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Sato-Tate in dimension 1

Let E/Q be an elliptic curve, say,

y2 = x3 + Ax + B,

and let p be a prime of good reduction (so p - ∆(E)).

The number of Fp-points on the reduction Ep of E modulo p is

#Ep(Fp) = p + 1− tp,

where the trace of Frobenius tp is an integer in [−2
√

p, 2
√

p].

We are interested in the limiting distribution of xp = −tp/
√

p ∈ [−2, 2],
as p varies over primes of good reduction up to N →∞.
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Sato-Tate distributions in dimension 1

1. Typical case (no CM)
Elliptic curves E/Q w/o CM have the semi-circular trace distribution.
(This is also known for E/k, where k is a totally real number field).

[Barnet-Lamb, Clozel, Geraghty, Harris, Shepherd-Barron, Taylor]

2. Exceptional cases (CM)
Elliptic curves E/k with CM have one of two distinct trace distributions,
depending on whether k contains the CM field or not.

[classical (Hecke, Deuring)]
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Sato-Tate groups in dimension 1

The Sato-Tate group of E is a closed subgroup G of SU(2) = USp(2)
derived from the `-adic Galois representation attached to E.

A refinement of the Sato-Tate conjecture implies that the
distribution of normalized Frobenius traces of E converges to the
distribution of traces in its Sato-Tate group G (under its Haar measure).

G G/G0 E k E[a0
1],E[a2

1],E[a4
1] . . .

SU(2) C1 y2 = x3 + x + 1 Q 1, 1, 2, 5, 14, 42, . . .
N(U(1)) C2 y2 = x3 + 1 Q 1, 1, 3, 10, 35, 126, . . .
U(1) C1 y2 = x3 + 1 Q(

√
−3) 1, 2, 6, 20, 70, 252, . . .

In dimension 1 there are three possible Sato-Tate groups, two of which
arise for elliptic curves defined over Q.
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Zeta functions and L-polynomials

For a smooth projective curve C/Q of genus g and each prime p of
good reduction for C we have the zeta function

Z(Cp/Fp; T) := exp

( ∞∑
k=1

#Cp(Fpk)Tk/k

)
=

Lp(T)

(1− T)(1− pT)
,

where Lp ∈ Z[T] has degree 2g. The normalized L-polynomial

L̄p(T) := Lp(T/
√

p) =

2g∑
i=0

aiT i ∈ R[T]

is monic, reciprocal, and unitary, with |ai| ≤
(2g

i

)
.

We now consider the limiting distribution of a1, a2, . . . , ag over all
primes p ≤ N of good reduction, as N →∞.
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Exceptional distributions for abelian surfaces over Q:
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L-polynomials of Abelian varieties
Let A be an abelian variety over a number field k. Fix a prime `.
The action of Gal(k̄/k) on the `-adic Tate module

V`(A) := lim
←−

A[`n]⊗Z Q

gives rise to a Galois representation

ρ` : Gal(k̄/k)→ AutQ`
(V`(A)) ' GSp2g(Q`)

For each prime p of good reduction for A we have the L-polynomial

Lp(T) := det(1− ρ`(Frobp)T), L̄p(T) := Lp(T/
√
‖p‖),

which appears as an Euler factor in the L-series

L(A, s) :=
∏
p

Lp(‖p‖−s)−1.
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The Sato-Tate group of an abelian variety
The Zariski closure of the image of

ρ` : Gk → AutQ`
(V`(A)) ' GSp2g(Q`)

is a Q`-algebraic group Gzar
` ⊆ GSp2g that determines a C-algebraic

group G1,zar
`,ι ⊆ Sp2g after fixing ι : Q` ↪→ C and intersecting with Sp2g.

Definition [Serre]

ST(A) ⊆ USp(2g) is a maximal compact subgroup of G1,zar
`,ι (C).

Conjecture [Mumford-Tate, Algebraic Sato-Tate]

(Gzar
` )0 = MT(A)⊗Q Q`, equivalently, (G1,zar

` )0 = Hg(A)⊗Q Q`.
More generally, G1,zar

` = AST(A)⊗Q Q`.

This conjecture is known for g ≤ 3 (see Banaszak-Kedlaya 2015).
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A refined Sato-Tate conjecture

Let s(p) denote the conjugacy class of ‖p‖−1/2Mp in ST(A), where Mp is
the image of Frobp in Gzar

`,ι (C) (semisimple, by a theorem of Tate), and
let µST(A) denote the pushforward of the Haar measure to Conj(ST(A)).

Conjecture
The conjugacy classes s(p) are equidistributed with respect to µST(A).

In particular, the distribution of normalized Euler factors L̄p(T) matches
the distribution of characteristic polynomials in ST(A).

We can test this numerically by comparing statistics of the coefficients
a1, . . . , ag of L̄p(T) over ‖p‖ ≤ N to the predictions given by µST(A).
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Galois endomorphism modules
Let A be an abelian variety defined over a number field k.
Let K be the minimal extension of k for which End(AK) = End(Ak̄).
Gal(K/k) acts on the R-algebra End(AK)R = End(AK)⊗Z R.

Definition
The Galois endomorphism type of A is the isomorphism class of
[Gal(K/k),End(AK)R], where [G,E] ' [G′,E′] iff there are isomorphisms
G ' G′ and E ' E′ that are compatible with the Galois action.

Theorem [Fité, Kedlaya, Rotger, S 2012]
For abelian varieties A/k of dimension g ≤ 3 there is a one-to-one
correspondence between Sato-Tate groups and Galois types.

More precisely, the identity component G0 is uniquely determined by
End(AK)R and G/G0 ' Gal(K/k) (with corresponding actions).
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Real endomorphism algebras of abelian surfaces

abelian surface End(AK)R ST(A)0

square of CM elliptic curve M2(C) U(1)2

• QM abelian surface M2(R) SU(2)2

• square of non-CM elliptic curve

• CM abelian surface C× C U(1)× U(1)

• product of CM elliptic curves

product of CM and non-CM elliptic curves C× R U(1)× SU(2)

• RM abelian surface R× R SU(2)× SU(2)

• product of non-CM elliptic curves

generic abelian surface R USp(4)

(factors in products are assumed to be non-isogenous)
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Sato-Tate groups in dimension 2

Theorem [Fité-Kedlaya-Rotger-S 2012]
Up to conjugacy in USp(4), there are 52 Sato-Tate groups ST(A) that
arise for abelian surfaces A/k over number fields; 34 occur for k = Q.

U(1)2 : C1,C2,C3,C4,C6,D2,D3,D4,D6,T,O,
J(C1), J(C2), J(C3), J(C4), J(C6),
J(D2), J(D3), J(D4), J(D6), J(T), J(O),
C2,1,C4,1,C6,1,D2,1,D3,2,D4,1,D4,2,D6,1,D6,2,O1

SU(2)2 : E1,E2,E3,E4,E6, J(E1), J(E2), J(E3), J(E4), J(E6)
U(1)× U(1) : F,Fa,Fa,b,Fab,Fac

U(1)× SU(2) : U(1)× SU(2), N(U(1)× SU(2))
SU(2)× SU(2) : SU(2)× SU(2), N(SU(2)× SU(2))

USp(4) : USp(4)

This theorem says nothing about equidistribution, however this is now
known in many special cases [Fité-S 2012, Johansson 2013].
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Real endomorphism algebras of abelian threefolds
abelian threefold End(AK)R ST(A)0

cube of a CM elliptic curve M3(C) U(1)3

cube of a non-CM elliptic curve M3(R) SU(2)3

product of CM elliptic curve and square of CM elliptic curve C× M2(C) U(1)× U(1)2

• product of CM elliptic curve and QM abelian surface C× M2(R) U(1)× SU(2)2

• product of CM elliptic curve and square of non-CM elliptic curve

product of non-CM elliptic curve and square of CM elliptic curve R× M2(C) SU(2)× U(1)2

• product of non-CM elliptic curve and QM abelian surface R× M2(R) SU(2)× SU(2)2

• product of non-CM elliptic curve and square of non-CM elliptic curve

• CM abelian threefold C× C× C U(1)× U(1)× U(1)
• product of CM elliptic curve and CM abelian surface
• product of three CM elliptic curves

• product of non-CM elliptic curve and CM abelian surface C× C× R U(1)× U(1)× SU(2)
• product of non-CM elliptic curve and two CM elliptic curves

• product of CM elliptic curve and RM abelian surface C× R× R U(1)× SU(2)× SU(2)
• product of CM elliptic curve and two non-CM elliptic curves

• RM abelian threefold R× R× R SU(2)× SU(2)× SU(2)
• product of non-CM elliptic curve and RM abelian surface
• product of 3 non-CM elliptic curves

product of CM elliptic curve and abelian surface C× R U(1)× USp(4)

product of non-CM elliptic curve and abelian surface R× R SU(2)× USp(4)

quadratic CM abelian threefold C U(3)

generic abelian threefold R USp(6)
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Connected Sato-Tate groups of abelian threefolds:

U(1)3 SU(2)3 U(1)× U(1)2 U(1)× SU(2)2

SU(2)× U(1)2 SU(2)× SU(2)2 U(1)× U(1)× U(1) U(1)× U(1)× SU(2)

U(1)× SU(2)× U(1) SU(2)× SU(2)× SU(2) U(1)× USp(4) SU(2)× USp(4)

U(3) USp(6)
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Partial classification of component groups

G0 G/G0 ↪→ |G/G0| divides
USp(6) C1 1
U(3) C2 2
SU(2)× USp(4) C1 1
U(1)× USp(4) C2 2
SU(2)× SU(2)× SU(2) S3 6
U(1)× SU(2)× SU(2) D2 4
U(1)× U(1)× SU(2) D4 8
U(1)× U(1)× U(1) C2 o S3 48
SU(2)× SU(2)2 D4, D6 8, 12
SU(2)× U(1)2 D6 × C2, S4 × C2 48
U(1)× SU(2)2 D4 × C2, D6 × C2 16, 24
U(1)× U(1)2 D6 × C2 × C2, S4 × C2 × C2 96
SU(2)3 D6, S4 24
U(1)3 (to be determined) 336, 1728

(disclaimer: work in progress, subject to verification)
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Algorithms to compute zeta functions

Given a curve C/Q of genus g, we want to compute the normalized
L-polynomials Lp(T) at all good primes p ≤ N.

complexity per prime
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3(log p)2

group computation p1/4 log p p3/4 log p p log p
p-adic cohomology p1/2(log p)2 p1/2(log p)2 p1/2(log p)2

CRT (Schoof-Pila) (log p)5 (log p)8 (log p)12?

average poly-time (log p)4 (log p)4 (log p)4
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Genus 3 curves

The canonical embedding of a genus 3 curve into P2 is either
1 a degree-2 cover of a smooth conic (hyperelliptic case);
2 a smooth plane quartic (generic case).

Average polynomial-time implementations available for the first case:
rational hyperelliptic model [Harvey-S 2014];
no rational hyperelliptic model [Harvey-Massierer-S 2016].

Here we address the second case.

Prior work has all been based on p-adic cohomology:

[Lauder 2004], [Castryck-Denef-Vercauteren 2006],
[Abott-Kedlaya-Roe 2006], [Harvey 2010], [Tuitman-Pancrantz 2013],

[Tuitman 2015], [Costa 2015], [Tuitman-Castryck 2016], [Shieh 2016]
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New algorithm

Let Cp/Fp be a smooth plane quartic defined by f (x, y, z) = 0.
For n ≥ 0 let f n

i,j,k denote the coefficient of xiyjzk in f n.

The Hasse–Witt matrix of Cp is the 3× 3 matrix

Wp :=

f p−1
p−1,p−1,2p−2 f p−1

2p−1,p−1,p−2 f p−1
p−1,2p−1,p−2

f p−1
p−2,p−1,2p−1 f p−1

2p−2,p−1,p−1 f p−1
p−2,2p−1,p−1

f p−1
p−1,p−2,2p−1 f p−1

2p−1,p−2,p−1 f p−1
p−1,2p−2,p−1

 .
This is the matrix of the p-power Frobenius acting on H1(Cp,OCp) (and
the Cartier-Manin operator acting on the space of regular differentials).
As proved by Manin, we have

Lp(T) ≡ det(I − TWp) mod p,

Our strategy is to compute Wp then lift Lp(T) from (Z/pZ)[T] to Z[T].
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Target coefficients of f p−1 for p = 7:

x4p−4 y4p−4

z4p−4
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Coefficient relations

Let ∂x = x ∂
∂x (degree-preserving). The relations

f p−1 = f · f p−2 and ∂xf p−1 = −(∂xf )f p−2

yield the relation ∑
i′+j′+k′=4

(i + i′)fi′,j′,k′ f
p−2
i−i′,j−j′,k−k′ = 0.

among nearby coefficients of f p−2 (a triangle of side length 5).

Replacing ∂x by ∂y yields a similar relation (replace i + i′ with j + j′).
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Coefficient triangle

For p = 7 with i = 12, j = 5, k = 7 the related coefficients of f p−2 are:

x4p−8 y4p−8

z4p−8
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Moving the triangle

Now consider a bigger triangle with side length 7.
Our relations allow us to move the triangle around:

=⇒

An initial “triangle” at the edge can be efficiently computed using
coefficients of f (x, 0, z)p−2.
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Computing one Hasse-Witt matrix

Nondegeneracy: we need f (1, 0, 0), f (0, 1, 0), f (0, 0, 1) nonzero and
f (0, y, z), f (x, 0, z), f (x, y, 0) squarefree (easily achieved for large p).

The basic strategy to compute Wp is as follows:

There is a 28× 28 matrix Mj that shifts our 7-triangle from
y-coordinate j to j + 1; its coefficients depend on j and f .
In fact a 16× 16 matrix Mi suffices (use smoothness of C).
Applying the product M0 · · ·Mp−2 to an initial triangle on the edge
and applying a final adjustment to shift from f p−2 to f p−1 gets us
one column of the Hasse-Witt matrix Wp.
By applying the same product (or its inverse) to different initial
triangles we can compute all three columns of Wp.

We have thus reduced the problem to computing M1 · · ·Mp−2 mod p.
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An average polynomial-time algorithm
Now let C/Q be smooth plane quartic f (x, y, z) = 0 with f ∈ Z[x, y, z].
We want to compute Wp for all good p ≤ N.

Key idea
The matrices Mj do not depend on p; view them as integer matrices.
It suffices to compute M0 · · ·Mp−2 mod p for all good p ≤ N.

Using an accumulating remainder tree we can compute all of these
partial products in time O(N(log N)3+o(1)).

This yields an average time of O((log p)4+o(1)) per prime to compute
the Wp for all good p ≤ N.*

∗We may need to skip O(1) primes p where Cp is degenerate; these can be handled
separately using an Õ(p1/2) algorithm based on the same ideas.

Andrew V. Sutherland (MIT) Sato-Tate in dimension 3 December 7, 2016 24 / 25



Accumulating remainder tree
Given matrices M0, . . . ,Mn−1 and moduli m1, . . . ,mn, to compute

M0 mod m1

M0M1 mod m2

M0M1M2 mod m3

M0M1M2M3 mod m4

· · ·
M0M1 · · ·Mn−2Mn−1 mod mn

multiply adjacent pairs and recursively compute

(M0M1) mod m2m3

(M0M1)(M2M3) mod m4m5

· · ·
(M0M1) · · · (Mn−2Mn−1) mod mn−1mn

and adjust the results as required.
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Timings for genus 3 curves

N costa-AKR non-hyp-avgpoly hyp-avgpoly

212 18.2 1.1 0.1
213 49.1 2.6 0.2
214 142 5.8 0.5
215 475 13.6 1.5
216 1,670 30.6 4.6
217 5,880 70.9 12.6
218 22,300 158 25.9
219 78,100 344 62.1
220 297,000 760 147
221 1,130,000 1,710 347
222 4,280,000 3,980 878
223 16,800,000 8,580 1,950
224 66,800,000 18,600 4,500
225 244,000,000 40,800 10,700
226 972,000,000 91,000 24,300

(Intel Xeon E7-8867v3 3.3 GHz CPU seconds).
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