2) Q(i,

√
2,
√

3)
D3 x6 + 10x3 − 2 Q(

√
−2) Q(

√
−3, 6
√
−2)

D4 x5 + 3x Q(
√
−2) Q(i,

√
2, 4
√

3)
D6 x6 + 3x5 + 10x3 − 15x2 + 15x − 6 Q(

√
−3) Q(i,

√
2,
√

3, a); a3 + 3a − 2 = 0
T x6 + 6x5 − 20x4 + 20x3 − 20x2 − 8x + 8 Q(

√
−2) Q(

√
−2, a, b);

a3 − 7a + 7 = b4 + 4b2 + 8b + 8 = 0
O x6 − 5x4 + 10x3 − 5x2 + 2x − 1 Q(

√
−2) Q(

√
−2,
√
−11, a, b);

a3 − 4a + 4 = b4 + 22b + 22 = 0
J(C1) x5 − x Q(i) Q(i,

√
2)

J(C2) x5 − x Q Q(i,
√

2)
J(C3) x6 + 10x3 − 2 Q(

√
−3) Q(

√
−3, 6
√
−2)

J(C4) x6 + x5 − 5x4 − 5x2 − x + 1 Q see entry for C4
J(C6) x6 − 15x4 − 20x3 + 6x + 1 Q Q(i,

√
3, a); a3 + 3a2 − 1 = 0

J(D2) x5 + 9x Q Q(i,
√

2,
√

3)
J(D3) x6 + 10x3 − 2 Q Q(

√
−3, 6
√
−2)

J(D4) x5 + 3x Q Q(i,
√

2, 4
√

3)
J(D6) x6 + 3x5 + 10x3 − 15x2 + 15x − 6 Q see entry for D6
J(T) x6 + 6x5 − 20x4 + 20x3 − 20x2 − 8x + 8 Q see entry for T
J(O) x6 − 5x4 + 10x3 − 5x2 + 2x − 1 Q see entry for O
C2,1 x6 + 1 Q Q(

√
−3)

C4.1 x5 + 2x Q(i) Q(i, 4
√

2)
C6,1 x6 + 6x5 − 30x4 + 20x3 + 15x2 − 12x + 1 Q Q(

√
−3, a); a3 − 3a + 1 = 0

D2,1 x5 + x Q Q(i,
√

2)
D4,1 x5 + 2x Q Q(i, 4

√
2)

D6,1 x6 + 6x5 − 30x4 − 40x3 + 60x2 + 24x − 8 Q Q(
√
−2,
√
−3, a); a3 − 9a + 6 = 0

D3,2 x6 + 4 Q Q(
√
−3, 3
√

2)
D4,2 x6 + x5 + 10x3 + 5x2 + x − 2 Q Q(

√
−2, a); a4 − 14a2 + 28a − 14 = 0

D6,2 x6 + 2 Q Q(
√
−3, 6
√

2)
O1 x6 + 7x5 + 10x4 + 10x3 + 15x2 + 17x + 4 Q Q(

√
−2, a, b);

a3 + 5a + 10 = b4 + 4b2 + 8b + 2 = 0
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Genus 2 curves realizing Sato-Tate groups with G0 6= U(1)

Group Curve y2 = f (x) k K
F x6 + 3x4 + x2 − 1 Q(i,

√
2) Q(i,

√
2)

Fa x6 + 3x4 + x2 − 1 Q(i) Q(i,
√

2)
Fab x6 + 3x4 + x2 − 1 Q(

√
2) Q(i,

√
2)

Fac x5 + 1 Q Q(a); a4 + 5a2 + 5 = 0
Fa,b x6 + 3x4 + x2 − 1 Q Q(i,

√
2)

E1 x6 + x4 + x2 + 1 Q Q
E2 x6 + x5 + 3x4 + 3x2 − x + 1 Q Q(

√
2)

E3 x5 + x4 − 3x3 − 4x2 − x Q Q(a); a3 − 3a + 1 = 0
E4 x5 + x4 + x2 − x Q Q(a); a4 − 5a2 + 5 = 0
E6 x5 + 2x4 − x3 − 3x2 − x Q Q(

√
7, a); a3 − 7a− 7 = 0

J(E1) x5 + x3 + x Q Q(i)
J(E2) x5 + x3 − x Q Q(i,

√
2)

J(E3) x6 + x3 + 4 Q Q(
√
−3, 3√2)

J(E4) x5 + x3 + 2x Q Q(i, 4√2)
J(E6) x6 + x3 − 2 Q Q(

√
−3, 6√−2)

G1,3 x6 + 3x4 − 2 Q(i) Q(i)
N(G1,3) x6 + 3x4 − 2 Q Q(i)
G3,3 x6 + x2 + 1 Q Q
N(G3,3) x6 + x5 + x− 1 Q Q(i)
USp(4) x5 − x + 1 Q Q
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Searching for curves

We surveyed the L̄-polynomial distributions of genus 2 curves

y2 = x5 + c4x4 + c3x3 + c2x2 + c1x + c0,

y2 = x6 + c5x5 + c4x4 + c3x3 + c2x2 + c1x + c0,

with integer coefficients |ci| ≤ 128, over 248 curves.

We specifically searched for cases not already addressed in [KS09].

We found over 10 million non-isogenous curves with exceptional
distributions, including at least 3 apparent matches for all of our
target Sato-Tate groups.

Representative examples were computed to high precision N = 230.

For each example, the field K was then determined, allowing the
Galois type, and hence the Sato-Tate group, to be provably identified.
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Existing algorithms for hyperelliptic curves

Algorithms to compute Lp(T) for low genus hyperelliptic curves:

complexity
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3 log p
group computation p1/4 log p p3/4 log p p5/4 log p
p-adic cohomology p1/2 log2 p p1/2 log2 p p1/2 log2 p
CRT (Schoof-Pila) log5 p log8 p log12 p (?)
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An average polynomial-time algorithm

All of the methods above perform separate computations for each p.
But we want to compute Lp(T) for all good p ≤ N using reductions of
the same curve in each case.

Theorem (H 2012)
There exists a deterministic algorithm that, given a hyperelliptic curve
y2 = f (x) of genus g with a rational Weierstrass point and an integer N,
computes Lp(T) for all good primes p ≤ N in time

O
(
g8+εN log3+ε N

)
,

assuming the coefficients of f ∈ Z[x] have size bounded by O(log N).

Average time is O
(
g8+ε log4+ε N

)
per prime, polynomial in g and log p.

Recently generalized to arithmetic schemes (including curves over Q).
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An average polynomial-time algorithm

But is it practical?

Yes!

complexity
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3 log p
group computation p1/4 log p p3/4 log p p5/4 log p
p-adic cohomology p1/2 log2 p p1/2 log2 p p1/2 log2 p
CRT (Schoof-Pila) log5 p log8 p log12 p(?)

Average polytime log4 p log4 p log4 p

For hyperelliptic curves of genus 2 and 3 the new algorithm is at least
30 times faster than current approaches, within the feasible range of N.

Andrew V. Sutherland (MIT) The Sato-Tate conjecture for abelian varieties March 5, 2014 26 / 26



An average polynomial-time algorithm

But is it practical? Yes!

complexity
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3 log p
group computation p1/4 log p p3/4 log p p5/4 log p
p-adic cohomology p1/2 log2 p p1/2 log2 p p1/2 log2 p
CRT (Schoof-Pila) log5 p log8 p log12 p(?)

Average polytime log4 p log4 p log4 p

For hyperelliptic curves of genus 2 and 3 the new algorithm is at least
30 times faster than current approaches, within the feasible range of N.

Andrew V. Sutherland (MIT) The Sato-Tate conjecture for abelian varieties March 5, 2014 26 / 26


