
Counting points on curves
in average polynomial time

David Harvey and Andrew Sutherland

February 24, 2014

http://arxiv.org/abs/1402.3246

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 1 / 15

http://arxiv.org/abs/1402.3246

Sato-Tate in genus 1

Let E/Q be an elliptic curve:

y2 = x3 + Ax + B.

Let p be a prime of good reduction for E.
The number of Fp-points on the reduction Ep of E modulo p is

#Ep(Fp) = p + 1− tp.

The trace of Frobenius tp is an integer in the interval [−2
√

p, 2
√

p].

We are interested in the limiting distribution of the normalized value

xp =
−tp√

p
∈ [−2, 2],

as p varies over primes of good reduction.

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 2 / 15

Zeta functions and L-polynomials

For a smooth projective curve C/Q of genus g and a good prime p let

Z(Cp/Fp; T) := exp

(∞∑
k=1

NkTk/k

)
,

where Nk = #Cp(Fpk). This is a rational function of the form

Z(Cp/Fp; T) =
Lp(T)

(1− T)(1− pT)
,

where Lp(T) is an integer polynomial of degree 2g.

For g = 1 we have Lp(t) = pT2 + c1T + 1, and for g = 2,

Lp(T) = p2T4 + c1pT3 + c2T2 + c1T + 1.

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 3 / 15

Sato-Tate in genus g

The normalized L-polynomial

L̄p(T) := Lp(T/
√

p) =

2g∑
i=0

aiT i ∈ R[T]

is monic, symmetric (ai = a2g−i), and unitary (roots on the unit circle).
The coefficients ai necessarily satisfy |ai| ≤

(2g
i

)
.

We may now consider the limiting distribution of a1, a2, . . . , ag over all
primes p ≤ N of good reduction, as N →∞.

http://math.mit.edu/˜drew

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 4 / 15

http://math.mit.edu/~drew/g2SatoTateDistributions.html
http://math.mit.edu/~drew

Existing algorithms for hyperelliptic curves

Algorithms to compute Lp(T) for low genus hyperelliptic curves:

complexity
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3 log p
group computation p1/4 log p p3/4 log p p5/4 log p
p-adic cohomology p1/2 log2 p p1/2 log2 p p1/2 log2 p
CRT (Schoof-Pila) log5 p log8 p log12 p (?)

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 5 / 15

Existing algorithms for hyperelliptic curves

Algorithms to compute Lp(T) for low genus hyperelliptic curves:

complexity
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3 log p

group computation p1/4 log p p3/4 log p p5/4 log p
p-adic cohomology p1/2 log2 p p1/2 log2 p p1/2 log2 p
CRT (Schoof-Pila) log5 p log8 p log12 p (?)

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 5 / 15

Existing algorithms for hyperelliptic curves

Algorithms to compute Lp(T) for low genus hyperelliptic curves:

complexity
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3 log p
group computation p1/4 log p p3/4 log p p5/4 log p

p-adic cohomology p1/2 log2 p p1/2 log2 p p1/2 log2 p
CRT (Schoof-Pila) log5 p log8 p log12 p (?)

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 5 / 15

Existing algorithms for hyperelliptic curves

Algorithms to compute Lp(T) for low genus hyperelliptic curves:

complexity
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3 log p
group computation p1/4 log p p3/4 log p p5/4 log p
p-adic cohomology p1/2 log2 p p1/2 log2 p p1/2 log2 p

CRT (Schoof-Pila) log5 p log8 p log12 p (?)

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 5 / 15

Existing algorithms for hyperelliptic curves

Algorithms to compute Lp(T) for low genus hyperelliptic curves:

complexity
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3 log p
group computation p1/4 log p p3/4 log p p5/4 log p
p-adic cohomology p1/2 log2 p p1/2 log2 p p1/2 log2 p
CRT (Schoof-Pila) log5 p log8 p log12 p (?)

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 5 / 15

Existing algorithms for hyperelliptic curves

Algorithms to compute Lp(T) for low genus hyperelliptic curves:

complexity
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3 log p
group computation p1/4 log p p3/4 log p p5/4 log p
p-adic cohomology p1/2 log2 p p1/2 log2 p p1/2 log2 p
CRT (Schoof-Pila) log5 p log8 p log12 p (?)

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 6 / 15

An average polynomial-time algorithm

All of the methods above perform separate computations for each p.
But we want to compute Lp(T) for all good p ≤ N using reductions of
the same curve in each case.

Theorem (H 2012)
There exists a deterministic algorithm that, given a hyperelliptic curve
y2 = f (x) of genus g with a rational Weierstrass point and an integer N,
computes Lp(T) for all good primes p ≤ N in time

O
(
g8+εN log3+ε N

)
,

assuming the coefficients of f ∈ Z[x] have size bounded by O(log N).

Average time is O
(
g8+ε log4+ε N

)
per prime, polynomial in g and log p.

Very recently (last week) generalized to arithmetic schemes.

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 7 / 15

An average polynomial-time algorithm

All of the methods above perform separate computations for each p.
But we want to compute Lp(T) for all good p ≤ N using reductions of
the same curve in each case.

Theorem (H 2012)
There exists a deterministic algorithm that, given a hyperelliptic curve
y2 = f (x) of genus g with a rational Weierstrass point and an integer N,
computes Lp(T) for all good primes p ≤ N in time

O
(
g8+εN log3+ε N

)
,

assuming the coefficients of f ∈ Z[x] have size bounded by O(log N).

Average time is O
(
g8+ε log4+ε N

)
per prime, polynomial in g and log p.

Very recently (last week) generalized to arithmetic schemes.

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 7 / 15

An average polynomial-time algorithm

But is it practical?

Yes!

complexity
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3 log p
group computation p1/4 log p p3/4 log p p5/4 log p
p-adic cohomology p1/2 log2 p p1/2 log2 p p1/2 log2 p
CRT (Schoof-Pila) log5 p log8 p log12 p(?)

Average polytime log4 p log4 p log4 p

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 8 / 15

An average polynomial-time algorithm

But is it practical? Yes!

complexity
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3 log p
group computation p1/4 log p p3/4 log p p5/4 log p
p-adic cohomology p1/2 log2 p p1/2 log2 p p1/2 log2 p
CRT (Schoof-Pila) log5 p log8 p log12 p(?)

Average polytime log4 p log4 p log4 p

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 8 / 15

d = 5 d = 6

N ave polytime group comp ave polytime group comp

214 0.4 0.2 0.7 0.3
215 1.1 0.6 1.9 0.7
216 2.8 1.7 4.9 2.0
217 6.8 5.6 11.9 6.4
218 16.8 20.2 29.0 22.1
219 39.7 76.4 69.1 83.4
220 94.4 257 166 284
221 227 828 398 914
222 534 2630 946 2900
223 1240 8570 2230 9520
224 2920 28000 5260 31100
225 6740 92300 11800 102000
226 15800 316000 27400 349000

Performance comparison of new algorithm (ave polytime)
with smalljac (group comp) in genus 2. Times in CPU seconds.

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 9 / 15

d = 7

N ave polytime p-adic

214 2.0 6.8
215 5.5 15.6
216 13.6 37.6
217 33.3 95.0
218 80.4 250
219 192 681
220 459 1920
221 1090 5460
222 2540 16300
223 5940 49400
224 13800 152000
225 31800 467000
226 72900 1490000

Performance comparison of new algorithm (ave polytime)
with hypellfrob (p-adic) in genus 2. Times in CPU seconds.

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 10 / 15

The algorithm in genus 1

The Hasse invariant hp of an elliptic curve y2 = f (x) = x3 + ax + b
over Fp is the coefficient of xp−1 in the polynomial f (x)(p−1)/2.

We have hp ≡ tp mod p, which uniquely determines tp for p > 13.

Naı̈ve approach: iteratively compute f , f 2, f 3, . . . , f (N−1)/2 in Z[x] and
reduce the xp−1 coefficient of f (x)(p−1)/2 mod p for each prime p ≤ N.

But the polynomials f n are huge, each has Ω(n2) bits.
It would take Ω(N3) time to compute f , . . . , f (N−1)/2 in Z[x].

So this is a terrible idea...

But we don’t need all the coefficients of f n, we only need one;
and we only need to know its value modulo p = 2n + 1.

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 11 / 15

The algorithm in genus 1

The Hasse invariant hp of an elliptic curve y2 = f (x) = x3 + ax + b
over Fp is the coefficient of xp−1 in the polynomial f (x)(p−1)/2.

We have hp ≡ tp mod p, which uniquely determines tp for p > 13.

Naı̈ve approach: iteratively compute f , f 2, f 3, . . . , f (N−1)/2 in Z[x] and
reduce the xp−1 coefficient of f (x)(p−1)/2 mod p for each prime p ≤ N.

But the polynomials f n are huge, each has Ω(n2) bits.
It would take Ω(N3) time to compute f , . . . , f (N−1)/2 in Z[x].

So this is a terrible idea...

But we don’t need all the coefficients of f n, we only need one;
and we only need to know its value modulo p = 2n + 1.

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 11 / 15

The algorithm in genus 1

The Hasse invariant hp of an elliptic curve y2 = f (x) = x3 + ax + b
over Fp is the coefficient of xp−1 in the polynomial f (x)(p−1)/2.

We have hp ≡ tp mod p, which uniquely determines tp for p > 13.

Naı̈ve approach: iteratively compute f , f 2, f 3, . . . , f (N−1)/2 in Z[x] and
reduce the xp−1 coefficient of f (x)(p−1)/2 mod p for each prime p ≤ N.

But the polynomials f n are huge, each has Ω(n2) bits.
It would take Ω(N3) time to compute f , . . . , f (N−1)/2 in Z[x].

So this is a terrible idea...

But we don’t need all the coefficients of f n, we only need one;
and we only need to know its value modulo p = 2n + 1.

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 11 / 15

A better approach
Let f (x) = x3 + ax + b, and let f n

k denote the coefficient of xk in f (x)n.
Using f n = f · f n−1 and (f n)′ = nf ′f n−1, one obtains the relations

(n + 2)f n
2n−2 = n

(
2af n−1

2n−3 + 3bf n−1
2n−2

)
,

(2n− 1)f n
2n−1 = n

(
3f n−1

2n−4 + af n−1
2n−2

)
,

2(2n− 1)bf n
2n = (n + 1)af n−1

2n−4 + 3(2n− 1)bf n−1
2n−3 − (n− 1)a2f n−1

2n−2.

These allow us to compute the vector vn = [f n
2n−2, f n

2n−1, f n
2n] from the

vector vn−1 = [f n−1
2n−4, f n−1

2n−3, f n−1
2n−2] via multiplication by a 3× 3 matrix Mn

with entries in Q. We have

vn = v0M1M2 · · ·Mn.

For n = (p− 1)/2, the Hasse invariant of the elliptic curve y2 = f (x)
over Fp is obtained by reducing the third entry f 2n

n of vn modulo p.

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 12 / 15

Computing tp mod p

To compute tp mod p for all odd primes p ≤ N it suffices to compute

M1 mod 3

M1M2 mod 5

M1M2M3 mod 7

M1M2M3M4 mod 9
...

M1M2M3 · · ·M(N−1)/2 mod N

Doing this naı̈vely would take O
(
N2+ε

)
time.

But it can be done in O
(
N1+ε

)
time using a remainder tree.

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 13 / 15

The algorithm in genus g.
The Hasse-Witt matrix of a hyperelliptic curve y2 = f (x) over Fp of
genus g is the g× g matrix Wp = [wij] with entries

wij = f (p−1)/2
pi−j mod p.

The wij can each be computed using recurrence relations between
the coefficients of f n and those of f n−1, as in genus 1.

The congruence
LP(T) ≡ det(I − TWp) mod p

allows us to determine the coefficients a1, . . . , ag of Lp(T) modulo p.

Using group computations in the Jacobian of the curve, one can
determine Lp(T) exactly. This takes Õ(1) time in genus 2, and Õ(p1/4)
time in genus 3, which turns out to be negligible within the feasible
range of computation.

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 14 / 15

The algorithm in genus g.
The Hasse-Witt matrix of a hyperelliptic curve y2 = f (x) over Fp of
genus g is the g× g matrix Wp = [wij] with entries

wij = f (p−1)/2
pi−j mod p.

The wij can each be computed using recurrence relations between
the coefficients of f n and those of f n−1, as in genus 1.

The congruence
LP(T) ≡ det(I − TWp) mod p

allows us to determine the coefficients a1, . . . , ag of Lp(T) modulo p.

Using group computations in the Jacobian of the curve, one can
determine Lp(T) exactly. This takes Õ(1) time in genus 2, and Õ(p1/4)
time in genus 3, which turns out to be negligible within the feasible
range of computation.

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 14 / 15

Optimizations

The remainder tree algorithm can be made faster and more space
efficient using a remainder forest.

Our implementation works for all hyperelliptic curves, not just those
with a rational Weierstrass point.

Theorem (HS 2014)

There exists a deterministic algorithm that, given a hyperelliptic curve
y2 = f (x) of genus g and an integer N, computes Lp(T) for all good
primes p ≤ N using

O
(
g5N log3+ε N

)
time and O(g2N) space,

assuming that g and the size of the coefficients of f ∈ Z[x] are O(log N).

Harvey (UNSW) Sutherland (MIT) Point counting in average polynomial time February 24, 2014 15 / 15

