The Sato-Tate conjecture for abelian varieties

Andrew V. Sutherland
Massachusetts Institute of Technology
March 5, 2014

Mikio Sato

John Tate

Joint work with F. Fité, K.S. Kedlaya, and V. Rotger, and also with D. Harvey.

Sato-Tate in dimension 1

Let E / \mathbb{Q} be an elliptic curve, which we can write in the form

$$
y^{2}=x^{3}+a x+b .
$$

Let p be a prime of good reduction for E.
The number of \mathbb{F}_{p}-points on the reduction E_{p} of E modulo p is

$$
\# E_{p}\left(\mathbb{F}_{p}\right)=p+1-t_{p}
$$

where the trace of Frobenius t_{p} is an integer in $[-2 \sqrt{p}, 2 \sqrt{p}]$.
We are interested in the limiting distribution of $x_{p}=-t_{p} / \sqrt{p} \in[-2,2]$, as p varies over primes of good reduction.

Example: $y^{2}=x^{3}+x+1$

p	t_{p}	x_{p}	p	t_{p}	x_{p}	p	t_{p}	x_{p}
3	0	$\mathbf{0 . 0 0 0 0 0 0}$	71	13	$-\mathbf{1 . 5 4 2 8 1 6}$	157	-13	$\mathbf{1 . 0 3 7 5 1 3}$
5	-3	$\mathbf{1 . 3 4 1 6 4 1}$	73	2	$\mathbf{- 0 . 2 3 4 0 8 2}$	163	-25	$\mathbf{1 . 9 5 8 1 5 1}$
7	3	$\mathbf{- 1 . 1 3 3 8 9 3}$	79	-6	$\mathbf{0 . 6 7 5 0 5 3}$	167	24	$\mathbf{- 1 . 8 5 7 1 7 6}$
11	-2	$\mathbf{0 . 6 0 3 0 2 3}$	83	-6	$\mathbf{0 . 6 5 8 5 8 6}$	173	2	$\mathbf{- 0 . 1 5 2 0 5 7}$
13	-4	$\mathbf{1 . 1 0 9 4 0 0}$	89	-10	$\mathbf{1 . 0 5 9 9 9 8}$	179	0	$\mathbf{0 . 0 0 0 0 0 0}$
17	0	$\mathbf{0 . 0 0 0 0 0 0}$	97	1	$\mathbf{- 0 . 1 0 1 5 3 5}$	181	-8	$\mathbf{0 . 5 9 4 6 3 5}$
19	-1	$\mathbf{0 . 2 2 9 4 1 6}$	101	-3	$\mathbf{0 . 2 9 8 5 1 1}$	191	-25	$\mathbf{1 . 8 0 8 9 3 7}$
23	-4	$\mathbf{0 . 8 3 4 0 5 8}$	103	17	$\mathbf{- 1 . 6 7 5 0 6 0}$	193	-7	$\mathbf{0 . 5 0 3 8 7 1}$
29	-6	$\mathbf{1 . 1 1 4 1 7 2}$	107	3	$-\mathbf{0 . 2 9 0 0 2 1}$	197	-24	$\mathbf{1 . 7 0 9 9 2 9}$
37	-10	$\mathbf{1 . 6 4 3 9 9 0}$	109	-13	$\mathbf{1 . 2 4 5 1 7 4}$	199	-18	$\mathbf{1 . 2 7 5 9 8 6}$
41	7	$\mathbf{- 1 . 0 9 3 2 1 6}$	113	-11	$\mathbf{1 . 0 3 4 7 9 3}$	211	-11	$\mathbf{0 . 7 5 7 2 7 1}$
43	10	$\mathbf{- 1 . 5 2 4 9 8 6}$	127	2	$-\mathbf{0 . 1 7 7 4 7 1}$	223	-20	$\mathbf{1 . 3 3 9 2 9 9}$
47	-12	$\mathbf{1 . 7 5 0 3 8 0}$	131	4	$\mathbf{- 0 . 3 4 9 4 8 2}$	227	0	$\mathbf{0 . 0 0 0 0 0 0}$
53	-4	$\mathbf{0 . 5 4 9 4 4 2}$	137	12	$\mathbf{- 1 . 0 2 5 2 2 9}$	229	-2	$\mathbf{0 . 1 3 2 1 6 4}$
59	-3	$\mathbf{0 . 3 9 0 5 6 7}$	139	14	$-\mathbf{1 . 1 8 7 4 6 5}$	233	-3	$\mathbf{0 . 1 9 6 5 3 7}$
61	12	$\mathbf{- 1 . 5 3 6 4 4 3}$	149	14	$-\mathbf{1 . 1 4 6 9 2 5}$	239	-22	$\mathbf{1 . 4 2 3 0 6 2}$
67	12	$\mathbf{- 1 . 4 6 6 0 3 3}$	151	-2	$\mathbf{0 . 1 6 2 7 5 8}$	241	22	$\mathbf{- 1 . 4 1 7 1 4 5}$

http://math.mit.edu/~drew

Sato-Tate distributions in dimension 1

1. Typical case (no CM)

Elliptic curves E / \mathbb{Q} w/o CM have the semi-circular trace distribution. (This is also known for E / k, where k is a totally real number field). [Taylor et al.]

2. Exceptional cases (CM)

Elliptic curves E / k with CM have one of two distinct trace distributions, depending on whether k contains the CM field or not.
[classical]

Sato-Tate groups in dimension 1

The Sato-Tate group of E is a closed subgroup G of $\mathrm{SU}(2)=\mathrm{USp}(2)$ derived from the ℓ-adic Galois representation attached to E.

The refined Sato-Tate conjecture implies that the normalized trace distribution of E converges to the distribution of traces in G given by Haar measure (the unique translation-invariant measure).

G	G / G^{0}	E	k	$\mathrm{E}\left[a_{1}^{0}\right], \mathrm{E}\left[a_{1}^{2}\right], \mathrm{E}\left[a_{1}^{4}\right] \ldots$
$\mathrm{U}(1)$	C_{1}	$y^{2}=x^{3}+1$	$\mathbb{Q}(\sqrt{-3})$	$1,2,6,20,70,252, \ldots$
$N(\mathrm{U}(1))$	C_{2}	$y^{2}=x^{3}+1$	\mathbb{Q}	$1,1,3,10,35,126, \ldots$
$\mathrm{SU}(2)$	C_{1}	$y^{2}=x^{3}+x+1$	\mathbb{Q}	$1,1,2,5,14,42, \ldots$

In dimension 1 there are three possible Sato-Tate groups, two of which arise for elliptic curves defined over \mathbb{Q}.

Zeta functions and L-polynomials

For a smooth projective curve C / \mathbb{Q} of genus g and each prime p of good redution for C we have the zeta function

$$
Z\left(C_{p} / \mathbb{F}_{p} ; T\right):=\exp \left(\sum_{k=1}^{\infty} N_{k} T^{k} / k\right),
$$

where $N_{k}=\# C_{p}\left(\mathbb{F}_{p^{k}}\right)$. This is a rational function of the form

$$
Z\left(C_{p} / \mathbb{F}_{p} ; T\right)=\frac{L_{p}(T)}{(1-T)(1-p T)},
$$

where $L_{p}(T)$ is an integer polynomial of degree $2 g$.
For $g=1$ we have $L_{p}(t)=p T^{2}+c_{1} T+1$, and for $g=2$,

$$
L_{p}(T)=p^{2} T^{4}+c_{1} p T^{3}+c_{2} T^{2}+c_{1} T+1 .
$$

Normalized L-polynomials

The normalized polynomial

$$
\bar{L}_{p}(T):=L_{p}(T / \sqrt{p})=\sum_{i=0}^{2 g} a_{i} T^{i} \in \mathbb{R}[T]
$$

is monic, symmetric ($a_{i}=a_{2 g-i}$), and unitary (roots on the unit circle). The coefficients a_{i} necessarily satisfy $\left|a_{i}\right| \leq\binom{ 2 g}{i}$.

We now consider the limiting distribution of $a_{1}, a_{2}, \ldots, a_{g}$ over all primes $p \leq N$ of good reduction, as $N \rightarrow \infty$.

In this talk we will focus primarily on the case $g=2$.
http://math.mit.edu/~drew

L-polynomials of Abelian varieties

Let A be an abelian variety of dimension $g \geq 1$ over a number field k.
Let $\rho_{\ell}: G_{k} \rightarrow \operatorname{Aut}_{\mathbb{Q}_{\ell}}\left(V_{\ell}(A)\right) \simeq \mathrm{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right)$ be the Galois representation arising from the action of $G_{k}=\operatorname{Gal}(\bar{k} / k)$ on the ℓ-adic Tate module

$$
V_{\ell}(A):=\lim _{\leftarrow} A\left[\ell^{n}\right] .
$$

For each prime \mathfrak{p} of good reduction for A we have the L-polynomial

$$
\begin{aligned}
L_{\mathfrak{p}}(T) & :=\operatorname{det}\left(1-\rho_{\ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right) T\right) \\
\bar{L}_{\mathfrak{p}}(T) & :=L_{\mathfrak{p}}(T / \sqrt{\|\mathfrak{p}\|})=\sum a_{i} T^{i} .
\end{aligned}
$$

In the case that A is the Jacobian of a genus g curve C, this agrees with our earlier definition of $L_{\mathfrak{p}}(T)$ as the numerator of the zeta function of C.

The Sato-Tate problem for an abelian variety

For each prime \mathfrak{p} of k where A has good reduction, the polynomial $\bar{L}_{\mathfrak{p}} \in \mathbb{R}[T]$ is monic, symmetric, unitary, and of degree $2 g$.

Every such polynomial arises as the characteristic polynomial of a conjugacy class in the unitary symplectic group $\operatorname{USp}(2 g)$.

Each probability measure on $\operatorname{USp}(2 g)$ determines a distribution of conjugacy classes (hence a distribution of characteristic polynomials).

The Sato-Tate problem, in its simplest form, is to find a measure for which these classes are equidistributed. Conjecturally, such a measure arises as the Haar measure of a compact subgroup ST_{A} of $\mathrm{USp}(2 g)$.

The Sato-Tate group of an abelian variety

$$
\text { Let } \rho_{\ell}: G_{k} \rightarrow \operatorname{Aut}_{\mathbb{Q}_{\ell}}\left(V_{\ell}(A)\right) \simeq \operatorname{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right) \text { be as above. }
$$

Let G_{k}^{1} be the kernel of the cyclotomic character $\chi_{\ell}: G_{k} \rightarrow \mathbb{Q}_{\ell}^{\times}$.
Let $G_{\ell}^{1, \text { Zar }}$ be the Zariski closure of $\rho_{\ell}\left(G_{k}^{1}\right)$ in $\operatorname{Sp}_{2 g}\left(\mathbb{Q}_{\ell}\right)$.
Choose $\iota: \mathbb{Q}_{\ell} \hookrightarrow \mathbb{C}$, and let $G^{1}=G_{\ell}^{1, \text { Zar }} \otimes_{\iota} \mathbb{C} \subseteq \operatorname{Sp}_{2 g}(\mathbb{C})$.

Definition [Serre]

$\mathrm{ST}_{A} \subseteq \mathrm{USp}(2 g)$ is a maximal compact subgroup of $G^{1} \subseteq \mathrm{Sp}_{2 g}(\mathbb{C})$. For each prime \mathfrak{p} of good reduction for A, let $s(\mathfrak{p})$ denote the conjugacy class of $\rho_{\ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right) / \sqrt{\|\mathfrak{p}\|} \in G^{1}$ in ST_{A}.

Conjecturally, ST_{A} does not depend on ℓ or ι; this is known for $g \leq 3$. In any case, the characteristic polynomial of $s(\mathfrak{p})$ is always $\bar{L}_{\mathfrak{p}}(T)$.

Equidistribution

Let $\mu_{\mathrm{ST}_{A}}$ denote the image of the Haar measure on $\operatorname{Conj}\left(\mathrm{ST}_{A}\right)$ (which does not depend on the choice of ℓ or ι).

Conjecture [Refined Sato-Tate]

The conjugacy classes $s(\mathfrak{p})$ are equidistributed with respect to $\mu_{\mathrm{ST}_{A}}$.

In particular, the distribution of $\bar{L}_{\mathfrak{p}}(T)$ matches the distribution of characteristic polynomials of random matrices in ST_{A}.

We can test this numerically by comparing statistics of the coefficients a_{1}, \ldots, a_{g} of $\bar{L}_{\mathfrak{p}}(T)$ over $\|\mathfrak{p}\| \leq N$ to the predictions given by $\mu_{\mathrm{ST}_{A}}$.

The Sato-Tate axioms for abelian varieties

(1) G is closed.
(2) G contains a subgroup H that is the image of a homomorphism $\theta: \mathrm{U}(1) \rightarrow G^{0}$ such that $\theta(u)$ has eigenvalues u and u^{-1} with multiplicity g, and H can be chosen so that its conjugates generate a dense subset of G^{0} (such an H is called a Hodge circle).
(3) For each component H of G and every irreducible character χ of $\mathrm{GL}_{2 g}(\mathbb{C})$ we have $\mathrm{E}[\chi(\gamma): \gamma \in H] \in \mathbb{Z}$.

The Sato-Tate axioms for abelian varieties

(1) G is closed.
(2) G contains a subgroup H that is the image of a homomorphism $\theta: \mathrm{U}(1) \rightarrow G^{0}$ such that $\theta(u)$ has eigenvalues u and u^{-1} with multiplicity g, and H can be chosen so that its conjugates generate a dense subset of G^{0} (such an H is called a Hodge circle).
(0) For each component H of G and every irreducible character χ of $\mathrm{GL}_{2 g}(\mathbb{C})$ we have $\mathrm{E}[\chi(\gamma): \gamma \in H] \in \mathbb{Z}$.
For any fixed g, the set of subgroups $G \subseteq \operatorname{USp}(2 g)$ that satisfy the Sato-Tate axioms is finite (up to conjugacy).

Theorem

For $g \leq 3$, the group ST_{A} satisfies the Sato-Tate axioms.
This follows from the Mumford-Tate and algebraic Sato-Tate conjectures, which are known for $g \leq 3$ (conjecturally true for all g).

Sato-Tate groups in dimension 2

Theorem 1 [FKRS 2012]

Up to conjugacy, 55 subgroups of $\operatorname{USp}(4)$ satisfy the Sato-Tate axioms:

$$
\begin{aligned}
\mathrm{U}(1): & C_{1}, C_{2}, C_{3}, C_{4}, C_{6}, D_{2}, D_{3}, D_{4}, D_{6}, T, O, \\
& J\left(C_{1}\right), J\left(C_{2}\right), J\left(C_{3}\right), J\left(C_{4}\right), J\left(C_{6}\right), \\
& J\left(D_{2}\right), J\left(D_{3}\right), J\left(D_{4}\right), J\left(D_{6}\right), J(T), J(O), \\
& C_{2,1}, C_{4,1}, C_{6,1}, D_{2,1}, D_{3,2}, D_{4,1}, D_{4,2}, D_{6,1}, D_{6,2}, O_{1} \\
\mathrm{SU}(2): & E_{1}, E_{2}, E_{3}, E_{4}, E_{6}, J\left(E_{1}\right), J\left(E_{2}\right), J\left(E_{3}\right), J\left(E_{4}\right), J\left(E_{6}\right) \\
\mathrm{U}(1) \times \mathrm{U}(1): & F, F_{a}, F_{c}, F_{a, b}, F_{a b}, F_{a c}, F_{a b, c}, F_{a, b, c} \\
\mathrm{U}(1) \times \mathrm{SU}(2): & \mathrm{U}(1) \times \mathrm{SU}(2), N(\mathrm{U}(1) \times \mathrm{SU}(2)) \\
\mathrm{SU}(2) \times \mathrm{SU}(2): & \mathrm{SU}(2) \times \operatorname{SU}(2), N(\mathrm{SU}(2) \times \mathrm{SU}(2)) \\
\mathrm{USp}(4): & \mathrm{USp}(4)
\end{aligned}
$$

Sato-Tate groups in dimension 2

Theorem 1 [FKRS 2012]

Up to conjugacy, 55 subgroups of USp(4) satisfy the Sato-Tate axioms:

$$
\begin{aligned}
\mathrm{U}(1): & C_{1}, C_{2}, C_{3}, C_{4}, C_{6}, D_{2}, D_{3}, D_{4}, D_{6}, T, O, \\
& J\left(C_{1}\right), J\left(C_{2}\right), J\left(C_{3}\right), J\left(C_{4}\right), J\left(C_{6}\right), \\
& J\left(D_{2}\right), J\left(D_{3}\right), J\left(D_{4}\right), J\left(D_{6}\right), J(T), J(O), \\
& C_{2,1}, C_{4,1}, C_{6,1}, D_{2,1}, D_{3,2}, D_{4,1}, D_{4,2}, D_{6,1}, D_{6,2}, O_{1} \\
\mathrm{SU}(2): & E_{1}, E_{2}, E_{3}, E_{4}, E_{6}, J\left(E_{1}\right), J\left(E_{2}\right), J\left(E_{3}\right), J\left(E_{4}\right), J\left(E_{6}\right) \\
\mathrm{U}(1) \times \mathrm{U}(1): & F, F_{a}, F_{c}, F_{a, b}, F_{a b}, F_{a c}, F_{a b, c, c}, F_{a, b, c} \\
\mathrm{U}(1) \times \operatorname{SU}(2): & \mathrm{U}(1) \times \operatorname{SU}(2), N(\mathrm{U}(1) \times \operatorname{SU}(2)) \\
\mathrm{SU}(2) \times \operatorname{SU}(2): & \mathrm{SU}(2) \times \operatorname{SU}(2), N(\mathrm{SU}(2) \times \operatorname{SU}(2)) \\
\mathrm{USp}(4): & \mathrm{USp}(4)
\end{aligned}
$$

Of these, exactly 52 arise as ST_{A} for an abelian surface $A(34$ over $\mathbb{Q})$.

Sato-Tate groups in dimension 2

Theorem 1 [FKRS 2012]

Up to conjugacy, 55 subgroups of $\operatorname{USp}(4)$ satisfy the Sato-Tate axioms:

$$
\begin{aligned}
\mathrm{U}(1): & C_{1}, C_{2}, C_{3}, C_{4}, C_{6}, D_{2}, D_{3}, D_{4}, D_{6}, T, O, \\
& J\left(C_{1}\right), J\left(C_{2}\right), J\left(C_{3}\right), J\left(C_{4}\right), J\left(C_{6}\right), \\
& J\left(D_{2}\right), J\left(D_{3}\right), J\left(D_{4}\right), J\left(D_{6}\right), J(T), J(O), \\
& C_{2,1}, C_{4,1}, C_{6,1}, D_{2,1}, D_{3,2}, D_{4,1}, D_{4,2}, D_{6,1}, D_{6,2}, O_{1} \\
\mathrm{SU}(2): & E_{1}, E_{2}, E_{3}, E_{4}, E_{6}, J\left(E_{1}\right), J\left(E_{2}\right), J\left(E_{3}\right), J\left(E_{4}\right), J\left(E_{6}\right) \\
\mathrm{U}(1) \times \mathrm{U}(1): & F, F_{a}, F_{c}, F_{a, b}, F_{a b}, F_{a c}, F_{a b b, c, c}, F_{a, b, c} \\
\mathrm{U}(1) \times \mathrm{SU}(2): & \mathrm{U}(1) \times \operatorname{SU}(2), N(\mathrm{U}(1) \times \operatorname{SU}(2)) \\
\mathrm{SU}(2) \times \mathrm{SU}(2): & \mathrm{SU}(2) \times \operatorname{SU}(2), N(\mathrm{SU}(2) \times \operatorname{SU}(2)) \\
\mathrm{USp}(4): & \mathrm{USp}(4)
\end{aligned}
$$

Of these, exactly 52 arise as ST_{A} for an abelian surface $A(34$ over $\mathbb{Q})$.
Note that our theorem says nothing about equidistribution; this is currently known in many special cases [FS 2012, Johansson 2013].

Sato-Tate groups in dimension 2 with $G^{0}=\mathrm{U}(1)$.

d	c	G	G / G^{0}	z_{1}	z_{2}	$M\left[a_{1}^{2}\right]$	$M\left[a_{2}\right]$
1	1	C_{1}	C_{1}	0	$0,0,0,0,0$	$8,96,1280,17920$	$4,18,88,454$
1	2	C_{2}	C_{2}	1	$0,0,0,0,0$	$4,48,640,8960$	$2,10,44,230$
1	3	C_{3}	C_{3}	0	$0,0,0,0,0$	$4,36,440,6020$	$2,8,34,164$
1	4	C_{4}	C_{4}	1	$0,0,0,0,0$	$4,36,400,5040$	$2,8,32,150$
1	6	C_{6}	C_{6}	1	$0,0,0,0,0$	$4,36,400,4900$	$2,8,32,148$
1	4	D_{2}	D_{2}	3	$0,0,0,0,0$	$2,24,320,4480$	$1,6,22,118$
1	6	D_{3}	D_{3}	3	$0,0,0,0,0$	$2,18,220,3010$	$1,5,17,85$
1	8	D_{4}	D_{4}	5	$0,0,0,0,0$	$2,18,200,2520$	$1,5,16,78$
1	12	D_{6}	D_{6}	7	$0,0,0,0,0$	$2,18,200,2450$	$1,5,16,77$
1	2	$J\left(C_{1}\right)$	C_{2}	1	$1,0,0,0,0$	$4,48,640,8960$	$1,11,40,235$
1	4	$J\left(C_{2}\right)$	D_{2}	3	$1,0,0,0,1$	$2,24,320,4480$	$1,7,22,123$
1	6	$J\left(C_{3}\right)$	C_{6}	3	$1,0,0,2,0$	$2,18,220,3010$	$1,5,16,85$
1	8	$J\left(C_{4}\right)$	$\mathrm{C}_{4} \times \mathrm{C}_{2}$	5	$1,0,2,0,1$	$2,18,200,2520$	$1,5,16,79$
1	12	$J\left(C_{6}\right)$	$\mathrm{C}_{6} \times \mathrm{C}_{2}$	7	$1,2,0,2,1$	$2,18,200,2450$	$1,5,16,77$
1	8	$J\left(D_{2}\right)$	$\mathrm{D}_{2} \times \mathrm{C}_{2}$	7	$1,0,0,0,3$	$1,12,160,2240$	$1,5,13,67$
1	12	$J\left(D_{3}\right)$	D_{6}	9	$1,0,0,2,3$	$1,9,110,1505$	$1,4,10,48$
1	16	$J\left(D_{4}\right)$	$\mathrm{D}_{4} \times \mathrm{C}_{2}$	13	$1,0,2,0,5$	$1,9,10,1260$	$1,4,10,45$
1	24	$J\left(D_{6}\right)$	$\mathrm{D}_{6} \times \mathrm{C}_{2}$	19	$1,2,0,2,7$	$1,9,10,1225$	$1,4,10,44$
1	2	$C_{2,1}$	C_{2}	1	$0,0,0,0,1$	$4,48,640,8960$	$3,11,48,235$
1	4	$C_{4,1}$	C_{4}	3	$0,0,2,0,0$	$2,24,320,4480$	$1,5,22,115$
1	6	$C_{6,1}$	C_{6}	3	$0,2,0,0,1$	$2,18,220,3010$	$1,5,18,85$
1	4	$D_{2,1}$	D_{2}	3	$0,0,0,0,2$	$2,24,320,4480$	$2,7,26,123$
1	8	$D_{4,1}$	D_{4}	7	$0,0,2,0,2$	$1,12,160,2240$	$1,4,13,63$
1	12	$D_{6,1}$	D_{6}	9	$0,2,0,0,4$	$1,9,110,1505$	$1,4,11,48$
1	6	$D_{3,2}$	D_{3}	3	$0,0,0,0,3$	$2,18,220,3010$	$2,6,21,90$
1	8	$D_{4,2}$	D_{4}	5	$0,0,0,0,4$	$2,18,200,2520$	$2,6,20,83$
1	12	$D_{6,2}$	D_{6}	7	$0,0,0,0,6$	$2,18,200,2450$	$2,6,20,82$
1	12	T,	A_{4}	3	$0,0,0,0,0$	$2,12,120,1540$	$1,4,12,52$
1	24	O	$\mathrm{~S}_{4}$	9	$0,0,0,0,0$	$2,12,100,1050$	$1,4,11,45$
1	24	O_{1}	$\mathrm{~S}_{4}$	15	$0,0,6,0,6$	$1,6,60,770$	$1,3,8,30$
1	24	$J(T)$	$\mathrm{A}_{4} \times \mathrm{C}_{2}$	15	$1,0,0,8,3$	$1,6,60,770$	$1,3,7,29$
1	48	$J(O)$	$\mathrm{S}_{4} \times \mathrm{C}_{2}$	33	$1,0,6,8,9$	$1,6,50,525$	$1,3,7,26$

Sato-Tate groups in dimension 2 with $G^{0} \neq \mathrm{U}(1)$.

d	c	G	G / G^{0}	z_{1}	z_{2}	$M\left[a_{1}^{2}\right]$	$M\left[a_{2}\right]$
3	1	E_{1}	C_{1}	0	$0,0,0,0,0$	$4,32,320,3584$	$3,10,37,150$
3	2	E_{2}	C_{2}	1	$0,0,0,0,0$	$2,16,160,1792$	$1,6,17,78$
3	3	E_{3}	C_{3}	0	$0,0,0,0,0$	$2,12,110,1204$	$1,4,13,52$
3	4	E_{4}	C_{4}	1	$0,0,0,0,0$	$2,12,100,1008$	$1,4,11,46$
3	6	E_{6}	C_{6}	1	$0,0,0,0,0$	$2,12,100,980$	$1,4,11,44$
3	2	$J\left(E_{1}\right)$	C_{2}	1	$0,0,0,0,0$	$2,16,160,1792$	$2,6,20,78$
3	4	$J\left(E_{2}\right)$	D_{2}	3	$0,0,0,0,0$	$1,8,80,896$	$1,4,10,42$
3	6	$J\left(E_{3}\right)$	D_{3}	3	$0,0,0,0,0$	$1,6,55,602$	$1,3,8,29$
3	8	$J\left(E_{4}\right)$	D_{4}	5	$0,0,0,0,0$	$1,6,50,504$	$1,3,7,26$
3	12	$J\left(E_{6}\right)$	D_{6}	7	$0,0,0,0,0$	$1,6,50,490$	$1,3,7,25$
2	1	F	C_{1}	0	$0,0,0,0,0$	$4,36,400,4900$	$2,8,32,148$
2	2	F_{a}	C_{2}	0	$0,0,0,0,1$	$3,21,210,2485$	$2,6,20,82$
2	2	F_{c}	C_{2}	1	$0,0,0,0,0$	$2,18,200,2450$	$1,5,16,77$
2	2	$F_{a b}$	C_{2}	1	$0,0,0,0,1$	$2,18,200,2450$	$2,6,20,82$
2	4	$F_{a c}$	C_{4}	3	$0,0,2,0,1$	$1,9,100,1225$	$1,3,10,41$
2	4	$F_{a, b}$	D_{2}	1	$0,0,0,0,3$	$2,12,110,1260$	$2,5,14,49$
2	4	$F_{a b, c}$	D_{2}	3	$0,0,0,0,1$	$1,9,100,1225$	$1,4,10,44$
2	8	$F_{a, b, c}$	D_{4}	5	$0,0,2,0,3$	$1,6,55,630$	$1,3,7,26$
4	1	G_{4}	C_{1}	0	$0,0,0,0,0$	$3,20,175,1764$	$2,6,20,76$
4	2	$N\left(G_{4}\right)$	C_{2}	0	$0,0,0,0,1$	$2,11,90,889$	$2,5,14,46$
6	1	G_{6}	C_{1}	0	$0,0,0,0,0$	$2,10,70,588$	$2,5,14,44$
6	2	$N\left(G_{6}\right)$	C_{2}	1	$0,0,0,0,0$	$1,5,35,294$	$1,3,7,23$
10	1	$\mathrm{USp}(4)$	C_{1}	0	$0,0,0,0,0$	$1,3,14,84$	$1,2,4,10$

Galois types

Let A be an abelian surface defined over a number field k. Let K be the minimal extension of k for which $\operatorname{End}\left(A_{K}\right)=\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)$. The group $\operatorname{Gal}(K / k)$ acts on the \mathbb{R}-algebra $\operatorname{End}\left(A_{K}\right)_{\mathbb{R}}=\operatorname{End}\left(A_{K}\right) \otimes_{\mathbb{Z}} \mathbb{R}$.

Definition

The Galois type of A is the isomorphism class of $\left[\operatorname{Gal}(K / k), \operatorname{End}\left(A_{K}\right)_{\mathbb{R}}\right]$, where $[G, E] \simeq\left[G^{\prime}, E^{\prime}\right]$ if there is an isomorphism $G \simeq G^{\prime}$ and a compatible isomorphism $E \simeq E^{\prime}$ of \mathbb{R}-algebras.
(NB: $G \simeq G^{\prime}$ and $E \simeq E^{\prime}$ does not necessarily imply $\left.[G, E] \simeq\left[G^{\prime}, E^{\prime}\right]\right)$.

Galois types and Sato-Tate groups in dimension 2

Theorem 2 [FKRS 2012]

Up to conjugacy, the Sato-Tate group G of an abelian surface A is uniquely determined by its Galois type, and vice versa.

We also have $G / G^{0} \simeq \operatorname{Gal}(K / k)$, and G^{0} is uniquely determined by the isomorphism class of $\operatorname{End}\left(A_{K}\right)_{\mathbb{R}}$, and vice versa:

$$
\begin{array}{rrrr}
\mathrm{U}(1) & \mathrm{M}_{2}(\mathbb{C}) & \mathrm{U}(1) \times \operatorname{SU}(2) & \mathbb{C} \times \mathbb{R} \\
\mathrm{SU}(2) & \mathrm{M}_{2}(\mathbb{R}) & \operatorname{SU}(2) \times \operatorname{SU}(2) & \mathbb{R} \times \mathbb{R} \\
\mathrm{U}(1) \times \mathrm{U}(1) & \mathbb{C} \times \mathbb{C} & \mathrm{USp}(4) & \mathbb{R}
\end{array}
$$

There are 52 distinct Galois types of abelian surfaces.

The proof uses the algebraic Sato-Tate group of Banaszak and Kedlaya, which, for $g \leq 3$, uniquely determines ST_{A}.

Exhibiting Sato-Tate groups of abelian surfaces

Remarkably, the 34 Sato-Tate groups that can arise over \mathbb{Q} can all be realized as the Sato-Tate group of the Jacobian of a hyperelliptic curve.

The remaining 18 groups all arise as subgroups of these 34 .

These subgroups can be obtained by extending the field of definition appropriately (in fact, one can realize all 52 groups using just 9 curves).

Genus 2 curves realizing Sato-Tate groups with $G^{0}=\mathrm{U}(1)$

Group	Curve $y^{2}=f(x)$	k	K
C_{1}	$x^{6}+1$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3})$
C_{2}	$x^{5}-x$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(i, \sqrt{2})$
C_{3}	$x^{6}+4$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3}, \sqrt[3]{2})$
C_{4}	$x^{6}+x^{5}-5 x^{4}-5 x^{2}-x+1$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(\sqrt{-2}, a) ; a^{4}+17 a^{2}+68=0$
C_{6}	$x^{6}+2$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3}, \sqrt[5]{2})$
D_{2}	$x^{5}+9 x$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(i, \sqrt{2}, \sqrt{3})$
D_{3}	$x^{6}+10 x^{3}-2$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{-2})$
D_{4}	$x^{5}+3 x$	Q ($\sqrt{-2}$)	$\mathbb{Q}(i, \sqrt{2}, \sqrt[4]{3})$
D_{6}	$x^{6}+3 x^{5}+10 x^{3}-15 x^{2}+15 x-6$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(i, \sqrt{2}, \sqrt{3}, a) ; a^{3}+3 a-2=0$
T	$x^{6}+6 x^{5}-20 x^{4}+20 x^{3}-20 x^{2}-8 x+8$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(\sqrt{-2}, a, b) ;$
			a ${ }^{3}-7 a+7=b^{4}+4 b^{2}+8 b+8=0$
O	$x^{6}-5 x^{4}+10 x^{3}-5 x^{2}+2 x-1$	$\mathbb{Q}(\sqrt{-2})$	$\begin{aligned} & \mathbb{Q}(\sqrt{-2}, \sqrt{-11}, a, b) ; \\ & \quad a^{3}-4 a+4=b^{4}+22 b+22=0 \end{aligned}$
$J\left(C_{1}\right)$	$x^{5}-x$	$\mathbb{Q}(i)$	$\mathbb{Q}(i, \sqrt{2})$
$J\left(C_{2}\right)$	$x^{5}-x$	Q	$\mathbb{Q}(i, \sqrt{2})$
$J\left(C_{3}\right)$	$x^{6}+10 x^{3}-2$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{-2})$
$J\left(C_{4}\right)$	$x^{6}+x^{5}-5 x^{4}-5 x^{2}-x+1$	Q	see entry for C_{4}
$J\left(C_{6}\right)$	$x^{6}-15 x^{4}-20 x^{3}+6 x+1$	Q	$\mathbb{Q}(i, \sqrt{3}, a) ; a^{3}+3 a^{2}-1=0$
$J\left(D_{2}\right)$	$x^{5}+9 x$	Q	$\mathbb{Q}(i, \sqrt{2}, \sqrt{3})$
$J\left(D_{3}\right)$	$x^{6}+10 x^{3}-2$	Q	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{-2})$
$J\left(D_{4}\right)$	$x^{5}+3 x$	Q	$\mathbb{Q}(i, \sqrt{2}, \sqrt[4]{3})$
$J\left(D_{6}\right)$	$x^{6}+3 x^{5}+10 x^{3}-15 x^{2}+15 x-6$	Q	see entry for D_{6}
$J(T)$	$x^{6}+6 x^{5}-20 x^{4}+20 x^{3}-20 x^{2}-8 x+8$	Q	see entry for T
$J(O)$	$x^{6}-5 x^{4}+10 x^{3}-5 x^{2}+2 x-1$	Q	see entry for O
$C_{2,1}$	$x^{6}+1$	Q	$\mathbb{Q}(\sqrt{-3})$
$C_{4.1}$	$x^{5}+2 x$	$\mathbb{Q}(i)$	$\mathbb{Q}(i, \sqrt[4]{2})$
$C_{6,1}$	$x^{6}+6 x^{5}-30 x^{4}+20 x^{3}+15 x^{2}-12 x+1$	Q	$\mathbb{Q}(\sqrt{-3}, a) ; a^{3}-3 a+1=0$
$D_{2,1}$	$x^{5}+x$	Q	$\mathbb{Q}(i, \sqrt{2})$
$D_{4,1}$	$x^{5}+2 x$	Q	$\mathbb{Q}(i, \sqrt[4]{2})$
$D_{6,1}$	$x^{6}+6 x^{5}-30 x^{4}-40 x^{3}+60 x^{2}+24 x-8$	Q	$\mathbb{Q}(\sqrt{-2}, \sqrt{-3}, a) ; a^{3}-9 a+6=0$
$D_{3,2}$	$x^{6}+4$	Q	$\mathbb{Q}(\sqrt{-3}, \sqrt[3]{2})$
$D_{4,2}$	$x^{6}+x^{5}+10 x^{3}+5 x^{2}+x-2$	Q	$\mathbb{Q}(\sqrt{-2}, a) ; a^{4}-14 a^{2}+28 a-14=0$
$D_{6,2}$	$x^{6}+2$	Q	$\mathbb{Q}(\sqrt{-3}, \sqrt[5]{2})$
O_{1}	$x^{6}+7 x^{5}+10 x^{4}+10 x^{3}+15 x^{2}+17 x+4$	Q	$\mathbb{Q}(\sqrt{-2}, a, b) ;$

Genus 2 curves realizing Sato-Tate groups with $G^{0} \neq \mathrm{U}(1)$

Group	Curve $y^{2}=f(x)$	k	K
F	$x^{6}+3 x^{4}+x^{2}-1$	$\mathbb{Q}(i, \sqrt{2})$	$\mathbb{Q}(i, \sqrt{2})$
F_{a}	$x^{6}+3 x^{4}+x^{2}-1$	$\mathbb{Q}(i)$	$\mathbb{Q}(i, \sqrt{2})$
$F_{a b}$	$x^{6}+3 x^{4}+x^{2}-1$	$\mathbb{Q}(\sqrt{2})$	$\mathbb{Q}(i, \sqrt{2})$
$F_{a c}$	$x^{5}+1$	\mathbb{Q}	$\mathbb{Q}(a) ; a^{4}+5 a^{2}+5=0$
$F_{a, b}$	$x^{6}+3 x^{4}+x^{2}-1$	\mathbb{Q}	$\mathbb{Q}(i, \sqrt{2})$
E_{1}	$x^{6}+x^{4}+x^{2}+1$	\mathbb{Q}	\mathbb{Q}
E_{2}	$x^{6}+x^{5}+3 x^{4}+3 x^{2}-x+1$	\mathbb{Q}	$\mathbb{Q}(\sqrt{2})$
E_{3}	$x^{5}+x^{4}-3 x^{3}-4 x^{2}-x$	\mathbb{Q}	$\mathbb{Q}(a) ; a^{3}-3 a+1=0$
E_{4}	$x^{5}+x^{4}+x^{2}-x$	\mathbb{Q}	$\mathbb{Q}(a) ; a^{4}-5 a^{2}+5=0$
E_{6}	$x^{5}+2 x^{4}-x^{3}-3 x^{2}-x$	\mathbb{Q}	$\mathbb{Q}(\sqrt{7}, a) ; a^{3}-7 a-7=0$
$J\left(E_{1}\right)$	$x^{5}+x^{3}+x$	\mathbb{Q}	$\mathbb{Q}(i)$
$J\left(E_{2}\right)$	$x^{5}+x^{3}-x$	\mathbb{Q}	$\mathbb{Q}(i, \sqrt{2})$
$J\left(E_{3}\right)$	$x^{6}+x^{3}+4$	\mathbb{Q}	$\mathbb{Q}(\sqrt{-3}, \sqrt[3]{2})$
$J\left(E_{4}\right)$	$x^{5}+x^{3}+2 x$	\mathbb{Q}	$\mathbb{Q}(i, \sqrt[4]{2})$
$J\left(E_{6}\right)$	$x^{6}+x^{3}-2$	\mathbb{Q}	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{-2})$
$G_{1,3}$	$x^{6}+3 x^{4}-2$	$\mathbb{Q}(i)$	$\mathbb{Q}(i)$
$N\left(G_{1,3}\right)$	$x^{6}+3 x^{4}-2$	\mathbb{Q}	$\mathbb{Q}(i)$
$G_{3,3}$	$x^{6}+x^{2}+1$	\mathbb{Q}	\mathbb{Q}
$N\left(G_{3,3}\right)$	$x^{6}+x^{5}+x-1$	\mathbb{Q}	$\mathbb{Q}(i)$
$\operatorname{USp}(4)$	$x^{5}-x+1$	\mathbb{Q}	\mathbb{Q}

Searching for curves

We surveyed the \bar{L}-polynomial distributions of genus 2 curves

$$
\begin{gathered}
y^{2}=x^{5}+c_{4} x^{4}+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0}, \\
y^{2}=x^{6}+c_{5} x^{5}+c_{4} x^{4}+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0}
\end{gathered}
$$

with integer coefficients $\left|c_{i}\right| \leq 128$, over 2^{48} curves.
We specifically searched for cases not already addressed in [KS09].

Searching for curves

We surveyed the \bar{L}-polynomial distributions of genus 2 curves

$$
\begin{gathered}
y^{2}=x^{5}+c_{4} x^{4}+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0} \\
y^{2}=x^{6}+c_{5} x^{5}+c_{4} x^{4}+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0}
\end{gathered}
$$

with integer coefficients $\left|c_{i}\right| \leq 128$, over 2^{48} curves.
We specifically searched for cases not already addressed in [KS09].
We found over 10 million non-isogenous curves with exceptional distributions, including at least 3 apparent matches for all of our target Sato-Tate groups.
Representative examples were computed to high precision $N=2^{30}$.
For each example, the field K was then determined, allowing the Galois type, and hence the Sato-Tate group, to be provably identified.

Existing algorithms for hyperelliptic curves

Algorithms to compute $L_{p}(T)$ for low genus hyperelliptic curves:

	complexity (ignoring factors of $O(\log \log p)$)	
	algorithm $\quad g=1 \quad g=2 \quad g=3$	

Existing algorithms for hyperelliptic curves

Algorithms to compute $L_{p}(T)$ for low genus hyperelliptic curves:

	complexity (ignoring factors of $O(\log \log p)$)		
algorithm	$g=1$	$g=2$	$g=3$
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3} \log p$

Existing algorithms for hyperelliptic curves

Algorithms to compute $L_{p}(T)$ for low genus hyperelliptic curves:

	complexity (ignoring factors of $O(\log \log p))$		
algorithm	$g=1$	$g=2$	$g=3$
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3} \log p$
group computation	$p^{1 / 4} \log p$	$p^{3 / 4} \log p$	$p^{5 / 4} \log p$

Existing algorithms for hyperelliptic curves

Algorithms to compute $L_{p}(T)$ for low genus hyperelliptic curves:

	complexity (ignoring factors of $O(\log \log p))$			
algorithm	$g=1$	$g=2$	$g=3$	
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3} \log p$	
group computation	$p^{1 / 4} \log p$	$p^{3 / 4} \log p$	$p^{5 / 4} \log p$	
p-adic cohomology	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$	

Existing algorithms for hyperelliptic curves

Algorithms to compute $L_{p}(T)$ for low genus hyperelliptic curves:

	complexity (ignoring factors of $O(\log \log p))$		
algorithm	$g=1$	$g=2$	$g=3$
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3} \log p$
group computation	$p^{1 / 4} \log p$	$p^{3 / 4} \log p$	$p^{5 / 4} \log p$
p-adic cohomology	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$
CRT (Schoof-Pila)	$\log ^{5} p$	$\log ^{8} p$	$\log ^{12} p(?)$

Existing algorithms for hyperelliptic curves

Algorithms to compute $L_{p}(T)$ for low genus hyperelliptic curves:

	complexity (ignoring factors of $O(\log \log p))$		
algorithm	$g=1$	$g=2$	$g=3$
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3} \log p$
group computation	$p^{1 / 4} \log p$	$p^{3 / 4} \log p$	$p^{5 / 4} \log p$
p-adic cohomology	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$
CRT (Schoof-Pila)	$\log ^{5} p$	$\log ^{8} p$	$\log ^{12} p(?)$

An average polynomial-time algorithm

All of the methods above perform separate computations for each p. But we want to compute $L_{p}(T)$ for all good $p \leq N$ using reductions of the same curve in each case.

An average polynomial-time algorithm

All of the methods above perform separate computations for each p. But we want to compute $L_{p}(T)$ for all good $p \leq N$ using reductions of the same curve in each case.

Theorem (H 2012)

There exists a deterministic algorithm that, given a hyperelliptic curve $y^{2}=f(x)$ of genus g with a rational Weierstrass point and an integer N, computes $L_{p}(T)$ for all good primes $p \leq N$ in time

$$
O\left(g^{8+\epsilon} N \log ^{3+\epsilon} N\right)
$$

assuming the coefficients of $f \in \mathbb{Z}[x]$ have size bounded by $O(\log N)$.

Average time is $O\left(g^{8+\epsilon} \log ^{4+\epsilon} N\right)$ per prime, polynomial in g and $\log p$.

An average polynomial-time algorithm

All of the methods above perform separate computations for each p. But we want to compute $L_{p}(T)$ for all good $p \leq N$ using reductions of the same curve in each case.

Theorem (H 2012)

There exists a deterministic algorithm that, given a hyperelliptic curve $y^{2}=f(x)$ of genus g with a rational Weierstrass point and an integer N, computes $L_{p}(T)$ for all good primes $p \leq N$ in time

$$
O\left(g^{8+\epsilon} N \log ^{3+\epsilon} N\right)
$$

assuming the coefficients of $f \in \mathbb{Z}[x]$ have size bounded by $O(\log N)$.

Average time is $O\left(g^{8+\epsilon} \log ^{4+\epsilon} N\right)$ per prime, polynomial in g and $\log p$. Recently generalized to arithmetic schemes (including curves over \mathbb{Q}).

An average polynomial-time algorithm

But is it practical?

An average polynomial-time algorithm

But is it practical? Yes!

	complexity (ignoring factors of $O(\log \log p))$		
algorithm	$g=1$	$g=2$	$g=3$
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3} \log p$
group computation	$p^{1 / 4} \log p$	$p^{3 / 4} \log p$	$p^{5 / 4} \log p$
p-adic cohomology	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$
CRT (Schoof-Pila)	$\log ^{5} p$	$\log ^{8} p$	$\log ^{12} p(?)$
Average polytime	$\log ^{4} p$	$\log ^{4} p$	$\log ^{4} p$

For hyperelliptic curves of genus 2 and 3 the new algorithm is at least 30 times faster than current approaches, within the feasible range of N.

