Sato-Tate in dimension 3

Andrew V. Sutherland

Massachusetts Institute of Technology

December 7, 2016

Mikio Sato

John Tate

Joint work with F. Fité, K.S. Kedlaya, and V. Rotger, and with D. Harvey.

Sato-Tate in dimension 1

Let E / \mathbb{Q} be an elliptic curve, say,

$$
y^{2}=x^{3}+A x+B
$$

and let p be a prime of good reduction (so $p \nmid \Delta(E)$).
The number of \mathbb{F}_{p}-points on the reduction E_{p} of E modulo p is

$$
\# E_{p}\left(\mathbb{F}_{p}\right)=p+1-t_{p}
$$

where the trace of Frobenius t_{p} is an integer in $[-2 \sqrt{p}, 2 \sqrt{p}]$.
We are interested in the limiting distribution of $x_{p}=-t_{p} / \sqrt{p} \in[-2,2]$, as p varies over primes of good reduction up to $N \rightarrow \infty$.

al histogram of $y^{\wedge} 2+x y+y=x^{\wedge} 3-x^{\wedge} 2-20067762415575526585033208209338542750930230312178956502 x$
+34481611795030556467032985690390720374855944359319180361266008296291939448732243429 for $p<=2^{\wedge} 10$ 172 data points in 13 buckets, $z 1=0.023$, out of range data has area 0.250

click histogram to animate (requires adobe reader)

click histogram to animate (requires adobe reader)

Sato-Tate distributions in dimension 1

1. Typical case (no CM)

Elliptic curves E / \mathbb{Q} w/o CM have the semi-circular trace distribution. (This is also known for E / k, where k is a totally real number field). [Barnet-Lamb, Clozel, Geraghty, Harris, Shepherd-Barron, Taylor]

2. Exceptional cases (CM)

Elliptic curves E / k with CM have one of two distinct trace distributions, depending on whether k contains the CM field or not.
[classical (Hecke, Deuring)]

Sato-Tate groups in dimension 1

The Sato-Tate group of E is a closed subgroup G of $\mathrm{SU}(2)=\mathrm{USp}(2)$ derived from the ℓ-adic Galois representation attached to E.

A refinement of the Sato-Tate conjecture implies that the distribution of normalized Frobenius traces of E converges to the distribution of traces in its Sato-Tate group G (under its Haar measure).

G	G / G^{0}	E	k	$\mathrm{E}\left[a_{1}^{0}\right], \mathrm{E}\left[a_{1}^{2}\right], \mathrm{E}\left[a_{1}^{4}\right] \ldots$
$\mathrm{SU}(2)$	C_{1}	$y^{2}=x^{3}+x+1$	\mathbb{Q}	$1,1,2,5,14,42, \ldots$
$N(\mathrm{U}(1))$	C_{2}	$y^{2}=x^{3}+1$	\mathbb{Q}	$1,1,3,10,35,126, \ldots$
$\mathrm{U}(1)$	C_{1}	$y^{2}=x^{3}+1$	$\mathbb{Q}(\sqrt{-3})$	$1,2,6,20,70,252, \ldots$

In dimension 1 there are three possible Sato-Tate groups, two of which arise for elliptic curves defined over \mathbb{Q}.

Zeta functions and L-polynomials

For a smooth projective curve C / \mathbb{Q} of genus g and each prime p of good reduction for C we have the zeta function

$$
Z\left(C_{p} / \mathbb{F}_{p} ; T\right):=\exp \left(\sum_{k=1}^{\infty} \# C_{p}\left(\mathbb{F}_{p^{k}}\right) T^{k} / k\right)=\frac{L_{p}(T)}{(1-T)(1-p T)},
$$

where $L_{p} \in \mathbb{Z}[T]$ has degree $2 g$. The normalized L-polynomial

$$
\bar{L}_{p}(T):=L_{p}(T / \sqrt{p})=\sum_{i=0}^{2 g} a_{i} T^{i} \in \mathbb{R}[T]
$$

is monic, reciprocal, and unitary, with $\left|a_{i}\right| \leq\binom{ 2 g}{i}$.
We now consider the limiting distribution of $a_{1}, a_{2}, \ldots, a_{g}$ over all primes $p \leq N$ of good reduction, as $N \rightarrow \infty$.

click histogram to animate (requires adobe reader)

click histogram to animate (requires adobe reader)

click histogram to animate (requires adobe reader)

Exceptional distributions for abelian surfaces over \mathbb{Q} :

L-polynomials of Abelian varieties

Let A be an abelian variety over a number field k. Fix a prime ℓ.
The action of $\operatorname{Gal}(\bar{k} / k)$ on the ℓ-adic Tate module

$$
V_{\ell}(A):=\lim _{\leftarrow} A\left[\ell^{n}\right] \otimes_{\mathbb{Z}} \mathbb{Q}
$$

gives rise to a Galois representation

$$
\rho_{\ell}: \operatorname{Gal}(\bar{k} / k) \rightarrow \operatorname{Aut}_{\mathbb{Q}_{\ell}}\left(V_{\ell}(A)\right) \simeq \mathrm{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right)
$$

For each prime \mathfrak{p} of good reduction for A we have the L-polynomial

$$
L_{\mathfrak{p}}(T):=\operatorname{det}\left(1-\rho_{\ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right) T\right), \quad \bar{L}_{\mathfrak{p}}(T):=L_{\mathfrak{p}}(T / \sqrt{\|\mathfrak{p}\|})
$$

which appears as an Euler factor in the L-series

$$
L(A, s):=\prod_{\mathfrak{p}} L_{\mathfrak{p}}\left(\|\mathfrak{p}\|^{-s}\right)^{-1} .
$$

The Sato-Tate group of an abelian variety

The Zariski closure of the image of

$$
\rho_{\ell}: G_{k} \rightarrow \operatorname{Aut}_{\mathbb{Q}_{\ell}}\left(V_{\ell}(A)\right) \simeq \operatorname{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right)
$$

is a \mathbb{Q}_{ℓ}-algebraic group $G_{\ell}^{\text {zar }} \subseteq \mathrm{GSp}_{2 g}$ that determines a \mathbb{C}-algebraic group $G_{\ell, \iota}^{1, \text { zar }} \subseteq \operatorname{Sp}_{2 g}$ after fixing $\iota: \mathbb{Q}_{\ell} \hookrightarrow \mathbb{C}$ and intersecting with $\mathrm{Sp}_{2 g}$.

Definition [Serre]

$\mathrm{ST}(A) \subseteq \mathrm{USp}(2 g)$ is a maximal compact subgroup of $G_{\ell, \ell}^{1, \mathrm{zar}}(\mathbb{C})$.

Conjecture [Mumford-Tate, Algebraic Sato-Tate]

$\left(G_{\ell}^{\text {zar }}\right)^{0}=\operatorname{MT}(A) \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$, equivalently, $\left(G_{\ell}^{1, \text { zar }}\right)^{0}=\operatorname{Hg}(A) \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$. More generally, $G_{\ell}^{1, \text { zar }}=\operatorname{AST}(A) \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$.

This conjecture is known for $g \leq 3$ (see Banaszak-Kedlaya 2015).

A refined Sato-Tate conjecture

Let $s(\mathfrak{p})$ denote the conjugacy class of $\|\mathfrak{p}\|^{-1 / 2} M_{\mathfrak{p}}$ in $\operatorname{ST}(A)$, where $M_{\mathfrak{p}}$ is the image of $\mathrm{Frob}_{\mathrm{p}}$ in $G_{\ell, L}^{\text {zar }}(\mathbb{C})$ (semisimple, by a theorem of Tate), and let $\mu_{\mathrm{ST}(A)}$ denote the pushforward of the Haar measure to $\operatorname{Conj}(\operatorname{ST}(A))$.

Conjecture

The conjugacy classes $s(\mathfrak{p})$ are equidistributed with respect to $\mu_{\mathrm{ST}(A)}$.

In particular, the distribution of normalized Euler factors $\bar{L}_{\mathrm{p}}(T)$ matches the distribution of characteristic polynomials in $\mathrm{ST}(A)$.

We can test this numerically by comparing statistics of the coefficients a_{1}, \ldots, a_{g} of $\bar{L}_{\mathfrak{p}}(T)$ over $\|\mathfrak{p}\| \leq N$ to the predictions given by $\mu_{\mathrm{ST}(A)}$.

Galois endomorphism modules

Let A be an abelian variety defined over a number field k.
Let K be the minimal extension of k for which $\operatorname{End}\left(A_{K}\right)=\operatorname{End}\left(A_{\bar{k}}\right)$. $\operatorname{Gal}(K / k)$ acts on the \mathbb{R}-algebra $\operatorname{End}\left(A_{K}\right)_{\mathbb{R}}=\operatorname{End}\left(A_{K}\right) \otimes_{\mathbb{Z}} \mathbb{R}$.

Definition

The Galois endomorphism type of A is the isomorphism class of $\left[\operatorname{Gal}(K / k), \operatorname{End}\left(A_{K}\right)_{\mathbb{R}}\right]$, where $[G, E] \simeq\left[G^{\prime}, E^{\prime}\right]$ iff there are isomorphisms $G \simeq G^{\prime}$ and $E \simeq E^{\prime}$ that are compatible with the Galois action.

Theorem [Fité, Kedlaya, Rotger, S 2012]

For abelian varieties A / k of dimension $g \leq 3$ there is a one-to-one correspondence between Sato-Tate groups and Galois types.

More precisely, the identity component G^{0} is uniquely determined by $\operatorname{End}\left(A_{K}\right)_{\mathbb{R}}$ and $G / G^{0} \simeq \operatorname{Gal}(K / k)$ (with corresponding actions).

Real endomorphism algebras of abelian surfaces

abelian surface	$\mathbf{E n d}\left(\boldsymbol{A}_{\boldsymbol{K}}\right)_{\mathbb{R}}$	$\mathrm{ST}(\boldsymbol{A})^{\mathbf{0}}$
square of CM elliptic curve	$\mathrm{M}_{2}(\mathbb{C})$	$\mathrm{U}(1)_{2}$
\bullet QM abelian surface - square of non-CM elliptic curve	$\mathrm{M}_{2}(\mathbb{R})$	$\mathrm{SU}(2)_{2}$
- CM abelian surface - product of CM elliptic curves	$\mathbb{C} \times \mathbb{C}$	$\mathrm{U}(1) \times \mathrm{U}(1)$
product of CM and non-CM elliptic curves	$\mathbb{C} \times \mathbb{R}$	$\mathrm{U}(1) \times \mathrm{SU}(2)$
- RM abelian surface - product of non-CM elliptic curves	$\mathbb{R} \times \mathbb{R}$	$\mathrm{SU}(2) \times \mathrm{SU}(2)$
generic abelian surface	\mathbb{R}	$\mathrm{USp}(4)$

(factors in products are assumed to be non-isogenous)

Sato-Tate groups in dimension 2

Theorem [Fité-Kedlaya-Rotger-S 2012]

Up to conjugacy in USp(4), there are 52 Sato-Tate groups $\operatorname{ST}(A)$ that arise for abelian surfaces A / k over number fields; 34 occur for $k=\mathbb{Q}$.

$$
\begin{aligned}
\mathrm{U}(1)_{2}: & C_{1}, C_{2}, C_{3}, C_{4}, C_{6}, D_{2}, D_{3}, D_{4}, D_{6}, T, O, \\
& J\left(C_{1}\right), J\left(C_{2}\right), J\left(C_{3}\right), J\left(C_{4}\right), J\left(C_{6}\right), \\
& J\left(D_{2}\right), J\left(D_{3}\right), J\left(D_{4}\right), J\left(D_{6}\right), J(T), J(O), \\
& C_{2,1}, C_{4,1}, C_{6,1}, D_{2,1}, D_{3,2}, D_{4,1}, D_{4,2}, D_{6,1}, D_{6,2}, O_{1} \\
\mathrm{SU}(2)_{2}: & E_{1}, E_{2}, E_{3}, E_{4}, E_{6}, J\left(E_{1}\right), J\left(E_{2}\right), J\left(E_{3}\right), J\left(E_{4}\right), J\left(E_{6}\right) \\
\mathrm{U}(1) \times \mathrm{U}(1): & F, F_{a}, F_{a, b}, F_{a b}, F_{a c} \\
\mathrm{U}(1) \times \mathrm{SU}(2): & \mathrm{U}(1) \times \operatorname{SU}(2), N(\mathrm{U}(1) \times \operatorname{SU}(2)) \\
\mathrm{SU}(2) \times \operatorname{SU}(2): & \mathrm{SU}(2) \times \operatorname{SU}(2), N(\mathrm{SU}(2) \times \operatorname{SU}(2)) \\
\mathrm{USp}(4): & \mathrm{USp}(4)
\end{aligned}
$$

This theorem says nothing about equidistribution, however this is now known in many special cases [Fité-S 2012, Johansson 2013].

Real endomorphism algebras of abelian threefolds

abelian threefold	$\underline{\operatorname{End}}\left(A_{K}\right)_{\mathbb{R}}$	ST(A) ${ }^{\mathbf{0}}$
cube of a CM elliptic curve	$\mathrm{M}_{3}(\mathbb{C})$	$\mathrm{U}(1)_{3}$
cube of a non-CM elliptic curve	$\mathrm{M}_{3}(\mathbb{R})$	$\mathrm{SU}(2)_{3}$
product of CM elliptic curve and square of CM elliptic curve	$\mathbb{C} \times \mathrm{M}_{2}(\mathbb{C})$	$\mathrm{U}(1) \times \mathrm{U}(1)_{2}$
- product of CM elliptic curve and QM abelian surface - product of CM elliptic curve and square of non-CM elliptic curve	$\mathbb{C} \times \mathrm{M}_{2}(\mathbb{R})$	$\mathrm{U}(1) \times \mathrm{SU}(2)_{2}$
product of non-CM elliptic curve and square of CM elliptic curve	$\mathbb{R} \times \mathrm{M}_{2}(\mathbb{C})$	$\mathrm{SU}(2) \times \mathrm{U}(1)_{2}$
- product of non-CM elliptic curve and QM abelian surface - product of non-CM elliptic curve and square of non-CM elliptic curve	$\mathbb{R} \times \mathrm{M}_{2}(\mathbb{R})$	$\mathrm{SU}(2) \times \mathrm{SU}(2)_{2}$
- CM abelian threefold - product of CM elliptic curve and CM abelian surface - product of three CM elliptic curves	$\mathbb{C} \times \mathbb{C} \times \mathbb{C}$	$\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)$
- product of non-CM elliptic curve and CM abelian surface - product of non-CM elliptic curve and two CM elliptic curves	$\mathbb{C} \times \mathbb{C} \times \mathbb{R}$	$\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{SU}(2)$
product of CM elliptic curve and RM abelian surface - product of CM elliptic curve and two non-CM elliptic curves	$\mathbb{C} \times \mathbb{R} \times \mathbb{R}$	$\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(2)$
- RM abelian threefold - product of non-CM elliptic curve and RM abelian surface - product of 3 non-CM elliptic curves	$\mathbb{R} \times \mathbb{R} \times \mathbb{R}$	$\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{SU}(2)$
product of CM elliptic curve and abelian surface	$\mathbb{C} \times \mathbb{R}$	$\mathrm{U}(1) \times \mathrm{USp}(4)$
product of non-CM elliptic curve and abelian surface	$\mathbb{R} \times \mathbb{R}$	$\mathrm{SU}(2) \times \mathrm{USp}(4)$
quadratic CM abelian threefold	C	U(3)
generic abelian threefold	\mathbb{R}	USp(6)

Connected Sato-Tate groups of abelian threefolds:

Partial classification of component groups

G_{0}	$G / G_{0} \hookrightarrow$	$\left\|G / G_{0}\right\|$ divides
$\mathrm{USp}(6)$	C_{1}	1
$\mathrm{U}(3)$	C_{2}	2
$\mathrm{SU}(2) \times \mathrm{USp}(4)$	C_{1}	1
$\mathrm{U}(1) \times \mathrm{USp}(4)$	C_{2}	2
$\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{SU}(2)$	S_{3}	6
$\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(2)$	D_{2}	4
$\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{SU}(2)$	D_{4}	8
$\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)$	$\mathrm{C}_{2} 2 \mathrm{~S}_{3}$	48
$\mathrm{SU}(2) \times \mathrm{SU}(2)_{2}$	$\mathrm{D}_{4}, \quad \mathrm{D}_{6}$	8,12
$\mathrm{SU}(2) \times \mathrm{U}(1)_{2}$	$\mathrm{D}_{6} \times \mathrm{C}_{2}, \mathrm{~S}_{4} \times \mathrm{C}_{2}$	48
$\mathrm{U}(1) \times \mathrm{SU}(2)_{2}$	$\mathrm{D}_{4} \times \mathrm{C}_{2}$,	$\mathrm{D}_{6} \times \mathrm{C}_{2}$
$\mathrm{U}(1) \times \mathrm{U}(1)_{2}$	$\mathrm{D}_{6} \times \mathrm{C}_{2} \times \mathrm{C}_{2}, \quad \mathrm{~S}_{4} \times \mathrm{C}_{2} \times \mathrm{C}_{2}$	16,24
$\mathrm{SU}(2)_{3}$	$\mathrm{D}_{6}, \mathrm{~S}_{4}$	96
$\mathrm{U}(1)_{3}$	(to be determined)	24

(disclaimer: work in progress, subject to verification)

Algorithms to compute zeta functions

Given a curve C / \mathbb{Q} of genus g, we want to compute the normalized L-polynomials $\bar{L}_{p}(T)$ at all good primes $p \leq N$.
complexity per prime
(ignoring factors of $O(\log \log p)$)

algorithm	$g=1$	$g=2$	$g=3$
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3}(\log p)^{2}$
group computation	$p^{1 / 4} \log p$	$p^{3 / 4} \log p$	$p \log p$
p-adic cohomology	$p^{1 / 2}(\log p)^{2}$	$p^{1 / 2}(\log p)^{2}$	$p^{1 / 2}(\log p)^{2}$
CRT (Schoof-Pila)	$(\log p)^{5}$	$(\log p)^{8}$	$(\log p)^{12 ?}$
average poly-time	$(\log p)^{4}$	$(\log p)^{4}$	$(\log p)^{4}$

Genus 3 curves

The canonical embedding of a genus 3 curve into \mathbb{P}^{2} is either
(1) a degree-2 cover of a smooth conic (hyperelliptic case);
(2) a smooth plane quartic (generic case).

Average polynomial-time implementations available for the first case:

- rational hyperelliptic model [Harvey-S 2014];
- no rational hyperelliptic model [Harvey-Massierer-S 2016].

Here we address the second case.
Prior work has all been based on p-adic cohomology:
[Lauder 2004], [Castryck-Denef-Vercauteren 2006],
[Abott-Kedlaya-Roe 2006], [Harvey 2010], [Tuitman-Pancrantz 2013], [Tuitman 2015], [Costa 2015], [Tuitman-Castryck 2016], [Shieh 2016]

New algorithm

Let C_{p} / \mathbb{F}_{p} be a smooth plane quartic defined by $f(x, y, z)=0$. For $n \geq 0$ let $f_{i, j, k}^{n}$ denote the coefficient of $x^{i} y^{j} z^{k}$ in f^{n}.

The Hasse-Witt matrix of C_{p} is the 3×3 matrix

$$
W_{p}:=\left[\begin{array}{lll}
f_{p-1, p-1,2 p-2}^{p-1} & f_{2 p}^{p-1} & f_{p-1, p-1, p-2}^{p-1} \\
f_{p-1,2 p-1, p-2}^{p-1} \\
f_{p-2, p-1,2 p-1}^{p-1} & f_{2 p}^{p-1, p-1, p-1} & f_{p-2,2 p-1, p-1}^{p-1} \\
f_{p-1, p-2,2 p-1}^{p-1} & f_{2 p-1, p-2, p-1}^{p-1} & f_{p-1,2 p-2, p-1}^{p-1}
\end{array}\right] .
$$

This is the matrix of the p-power Frobenius acting on $H^{1}\left(C_{p}, \mathcal{O}_{C_{p}}\right)$ (and the Cartier-Manin operator acting on the space of regular differentials). As proved by Manin, we have

$$
L_{p}(T) \equiv \operatorname{det}\left(I-T W_{p}\right) \bmod p
$$

Our strategy is to compute W_{p} then lift $L_{p}(T)$ from $(\mathbb{Z} / p \mathbb{Z})[T]$ to $\mathbb{Z}[T]$.

Target coefficients of f^{p-1} for $p=7$:

Coefficient relations

Let $\partial_{x}=x \frac{\partial}{\partial x}$ (degree-preserving). The relations

$$
f^{p-1}=f \cdot f^{p-2} \quad \text { and } \quad \partial_{x} f^{p-1}=-\left(\partial_{x} f\right) f^{p-2}
$$

yield the relation

$$
\sum_{i^{\prime}+j^{\prime}+k^{\prime}=4}\left(i+i^{\prime}\right) f_{i^{\prime}, j^{\prime}, k^{\prime}} f_{i-i^{\prime}, j-j^{\prime}, k-k^{\prime}}^{p-2}=0
$$

among nearby coefficients of f^{p-2} (a triangle of side length 5).
Replacing ∂_{x} by ∂_{y} yields a similar relation (replace $i+i^{\prime}$ with $j+j^{\prime}$).

Coefficient triangle

For $p=7$ with $i=12, j=5, k=7$ the related coefficients of f^{p-2} are:

Moving the triangle

Now consider a bigger triangle with side length 7 .
Our relations allow us to move the triangle around:

An initial "triangle" at the edge can be efficiently computed using coefficients of $f(x, 0, z)^{p-2}$.

Computing one Hasse-Witt matrix

Nondegeneracy: we need $f(1,0,0), f(0,1,0), f(0,0,1)$ nonzero and $f(0, y, z), f(x, 0, z), f(x, y, 0)$ squarefree (easily achieved for large p).

The basic strategy to compute W_{p} is as follows:

- There is a 28×28 matrix M_{j} that shifts our 7-triangle from y-coordinate j to $j+1$; its coefficients depend on j and f. In fact a 16×16 matrix M_{i} suffices (use smoothness of C).
- Applying the product $M_{0} \cdots M_{p-2}$ to an initial triangle on the edge and applying a final adjustment to shift from f^{p-2} to f^{p-1} gets us one column of the Hasse-Witt matrix W_{p}.
- By applying the same product (or its inverse) to different initial triangles we can compute all three columns of W_{p}.

We have thus reduced the problem to computing $M_{1} \cdots M_{p-2} \bmod p$.

An average polynomial-time algorithm

Now let C / \mathbb{Q} be smooth plane quartic $f(x, y, z)=0$ with $f \in \mathbb{Z}[x, y, z]$. We want to compute W_{p} for all good $p \leq N$.

Key idea

The matrices M_{j} do not depend on p; view them as integer matrices. It suffices to compute $M_{0} \cdots M_{p-2} \bmod p$ for all $\operatorname{good} p \leq N$.

Using an accumulating remainder tree we can compute all of these partial products in time $O\left(N(\log N)^{3+o(1)}\right)$.

This yields an average time of $O\left((\log p)^{4+o(1)}\right)$ per prime to compute the W_{p} for all good $p \leq N$.*

> *We may need to skip $O(1)$ primes p where C_{p} is degenerate; these can be handled separately using an $\tilde{O}\left(p^{1 / 2}\right)$ algorithm based on the same ideas.

Accumulating remainder tree

Given matrices M_{0}, \ldots, M_{n-1} and moduli m_{1}, \ldots, m_{n}, to compute

$$
\begin{array}{r}
M_{0} \bmod m_{1} \\
M_{0} M_{1} \bmod m_{2} \\
M_{0} M_{1} M_{2} \bmod m_{3} \\
M_{0} M_{1} M_{2} M_{3} \bmod m_{4} \\
\cdots \\
M_{0} M_{1} \cdots M_{n-2} M_{n-1} \bmod m_{n}
\end{array}
$$

multiply adjacent pairs and recursively compute

$$
\begin{array}{r}
\left(M_{0} M_{1}\right) \bmod m_{2} m_{3} \\
\left(M_{0} M_{1}\right)\left(M_{2} M_{3}\right) \bmod m_{4} m_{5} \\
\ldots \\
\left(M_{0} M_{1}\right) \cdots\left(M_{n-2} M_{n-1}\right) \bmod m_{n-1} m_{n}
\end{array}
$$

and adjust the results as required.

Timings for genus 3 curves

N	costa-AKR	non-hyp-avgpoly	hyp-avgpoly
2^{12}	18.2	1.1	0.1
2^{13}	49.1	2.6	0.2
2^{14}	142	5.8	0.5
2^{15}	475	13.6	1.5
2^{16}	1,670	30.6	4.6
2^{17}	5,880	70.9	12.6
2^{18}	22,300	158	25.9
2^{19}	78,100	344	62.1
2^{20}	297,000	760	147
2^{21}	$1,130,000$	1,710	347
2^{22}	$4,280,000$	3,980	878
2^{23}	$16,800,000$	8,580	1,950
2^{24}	$66,800,000$	18,600	4,500
2^{25}	$244,000,000$	40,800	10,700
2^{26}	$972,000,000$	91,000	24,300

(Intel Xeon E7-8867v3 3.3 GHz CPU seconds).

