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A 3-volcano of height 2
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`-volcanoes

An `-volcano is a connected undirected graph whose vertices
are partitioned into levels V0, . . . ,Vh.

1. The subgraph on V0 (the surface) is a connected d-regular
graph, for some d ≤ 2.

2. For k > 0, each v ∈ Vk has exactly one neighbor in Vk−1.
All edges not on the surface arise in this manner.

3. For k < h, each v ∈ Vk has degree `+1.

The integers `, h, and |V0| uniquely determine the shape.
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`-isogenies

An isogeny φ : E1 → E2 is a morphism that fixes the identity.
It induces a group homomorphism φ : E1(F̄ )→ E2(F̄ ).

The degree of a (separable) isogeny is | kerφ|.
We are interested in isogenies of prime degree `.
Such an isogeny is necessarily cyclic.

The dual isogeny φ̂ : E2 → E1 has the same degree.

Andrew V. Sutherland Powered by Volcanoes: Three New Algorithms



`-isogenies

An isogeny φ : E1 → E2 is a morphism that fixes the identity.
It induces a group homomorphism φ : E1(F̄ )→ E2(F̄ ).

The degree of a (separable) isogeny is | kerφ|.
We are interested in isogenies of prime degree `.
Such an isogeny is necessarily cyclic.

The dual isogeny φ̂ : E2 → E1 has the same degree.

Andrew V. Sutherland Powered by Volcanoes: Three New Algorithms



The classical modular polynomial Φ`

The polynomial Φ` ∈ Z[X ,Y ] has the property

Φ`

(
j(E1), j(E2)

)
= 0 ⇐⇒ E1 and E2 are `-isogenous.

Note that Φ` is symmetric in X and Y .

The `-isogeny graph G`/Fq has vertex set {j(E) : E/Fq} and
edges (j1, j2) whenever Φ`(j1, j2) = 0 (in Fq).

The neighbors of j in G` are the roots of Φ`(X , j) ∈ Fq[X ].

Φ` is big: O(`3 log `) bits.
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The shape of G`

An elliptic curve is ordinary (not supersingular) iff its trace is
nonzero in Fq. Two curves whose j-invariants lie in the same
component of G` are either both ordinary or both supersingular.

Theorem
The ordinary connected components of G` are `-volcanoes.
(assuming j 6= 0, 1728)

Isogenous curves may lie in distint components of G`.
The components of G` are a refinement of isogeny classes.
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Finding the floor
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Finding a shortest path to the floor
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The endomorphism ring End(E)

An endomorphism is an isogeny φ : E → E .
The multiplication by m map P  mP is an example.

The set End(E) of all endomorphisms of E forms a ring which
contains a subring isomorphic to Z.

Over Fq we have Z ( End(E), since

π : (X ,Y ) (X q,Y q)

is not a multiplication by m map.
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End(E) for an ordinary elliptic curve

If E is ordinary than End(E) ∼= O, where O is an order in an
imaginary quadratic field K .

We may regard π as an element of O with trace t and norm q.
The norm equation for π has the form

4q = t2 − v2DK ,

where K = Q[
√

DK ] and v is the conductor of Z[π].

We have Z[π] ⊆ O ⊆ OK , and therefore O has discriminant
D = u2DK for some conductor u|v .
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The vertical structure of an `-volcano

Theorem (Kohel)
Let V0, . . . ,Vh be the levels of an `-volcano corresponding to an
ordinary component of G`/Fq.

1. The curves in Vi all have the same endomorphism ring
type, with discriminant Di .

2. D0 has conductor prime to `, and Di = `2iD0.

This implies `h ‖ v , allowing us to determine the height.

The endomorphism ring type of an ordinary elliptic curve E is
determined by its level on its `-volcano for each prime `|v .
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The class group action [CM theory]

Suppose End(E) ∼= O, and let a an invertible O-ideal.
Let E [a] be the points annihilated by all a ∈ a ⊂ O ∼= End(E).

There is a separable isogeny φa : E → E/E [a] with kernel E [a],
degree N(a), and End(φa(E)) ∼= O.

This defines a group action by the ideal group of O on the set

E(O) = {j(E) : End(E) ∼= O},

which factors through the class group cl(O).

The above applies over C, but if E/Fq has End(E) ∼= O, then q
is the norm of an element of O and we may reduce to Fq.
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The horizontal structure of an ordinary `-volcano

The degree d of the subgraph on V0 is 1 +
(

DK
`

)
.

For d = 0 we have |V0| = 1 and for d = 1 we have |V0| = 2.

When d = 2 there are two O-ideals of norm `, a and ā, and their
ideal classes have order |V0|.

The set E(O) has size h(O) and is comprised of the surfaces of
isomorphic `-volcanoes corresponding to cosets in cl(O).

And in general, E(O) is a torsor for cl(O).
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The CM method

If E/Fq has N = q + 1− t points, with t 6≡ 0 in Fq, then

4q = t2 − v2D,

where D is the discriminant of O ∼= End(E). Conversely, any
curve with End(E) ∼= O has trace ±t .

The Hilbert class polynomial HD ∈ Z[X ] is defined by

HD(X ) =
∏

j∈E(O)

(X − j).

Its roots are the j-invariants of curves with End(E) ∼= O.

Given a root of HD in Fq, we may construct E/Fq with N points.
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Computing HD(X ) with the CRT [ALV ’06, BBEL ’08]

To compute HD ∈ Fq[X ] it suffices to compute HD modulo many
“small” primes p and apply the Chinese Remainder Theorem.

For primes of the form 4p = t2
p − v2

p D, HD splits completely over
Fp and we may compute HD mod p by finding its roots.

To find the first root, generate random curves over Fp until we
find one with End(E) ∼= O (or any E with trace ±t).

To enumerate the other roots, use the group action of cl(O).
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Improvements [S ’09]

The CRT approach to computing HD can be improved:

1. Compute HD mod P in O(|D|1/2+ε log P) space.

2. Generate “random” curves with prescribed torsion.

3. Make vp large (bigger volcanoes are easier to find).

4. Use an optimal presentation of cl(O) to minimize norms.
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An example of a polycyclic presentation

For D = −79947, cl(D) is cyclic of order h(D) = 100.
It is generated by the class of an ideal with norm 19.

But cl(D) is also generated by classes α2 and α13 of ideals of
norm 2 and 13. The elements α2 and α13 have orders 20 and
50 and are not independent (α5

13 = α18
2 ).

Nevertheless, every β ∈ cl(D) can be written uniquely as

β = αe2
2 α

e13
13

with 0 ≤ e2 < 20 and 0 ≤ e13 < 5.

Using this presentation is about 100 times faster.
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Running the rim
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Record-breaking CM constructions

Largest |D|
Old Record (June 2008, complex analytic [Enge])

D = −70,901,505,867 h(D) = 51,244

New Record (October 2008, CRT method [Enge-S])
D = −102,197,306,669,747 h(D) = 2,014,236

Largest h(D)

Old Record (January 2006, complex analytic [Enge])
D = −2,093,236,031 h(D) = 100,000

New Record (April 2009, CRT method, [Bröker-S])
D = −4,058,817,012,071 h(D) = 5,000,000

Andrew V. Sutherland Powered by Volcanoes: Three New Algorithms



Record-breaking CM constructions

Largest |D|
Old Record (June 2008, complex analytic [Enge])

D = −70,901,505,867 h(D) = 51,244

New Record (October 2008, CRT method [Enge-S])
D = −102,197,306,669,747 h(D) = 2,014,236

Largest h(D)

Old Record (January 2006, complex analytic [Enge])
D = −2,093,236,031 h(D) = 100,000

New Record (April 2009, CRT method, [Bröker-S])
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Performance comparison

Analytic w3,13 CRT f2 CRT f

−D h(D) height time height∗ time∗ height time

6961631 5000 9.5k 28 9.5k 4.9 3.8k 2.0
23512271 10000 20k 210 20k 24 8.0k 9.1
98016239 20000 45k 1,800 45k 120 18k 46

357116231 40000 97k 14,000 97k 574 38k 220
2093236031 100000 265k 260,000 265k 4,400 103k 1,600

Complex Analytic vs. CRT method
(2.4 GHz AMD Opteron CPU seconds)

*increased to match the height bound for w3,13.
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Computing End(E) [Bisson-S ’09]

Given E/Fq we may compute t and factor 4q − t2 to obtain

4q = t2 − v2DK .

The discriminant of End(E) ∼= O is D = u2DK for some u|v To
determine End(E) it suffices to compute u.

Let u1, . . . ,un be the factors of v . To distinguish u, we seek
relations that hold in some cl(u2

i DK ) but not others.

We test these relations in the isogeny graph by walking along
the surface of various `-volcanoes.
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Relations in class groups

A relation R is a pair of vectors (`1, . . . , `r ) and (e1, . . . ,er ),
with `i - v and

(
DK
`i

)
= 1.

We say R holds in cl(D) if for each i there is an αi ∈ cl(D)
containing an ideal of norm `i such that αe1

1 · · ·α
er
r = 1.

More generally, define the cardinality of R in cl(D) by

#R/ cl(D) = #
{
τ ∈ {±1}r :

∏
ατi ei

i = 1 in cl(D)
}
.

For p|v , let D1 = (v/p)2DK and D2 = p2DK . We want

#R/ cl(D1) > #R/ cl(D2).
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Counting relations in the isogeny graph

To compute #R/ cl(O):
1. Let J0 be a list consisting of j(E).
2. For i from 1 to r :

I For each j ∈ Ji−1, walk ei steps in both directions on the
surface of the `i -volcano and append the endpoints to Ji .

3. Output the number of times j(E) occurs in Jr .

To compute #R/ cl(O) efficiently, we use smooth relations,
where `i , ei , and r are all small.
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Record-breaking End(E) computations

Heuristically, we achieve a running time of L[1/2,
√

3/2].

Over a 200-bit prime field, under 15 minutes.
Over a 256-bit prime field, about 4 hours.

These are worst-case examples (average case is easy).

Kohel’s algorithm has complexity O(q1/3) (under the GRH).
It cannot feasibly compute End(E) over a cryptographic size
field when v contains a large prime factor.
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Computing Φ` with the CRT method [Bröker-Lauter-S]

Choose CRT primes p ≡ 1 mod ` with 4p = t2 − v2`2D.
Suppose we have an `-volcano of height 1 with |V0| ≥ `+ 2.
(we may pick D to ensure this).

We can “construct” this volcano without using Φ`:
1. Use HD(X ) to find the surface.
2. Apply the action of cl(D) to enumerate the surface.
3. Use Velu’s formula to descend to the floor.
4. Apply the action of cl(`2D) to enumerate the floor.

From this we can interpolate Φ` mod p.
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Record-breaking Φ` computations

The time to compute Φ` is O(`3 log3+ε `) [GRH].
Faster than the best alternative by a factor of log `.

Record Φ` computations (classical)
Computed Φ` for all ` < 3000, and up to ` = 5003.
Output is generated at a rate of about 5Mb/s.

Previous record: ` < 360 [Rubinstein-Seroussi].

Record modular polynomial computations (Weber f)
Computed Φ` for all ` < 10000 and up to ` = 50021.

Preprint in preparation.
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Modular polynomials for ` = 7
Classical:

X8 + Y 8 − X7Y 7 + 5208X7Y 6 − 10246068X7Y 5 + 9437674400X7Y 4 − 4079701128594X7Y 3+

720168419610864X7Y 2 − 34993297342013192X7Y + 104545516658688000X7+

. . . (2 pages omitted) . . .+

13483958224762213714698012883865296529472356352000000000000000Y 3+

1464765079488386840337633731737402825128271675392000000000000000000Y 2

Atkin:

X8 − X7Y + 744X7 + 196476X6 + 357X5Y + 21226520X5 + 1428X4Y+

803037606X4 − 31647X3Y + 14547824088X3 − 204792X2Y + 138917735740X2+

186955XY + 677600447400X + Y 2 + 2128500Y + 1335206318625

Canonical:

X8 + 28X7 + 322X6 + 1904X5 + 5915X4 + 8624X3 + 4018X2 − XY + 748X + 49

Weber:

X8 + Y 8 − X7Y 7 + 7X4Y 4 − 8XY
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