Counting points on curves in average polynomial time

David Harvey and Andrew Sutherland

February 24, 2014

```
http://arxiv.org/abs/1402.3246
```


Sato-Tate in genus 1

Let E / \mathbb{Q} be an elliptic curve:

$$
y^{2}=x^{3}+A x+B
$$

Let p be a prime of good reduction for E .
The number of \mathbf{F}_{p}-points on the reduction E_{p} of E modulo p is

$$
\# E_{p}\left(\mathbf{F}_{p}\right)=p+1-t_{p}
$$

The trace of Frobenius t_{p} is an integer in the interval $[-2 \sqrt{p}, 2 \sqrt{p}]$.
We are interested in the limiting distribution of the normalized value

$$
x_{p}=\frac{-t_{p}}{\sqrt{p}} \in[-2,2]
$$

as p varies over primes of good reduction.

Zeta functions and L-polynomials

For a smooth projective curve C / \mathbb{Q} of genus g and a good prime p let

$$
Z\left(C_{p} / \mathbb{F}_{p} ; T\right):=\exp \left(\sum_{k=1}^{\infty} N_{k} T^{k} / k\right),
$$

where $N_{k}=\# C_{p}\left(\mathbf{F}_{p^{k}}\right)$. This is a rational function of the form

$$
Z\left(C_{p} / \mathbb{F}_{p} ; T\right)=\frac{L_{p}(T)}{(1-T)(1-p T)},
$$

where $L_{p}(T)$ is an integer polynomial of degree $2 g$.
For $g=1$ we have $L_{p}(t)=p T^{2}+c_{1} T+1$, and for $g=2$,

$$
L_{p}(T)=p^{2} T^{4}+c_{1} p T^{3}+c_{2} T^{2}+c_{1} T+1 .
$$

Sato-Tate in genus g

The normalized L-polynomial

$$
\bar{L}_{p}(T):=L_{p}(T / \sqrt{p})=\sum_{i=0}^{2 g} a_{i} T^{i} \in \mathbf{R}[T]
$$

is monic, symmetric ($a_{i}=a_{2 g-i}$), and unitary (roots on the unit circle). The coefficients a_{i} necessarily satisfy $\left|a_{i}\right| \leq\binom{ 2 g}{i}$.

We may now consider the limiting distribution of $a_{1}, a_{2}, \ldots, a_{g}$ over all primes $p \leq N$ of good reduction, as $N \rightarrow \infty$.
http://math.mit.edu/~drew

Existing algorithms for hyperelliptic curves

Algorithms to compute $L_{p}(T)$ for low genus hyperelliptic curves:

| | complexity
 (ignoring factors of $O(\log \log p))$ |
| :---: | :---: | :---: |
| | algorithm $\quad g=1 \quad g=2 \quad g=3$ |

Existing algorithms for hyperelliptic curves

Algorithms to compute $L_{p}(T)$ for low genus hyperelliptic curves:

	complexity (ignoring factors of $O(\log \log p))$		
algorithm	$g=1$	$g=2$	$g=3$
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3} \log p$

Existing algorithms for hyperelliptic curves

Algorithms to compute $L_{p}(T)$ for low genus hyperelliptic curves:

	complexity (ignoring factors of $O(\log \log p))$		
algorithm	$g=1$	$g=2$	$g=3$
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3} \log p$
group computation	$p^{1 / 4} \log p$	$p^{3 / 4} \log p$	$p^{5 / 4} \log p$

Existing algorithms for hyperelliptic curves

Algorithms to compute $L_{p}(T)$ for low genus hyperelliptic curves:

	complexity (ignoring factors of $O(\log \log p))$			
algorithm	$g=1$	$g=2$	$g=3$	
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3} \log p$	
group computation	$p^{1 / 4} \log p$	$p^{3 / 4} \log p$	$p^{5 / 4} \log p$	
p-adic cohomology	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$	

Existing algorithms for hyperelliptic curves

Algorithms to compute $L_{p}(T)$ for low genus hyperelliptic curves:

	complexity (ignoring factors of $O(\log \log p))$		
algorithm	$g=1$	$g=2$	$g=3$
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3} \log p$
group computation	$p^{1 / 4} \log p$	$p^{3 / 4} \log p$	$p^{5 / 4} \log p$
p-adic cohomology	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$
CRT (Schoof-Pila)	$\log ^{5} p$	$\log ^{8} p$	$\log ^{12} p(?)$

Existing algorithms for hyperelliptic curves

Algorithms to compute $L_{p}(T)$ for low genus hyperelliptic curves:

	complexity (ignoring factors of $O(\log \log p))$		
algorithm	$g=1$	$g=2$	$g=3$
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3} \log p$
group computation	$p^{1 / 4} \log p$	$p^{3 / 4} \log p$	$p^{5 / 4} \log p$
p-adic cohomology	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$
CRT (Schoof-Pila)	$\log ^{5} p$	$\log ^{8} p$	$\log ^{12} p(?)$

An average polynomial-time algorithm

All of the methods above perform separate computations for each p. But we want to compute $L_{p}(T)$ for all good $p \leq N$ using reductions of the same curve in each case.

An average polynomial-time algorithm

All of the methods above perform separate computations for each p. But we want to compute $L_{p}(T)$ for all good $p \leq N$ using reductions of the same curve in each case.

Theorem (H 2012)

There exists a deterministic algorithm that, given a hyperelliptic curve $y^{2}=f(x)$ of genus g with a rational Weierstrass point and an integer N, computes $L_{p}(T)$ for all good primes $p \leq N$ in time

$$
O\left(g^{8+\epsilon} N \log ^{3+\epsilon} N\right)
$$

assuming the coefficients of $f \in \mathbf{Z}[x]$ have size bounded by $O(\log N)$.

Average time is $O\left(g^{8+\epsilon} \log ^{4+\epsilon} N\right)$ per prime, polynomial in g and $\log p$. Very recently (last week) generalized to arithmetic schemes.

An average polynomial-time algorithm

But is it practical?

An average polynomial-time algorithm

But is it practical? Yes!

	complexity (ignoring factors of $O(\log \log p))$		
algorithm	$g=1$	$g=2$	$g=3$
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3} \log p$
group computation	$p^{1 / 4} \log p$	$p^{3 / 4} \log p$	$p^{5 / 4} \log p$
p-adic cohomology	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$
CRT (Schoof-Pila)	$\log ^{5} p$	$\log ^{8} p$	$\log ^{12} p(?)$
Average polytime	$\log ^{4} p$	$\log ^{4} p$	$\log ^{4} p$

$$
d=5 \quad d=6
$$

N	ave polytime	group comp		ave polytime	group comp
2^{14}	0.4	0.2	0.7	0.3	
2^{15}	1.1	0.6	1.9	0.7	
2^{16}	2.8	1.7	4.9	2.0	
2^{17}	6.8	5.6	11.9	6.4	
2^{18}	16.8	20.2	29.0	22.1	
2^{19}	39.7	76.4	69.1	83.4	
2^{20}	94.4	257	166	284	
2^{21}	227	828	398	914	
2^{22}	534	2630	946	2900	
2^{23}	1240	8570	2230	9520	
2^{24}	2920	28000	5260	31100	
2^{25}	6740	92300	11800	102000	
2^{26}	15800	316000	27400	349000	

Performance comparison of new algorithm (ave polytime) with small jac (group comp) in genus 2 . Times in CPU seconds.

	$d=7$	
N	ave polytime	p-adic
2^{14}	2.0	6.8
2^{15}	5.5	15.6
2^{16}	13.6	37.6
2^{17}	33.3	95.0
2^{18}	80.4	250
2^{19}	192	681
2^{20}	459	1920
2^{21}	1090	5460
2^{22}	2540	16300
2^{23}	5940	49400
2^{24}	13800	152000
2^{25}	31800	467000
2^{26}	72900	1490000

Performance comparison of new algorithm (ave polytime) with hypellfrob (p-adic) in genus 2 . Times in CPU seconds.

The algorithm in genus 1

The Hasse invariant h_{p} of an elliptic curve $y^{2}=f(x)=x^{3}+a x+b$ over \mathbf{F}_{p} is the coefficient of x^{p-1} in the polynomial $f(x)^{(p-1) / 2}$.

We have $h_{p} \equiv t_{p} \bmod p$, which uniquely determines t_{p} for $p>13$.
Naïve approach: iteratively compute $f, f^{2}, f^{3}, \ldots, f^{(N-1) / 2}$ in $\mathbf{Z}[x]$ and reduce the x^{p-1} coefficient of $f(x)^{(p-1) / 2} \bmod p$ for each prime $p \leq N$.

The algorithm in genus 1

The Hasse invariant h_{p} of an elliptic curve $y^{2}=f(x)=x^{3}+a x+b$ over \mathbf{F}_{p} is the coefficient of x^{p-1} in the polynomial $f(x)^{(p-1) / 2}$.

We have $h_{p} \equiv t_{p} \bmod p$, which uniquely determines t_{p} for $p>13$.
Naïve approach: iteratively compute $f, f^{2}, f^{3}, \ldots, f^{(N-1) / 2}$ in $\mathbf{Z}[x]$ and reduce the x^{p-1} coefficient of $f(x)^{(p-1) / 2} \bmod p$ for each prime $p \leq N$.

But the polynomials f^{n} are huge, each has $\Omega\left(n^{2}\right)$ bits. It would take $\Omega\left(N^{3}\right)$ time to compute $f, \ldots, f^{(N-1) / 2}$ in $\mathbf{Z}[x]$.

So this is a terrible idea...

The algorithm in genus 1

The Hasse invariant h_{p} of an elliptic curve $y^{2}=f(x)=x^{3}+a x+b$ over \mathbf{F}_{p} is the coefficient of x^{p-1} in the polynomial $f(x)^{(p-1) / 2}$.

We have $h_{p} \equiv t_{p} \bmod p$, which uniquely determines t_{p} for $p>13$.
Naïve approach: iteratively compute $f, f^{2}, f^{3}, \ldots, f^{(N-1) / 2}$ in $\mathbf{Z}[x]$ and reduce the x^{p-1} coefficient of $f(x)^{(p-1) / 2} \bmod p$ for each prime $p \leq N$.

But the polynomials f^{n} are huge, each has $\Omega\left(n^{2}\right)$ bits. It would take $\Omega\left(N^{3}\right)$ time to compute $f, \ldots, f^{(N-1) / 2}$ in $\mathbf{Z}[x]$.

So this is a terrible idea...
But we don't need all the coefficients of f^{n}, we only need one; and we only need to know its value modulo $p=2 n+1$.

A better approach

Let $f(x)=x^{3}+a x+b$, and let f_{k}^{n} denote the coefficient of x^{k} in $f(x)^{n}$. Using $f^{n}=f \cdot f^{n-1}$ and $\left(f^{n}\right)^{\prime}=n f^{\prime} f^{n-1}$, one obtains the relations

$$
\begin{aligned}
(n+2) f_{2 n-2}^{n} & =n\left(2 a f_{2 n-3}^{n-1}+3 b f_{2 n-2}^{n-1}\right) \\
(2 n-1) f_{2 n-1}^{n} & =n\left(3 f_{2 n-4}^{n-1}+a f_{2 n-2}^{n-1}\right) \\
2(2 n-1) b f_{2 n}^{n} & =(n+1) a f_{2 n-4}^{n-1}+3(2 n-1) b f_{2 n-3}^{n-1}-(n-1) a^{2} f_{2 n-2}^{n-1}
\end{aligned}
$$

These allow us to compute the vector $v_{n}=\left[f_{2 n-2}^{n}, f_{2 n-1}^{n}, f_{2 n}^{n}\right]$ from the vector $v_{n-1}=\left[f_{2 n-4}^{n-1}, f_{2 n-3}^{n-1}, f_{2 n-2}^{n-1}\right]$ via multiplication by a 3×3 matrix M_{n} with entries in \mathbf{Q}. We have

$$
v_{n}=v_{0} M_{1} M_{2} \cdots M_{n}
$$

For $n=(p-1) / 2$, the Hasse invariant of the elliptic curve $y^{2}=f(x)$ over \mathbf{F}_{p} is obtained by reducing the third entry $f_{n}^{2 n}$ of v_{n} modulo p.

Computing $t_{p} \bmod p$

To compute $t_{p} \bmod p$ for all odd primes $p \leq N$ it suffices to compute
$M_{1} \bmod 3$
$M_{1} M_{2} \bmod 5$
$M_{1} M_{2} M_{3} \bmod 7$
$M_{1} M_{2} M_{3} M_{4} \bmod 9$

$$
M_{1} M_{2} M_{3} \cdots M_{(N-1) / 2} \bmod N
$$

Doing this naïvely would take $O\left(N^{2+\epsilon}\right)$ time. But it can be done in $O\left(N^{1+\epsilon}\right)$ time using a remainder tree.

The algorithm in genus g.

The Hasse-Witt matrix of a hyperelliptic curve $y^{2}=f(x)$ over \mathbf{F}_{p} of genus g is the $g \times g$ matrix $W_{p}=\left[w_{i j}\right]$ with entries

$$
w_{i j}=f_{p i-j}^{(p-1) / 2} \bmod p
$$

The algorithm in genus g.

The Hasse-Witt matrix of a hyperelliptic curve $y^{2}=f(x)$ over \mathbf{F}_{p} of genus g is the $g \times g$ matrix $W_{p}=\left[w_{i j}\right]$ with entries

$$
w_{i j}=f_{p i-j}^{(p-1) / 2} \bmod p
$$

The $w_{i j}$ can each be computed using recurrence relations between the coefficients of f^{n} and those of f^{n-1}, as in genus 1 .

The congruence

$$
L_{P}(T) \equiv \operatorname{det}\left(I-T W_{p}\right) \bmod p
$$

allows us to determine the coefficients a_{1}, \ldots, a_{g} of $L_{p}(T)$ modulo p.
Using group computations in the Jacobian of the curve, one can determine $L_{p}(T)$ exactly. This takes $\tilde{O}(1)$ time in genus 2 , and $\tilde{O}\left(p^{1 / 4}\right)$ time in genus 3 , which turns out to be negligible within the feasible range of computation.

Optimizations

The remainder tree algorithm can be made faster and more space efficient using a remainder forest.
Our implementation works for all hyperelliptic curves, not just those with a rational Weierstrass point.

Theorem (HS 2014)

There exists a deterministic algorithm that, given a hyperelliptic curve $y^{2}=f(x)$ of genus g and an integer N, computes $L_{p}(T)$ for all good primes $p \leq N$ using

$$
O\left(g^{5} N \log ^{3+\epsilon} N\right) \text { time } \quad \text { and } \quad O\left(g^{2} N\right) \text { space, }
$$

assuming that g and the size of the coefficients of $f \in \mathbf{Z}[x]$ are $O(\log N)$.

