Torsion subgroups of rational elliptic curves over the compositum of all cubic fields

Andrew V. Sutherland
Massachusetts Institute of Technology

$$
\text { April 7, } 2016
$$

joint work with Harris B. Daniels, Álvaro Lozano-Robledo, and Filip Najman

$$
\begin{gathered}
\text { http: / /arxiv.org/abs/1509.00528 } \\
\text { and also with David Zywina. }
\end{gathered}
$$

Elliptic curves

Let E be an elliptic curve over a number field K :

$$
E: y^{2}=x^{3}+A x+B
$$

For any field extension L / K, the set $E(L)$ forms an abelian group.
Theorem (Mordell-Weil 1920s)
The group $E(K)$ is a finitely generated. Thus $E(K) \simeq E(K)_{\text {tors }} \oplus \mathbb{Z}^{r}$, where $E(K)_{\text {tors }}$ is a finite abelian group.

Theorem (Merel 1996)
For every $d \geqslant 1$ there is a bound B_{d} such that $\# E(K)_{\text {tors }} \leqslant B_{d}$ for all elliptic curves E over any number field K of degree d.

Elliptic curves

Let E be an elliptic curve over a number field K :

$$
E: y^{2}=x^{3}+A x+B
$$

For any field extension L / K, the set $E(L)$ forms an abelian group.

Theorem (Mordell-Weil 1920s)

The group $E(K)$ is a finitely generated. Thus $E(K) \simeq E(K)_{\text {tors }} \oplus \mathbb{Z}^{r}$, where $E(K)_{\text {tors }}$ is a finite abelian group.

Theorem (Merel 1996)
For every $d \geqslant 1$ there is a bound B_{d} such that $\# E(K)_{\text {tors }} \leqslant B_{d}$ for all elliptic curves E over any number field K of degree d.

Remark
The groups $E(\bar{K})$ and $E(\bar{K})_{\text {tors }}$ are not finitely generated.

Torsion subgroups of elliptic curves over number fields

Theorem (Mazur 1977)
Let E be an elliptic curve over \mathbb{Q}.

$$
E(\mathbb{Q})_{\mathrm{tors}} \simeq \begin{cases}\mathbb{Z} / M \mathbb{Z} & 1 \leqslant M \leqslant 10, M=12 \\ \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 M \mathbb{Z} & 1 \leqslant M \leqslant 4\end{cases}
$$

Theorem (Kenku,Momose 1988, Kamienny 1992)
Let E be an elliptic curve over a quadratic number field K.

$$
E(K)_{\mathrm{tors}} \simeq \begin{cases}\mathbb{Z} / M \mathbb{Z} & 1 \leqslant M \leqslant 16, M=18 \\ \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 M \mathbb{Z} & 1 \leqslant M \leqslant 6 ; \\ \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 M \mathbb{Z} & M=1,2\left(K=\mathbb{Q}\left(\zeta_{3}\right) \text { only }\right) \\ \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z} & (K=\mathbb{Q}(i) \text { only })\end{cases}
$$

Torsion subgroups of elliptic curves over cubic fields

Theorem (Jeon,Kim,Schweizer 2004)
For cubic K / \mathbb{Q}, the groups $T \simeq E(K)_{\text {tors }}$ arising infinitely often are:

$$
T \simeq \begin{cases}\mathbb{Z} / M \mathbb{Z} & 1 \leqslant M \leqslant 16, M=18,20 \\ \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 M \mathbb{Z} & 1 \leqslant M \leqslant 7\end{cases}
$$

Theorem (Najman 2012)
There is an elliptic curve E / \mathbb{Q} for which $E\left(\mathbb{Q}\left(\zeta_{9}\right)^{+}\right)_{\text {tors }} \simeq \mathbb{Z} / 21 \mathbb{Z}$.

Torsion subgroups of elliptic curves over cubic fields

Theorem (Jeon,Kim,Schweizer 2004)
For cubic K / \mathbb{Q}, the groups $T \simeq E(K)_{\text {tors }}$ arising infinitely often are:

$$
T \simeq \begin{cases}\mathbb{Z} / M \mathbb{Z} & 1 \leqslant M \leqslant 16, M=18,20 \\ \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 M \mathbb{Z} & 1 \leqslant M \leqslant 7\end{cases}
$$

Theorem (Najman 2012)
There is an elliptic curve E / \mathbb{Q} for which $E\left(\mathbb{Q}\left(\zeta_{9}\right)^{+}\right)_{\text {tors }} \simeq \mathbb{Z} / 21 \mathbb{Z}$.

Theorem (Derickx,Etropolski,Morrow,Zureick-Brown, 2016)
Let E be an elliptic curve over a cubic number field K.

$$
E(K)_{\text {tors }} \simeq \begin{cases}\mathbb{Z} / M \mathbb{Z} & 1 \leqslant M \leqslant 16, M=18,20,21 ; \\ \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 M \mathbb{Z} & 1 \leqslant M \leqslant 7\end{cases}
$$

Elliptic curves over $\mathbb{Q}\left(2^{\infty}\right)$

Definition

Let $\mathbb{Q}\left(d^{\infty}\right)$ be the compositum of all degree- d extensions K / \mathbb{Q} in $\overline{\mathbb{Q}}$.
Example: $\mathbb{Q}\left(2^{\infty}\right)$ is the maximal elementary 2-abelian extension of \mathbb{Q}.

Theorem (Frey,Jarden 1974)
For E / \mathbb{Q} the group $E\left(\mathbb{Q}\left(2^{\infty}\right)\right)$ is not finitely generated.

Elliptic curves over $\mathbb{Q}\left(2^{\infty}\right)$

Definition

Let $\mathbb{Q}\left(d^{\infty}\right)$ be the compositum of all degree- d extensions K / \mathbb{Q} in $\overline{\mathbb{Q}}$.
Example: $\mathbb{Q}\left(2^{\infty}\right)$ is the maximal elementary 2-abelian extension of \mathbb{Q}.
Theorem (Frey,Jarden 1974)
For E / \mathbb{Q} the group $E\left(\mathbb{Q}\left(2^{\infty}\right)\right)$ is not finitely generated.
Theorem (Laska,Lorenz 1985, Fujita 2004,2005) For E / \mathbb{Q} the group $E\left(\mathbb{Q}\left(2^{\infty}\right)\right)_{\text {tors }}$ is finite and

$$
E\left(\mathbb{Q}\left(2^{\infty}\right)\right)_{\text {tors }} \simeq \begin{cases}\mathbb{Z} / M \mathbb{Z} & M=1,3,5,7,9,15 \\ \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 M \mathbb{Z} & 1 \leqslant M \leqslant 6, M=8 \\ \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z} & \\ \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 M \mathbb{Z} & 1 \leqslant M \leqslant 4 \\ \mathbb{Z} / 2 M \mathbb{Z} \oplus \mathbb{Z} / 2 M \mathbb{Z} & 3 \leqslant M \leqslant 4\end{cases}
$$

Elliptic curves over $\mathbb{Q}\left(3^{\infty}\right)$

Theorem (Daniels,Lozano-Robledo,Najman,S 2015)

For E / \mathbb{Q} the group $E\left(\mathbb{Q}\left(3^{\infty}\right)\right)_{\text {tors }}$ is finite and

$$
E\left(\mathbb{Q}\left(3^{\infty}\right)\right)_{\text {tors }} \simeq \begin{cases}\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 M \mathbb{Z} & M=1,2,4,5,7,8,13 ; \\ \mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 M \mathbb{Z} & M=1,2,4,7 ; \\ \mathbb{Z} / 6 \mathbb{Z} \oplus \mathbb{Z} / 6 M \mathbb{Z} & M=1,2,3,5,7 ; \\ \mathbb{Z} / 2 M \mathbb{Z} \oplus \mathbb{Z} / 2 M \mathbb{Z} & M=4,6,7,9 .\end{cases}
$$

Of these 20 groups, 16 arise for infinitely many $j(E)$. We give complete lists/parametrizations of the $j(E)$ that arise in each case.

E / \mathbb{Q}	$E\left(\mathbb{Q}\left(3^{\infty}\right)\right)_{\text {tors }}$	E / \mathbb{Q}	$E\left(\mathbb{Q}\left(3^{\infty}\right)\right)_{\text {tors }}$
11 a2	$\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$	338 a1	$\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 28 \mathbb{Z}$
17 a3	$\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$	20 a1	$\mathbb{Z} / 6 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z}$
15 a5	$\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$	30 a1	$\mathbb{Z} / 6 \mathbb{Z} \oplus \mathbb{Z} / 12 \mathbb{Z}$
11 a1	$\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 10 \mathbb{Z}$	14 a3	$\mathbb{Z} / 6 \mathbb{Z} \oplus \mathbb{Z} / 18 \mathbb{Z}$
26 b1	$\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 14 \mathbb{Z}$	50 a3	$\mathbb{Z} / 6 \mathbb{Z} \oplus \mathbb{Z} / 30 \mathbb{Z}$
210 e1	$\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 16 \mathbb{Z}$	162 b1	$\mathbb{Z} / 6 \mathbb{Z} \oplus \mathbb{Z} / 42 \mathbb{Z}$
147 b1	$\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 26 \mathbb{Z}$	15 a1	$\mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$
17 a1	$\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$	30 a2	$\mathbb{Z} / 12 \mathbb{Z} \oplus \mathbb{Z} / 12 \mathbb{Z}$
15 a2	$\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$	2450 a1	$\mathbb{Z} / 14 \mathbb{Z} \oplus \mathbb{Z} / 14 \mathbb{Z}$
210e2	$\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 16 \mathbb{Z}$	14 a1	$\mathbb{Z} / 18 \mathbb{Z} \oplus \mathbb{Z} / 18 \mathbb{Z}$

```
\(\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \quad t\)
\(\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z} \quad \frac{\left(t^{2}+16 t+16\right)^{3}}{t(t+16)}\)
\(\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z} \quad \frac{\left(t^{4}-16 t^{2}+16\right)^{3}}{t^{2}\left(t^{2}-16\right)}\)
\(\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 10 \mathbb{Z} \quad \frac{\left(t^{4}-12 t^{3}+14 t^{2}+12 t+1\right)^{3}}{t^{5}\left(t^{2}-11 t-1\right)}\)
\(\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 14 \mathbb{Z} \quad \frac{\left(t^{2}+13 t+49\right)\left(t^{2}+5 t+1\right)^{3}}{t}\)
\(\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 16 \mathbb{Z} \quad \frac{\left(t^{16}-8 t^{14}+12 t^{12}+8 t^{10}-10 t^{8}+8 t^{6}+12 t^{4}-8 t^{2}+1\right)^{3}}{t^{16}\left(t^{4}-6 t^{2}+1\right)\left(t^{2}+1\right)^{2}\left(t^{2}-1\right)^{4}}\)
\(\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 26 \mathbb{Z} \quad \frac{\left(t^{4}-t^{3}+5 t^{2}+t+1\right)\left(t^{8}-5 t^{7}+7 t^{6}-5 t^{5}+5 t^{3}+7 t^{2}+5 t+1\right)^{3}}{t^{13}\left(t^{2}-3 t-1\right)}\)
\(\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z} \quad \frac{\left(t^{2}+192\right)^{3}}{\left(t^{2}-64\right)^{2}}, \frac{-16\left(t^{4}-14 t^{2}+1\right)^{3}}{t^{2}\left(t^{2}+1\right)^{4}}, \frac{-4\left(t^{2}+2 t-2\right)^{3}\left(t^{2}+10 t-2\right)}{t^{4}}\)
\(\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z} \quad \frac{16\left(t^{4}+4 t^{3}+20 t^{2}+32 t+16\right)^{3}}{t^{4}(t+1)^{2}(t+2)^{4}}, \frac{-4\left(t^{8}-60 t^{6}+134 t^{4}-60 t^{2}+1\right)^{3}}{t^{2}\left(t^{2}-1\right)^{2}\left(t^{2}+1\right)^{8}}\)
\(\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 16 \mathbb{Z} \quad \frac{\left(t^{16}-8 t^{14}+12 t^{12}+8 t^{10}+230 t^{8}+8 t^{6}+12 t^{4}-8 t^{2}+1\right)^{3}}{t^{8}\left(t^{2}-1\right)^{8}\left(t^{2}+1\right)^{4}\left(t^{4}-6 t^{2}+1\right)^{2}}\)
\(\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 28 \mathbb{Z} \quad\left\{\frac{351}{4}, \frac{-38575685889}{16384}\right\}\)
\(\mathbb{Z} / 6 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z} \quad \frac{(t+27)(t+3)^{3}}{t}\)
\(\mathbb{Z} / 6 \mathbb{Z} \oplus \mathbb{Z} / 12 \mathbb{Z} \quad \frac{\left(t^{2}-3\right)^{3}\left(t^{6}-9 t^{4}+3 t^{2}-3\right)^{3}}{t^{4}\left(t^{2}-9\right)\left(t^{2}-1\right)^{3}}\)
\(\mathbb{Z} / 6 \mathbb{Z} \oplus \mathbb{Z} / 18 \mathbb{Z} \quad \frac{(t+3)^{3}\left(t^{3}+9 t^{2}+27 t+3\right)^{3}}{t\left(t^{2}+9 t+27\right)}, \frac{(t+3)\left(t^{2}-3 t+9\right)\left(t^{3}+3\right)^{3}}{t^{3}}\)
\(\mathbb{Z} / 6 \mathbb{Z} \oplus \mathbb{Z} / 30 \mathbb{Z}\)
\(\mathbb{Z} / 6 \mathbb{Z} \oplus \mathbb{Z} / 42 \mathbb{Z} \quad\left\{\frac{3375}{2}, \frac{-140625}{8}, \frac{-1159088625}{2097152}, \frac{-189613868625}{128}\right\}\)
\(\left\{\frac{-121945}{32}, \frac{46969655}{32768}\right\}\)
\(\mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z} \quad \frac{\left(t^{8}+224 t^{4}+256\right)^{3}}{t^{4}\left(t^{4}-16\right)^{4}}\)
\(\mathbb{Z} / 12 \mathbb{Z} \oplus \mathbb{Z} / 12 \mathbb{Z} \quad \frac{\left(t^{2}+3\right)^{3}\left(t^{6}-15 t^{4}+75 t^{2}+3\right)^{3}}{t^{2}\left(t^{2}-9\right)^{2}\left(t^{2}-1\right)^{6}},\left\{\frac{-35937}{4}, \frac{109503}{64}\right\}\)
\(\mathbb{Z} / 14 \mathbb{Z} \oplus \mathbb{Z} / 14 \mathbb{Z}\)
\(\mathbb{Z} / 18 \mathbb{Z} \oplus \mathbb{Z} / 18 \mathbb{Z}\)
\(\left\{\frac{2268945}{128}\right\}\)
    \(\frac{27 t^{3}\left(8-t^{3}\right)^{3}}{\left(t^{3}+1\right)^{3}}, \quad \frac{432 t\left(t^{2}-9\right)\left(t^{2}+3\right)^{3}\left(t^{3}-9 t+12\right)^{3}\left(t^{3}+9 t^{2}+27 t+3\right)^{3}\left(5 t^{3}-9 t^{2}-9 t-3\right)^{3}}{\left(t^{3}-3 t^{2}-9 t+3\right)^{9}\left(t^{3}+3 t^{2}-9 t-3\right)^{3}}\)
```


Characterizing $\mathbb{Q}\left(3^{\infty}\right)$

Definition

A finite group G is of generalized S_{3}-type if it is isomorphic to a subgroup of $S_{3} \times \cdots \times S_{3}$. Example: D_{6}. Nonexamples: $A_{4}, C_{4}, B(2,3)$.

Lemma

G is of generalized S_{3}-type if and only if (a) G is supersolvable, (b) $\lambda(G)$ divides 6 , and (c) every Sylow subgroup of G is abelian.

Corollary

The class of generalized S_{3}-type groups is closed under products, subgroups, and quotients.

Characterizing $\mathbb{Q}\left(3^{\infty}\right)$

Definition

A finite group G is of generalized S_{3}-type if it is isomorphic to a subgroup of $S_{3} \times \cdots \times S_{3}$. Example: D_{6}. Nonexamples: $A_{4}, C_{4}, B(2,3)$.

Lemma

G is of generalized S_{3}-type if and only if (a) G is supersolvable, (b) $\lambda(G)$ divides 6 , and (c) every Sylow subgroup of G is abelian.

Corollary

The class of generalized S_{3}-type groups is closed under products, subgroups, and quotients.

Proposition

A number field K lies in $\mathbb{Q}\left(3^{\infty}\right)$ if and only the Galois $\operatorname{group} \operatorname{Gal}(K / \mathbb{Q})$ is of generalized S_{3}-type.

Uniform boundedness for base extensions of E / \mathbb{Q}

Theorem
Let F / \mathbb{Q} be a Galois extension with finitely many roots of unity. There is a uniform bound B such that $\# E(F)_{\text {tors }} \leqslant B$ for all E / \mathbb{Q}.

Uniform boundedness for base extensions of E / \mathbb{Q}

Theorem
Let F / \mathbb{Q} be a Galois extension with finitely many roots of unity. There is a uniform bound B such that $\# E(F)_{\text {tors }} \leqslant B$ for all E / \mathbb{Q}.

Proof sketch.

Uniform boundedness for base extensions of E / \mathbb{Q}

Theorem
Let F / \mathbb{Q} be a Galois extension with finitely many roots of unity. There is a uniform bound B such that $\# E(F)_{\text {tors }} \leqslant B$ for all E / \mathbb{Q}.

Proof sketch.

1. $E[n] \nsubseteq E(F)$ for all sufficiently large n.
2. If $E\left[p^{k}\right] \subseteq E(F)$ with $k \leqslant j$ maximal and $p^{j} \mid \lambda\left(E(F)\left[p^{\infty}\right]\right)$, then E admits a \mathbb{Q}-rational cyclic p^{j-k}-isogeny.
3. E / \mathbb{Q} cannot admit a \mathbb{Q}-rational cyclic p^{n}-isogeny for $p^{n}>163$ (Mazur+Kenku).

Corollary

$E\left(\mathbb{Q}\left(3^{\infty}\right)\right)_{\text {tors }}$ is finite. Indeed, $\# E\left(\mathbb{Q}\left(3^{\infty}\right)\right)_{\text {tors }}$ must divide $2^{10} 3^{7} 5^{2} 7^{3} 13$.

Galois representations

Let E be an elliptic curve over \mathbb{Q} and let $N \geqslant 1$ be an integer.
The Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ acts on the N-torsion subgroup of $E(\overline{\mathbb{Q}})$,

$$
E[N] \simeq \mathbb{Z} / N \mathbb{Z} \oplus \mathbb{Z} / N \mathbb{Z}
$$

via its action on points (coordinate-wise). This yields a representation

$$
\rho_{E, N}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{Aut}(E[N]) \simeq \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}),
$$

whose image we denote $G_{E}(N)$. Choosing bases compatibly, we can take the inverse limit and obtain a single representation

$$
\rho_{E}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \underset{N}{\lim _{N}} \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) \simeq \mathrm{GL}_{2}(\hat{\mathbb{Z}})
$$

whose image we denote G_{E}, with projections $G_{E} \rightarrow G_{E}(N)$ for each N.

Modular curves

Let $F_{N}:=\mathbb{Q}\left(\zeta_{n}\right)(X(N))$. Then $F_{1}=\mathbb{Q}(j)$ and $F_{N} / \mathbb{Q}(j)$ is Galois with

$$
\operatorname{Gal}\left(F_{N} / \mathbb{Q}(j)\right) \simeq \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) /\{ \pm I\}
$$

Let $G \subseteq \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$ be a group containing $-I$ with $\operatorname{det}(G)=(\mathbb{Z} / N \mathbb{Z})^{\times}$. Define X_{G} / \mathbb{Q} to be the smooth projective curve with function field F_{N}^{G}. Let $J_{G}: X_{G} \rightarrow X(1)=\mathbb{Q}(j)$ be the map corresponding to $\mathbb{Q}(j) \subseteq F_{N}^{G}$.

If $M \mid N$ and G is the full inverse image of $H \subseteq \mathrm{GL}_{2}(\mathbb{Z} / M \mathbb{Z})$, then $X_{G}=X_{H}$. We call the least such M the level of G and X_{G}.

Better: identify G with $\pi_{N}^{-1}(G)$, where $\pi_{N}: \mathrm{GL}_{2}(\hat{\mathbb{Z}}) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$; G as an open subgroup of $\mathrm{GL}_{2}(\hat{\mathbb{Z}})$ containing $-I$ with $\operatorname{det}(G)=\hat{\mathbb{Z}}^{\times}$.

For any E / \mathbb{Q} with $j(E) \notin\{0,1728\}$, up to $\mathrm{GL}_{2}(\hat{\mathbb{Z}})$-conjugacy,

$$
G_{E} \subseteq G \Longleftrightarrow j(E) \in J_{G}\left(X_{G}(\mathbb{Q})\right) .
$$

Congruence subgroups

For $G \subseteq \mathrm{GL}_{2}(\hat{\mathbb{Z}})$ of level N as above, let $\Gamma \subseteq \mathrm{SL}_{2}(\mathbb{Z})$ be the preimage of $\pi_{N}(G) \cap \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$.

Then Γ is a congruence subgroup containing $\Gamma(N)$, and the modular curve $X_{\Gamma}:=\Gamma \backslash \mathfrak{h}^{*}$ is isomorphic to the base change of X_{G} to $\mathbb{Q}\left(\zeta_{n}\right)$.

The genus g of X_{G} and X_{Γ} must coincide, but their levels need not (!); the level M of X_{Γ} may strictly divide the level N of X_{G}.

For each $g \geqslant 0$ we have $g\left(X_{\Gamma}\right)=g$ for only finitely many X_{Γ}; for $g \leqslant 24$ these Γ can be found in the tables of Cummins and Pauli.

But we may have $g\left(X_{G}\right)=g$ for infinitely many $X_{G}(!)$
Call $g\left(X_{G}\right)$ the genus of G.

Modular curves with infinitely many rational points

Theorem (S.,Zywina)

There are 248 modular curves X_{G} of prime power level with $X_{G}(\mathbb{Q})$ infinite. Of these, 220 have genus 0 and 28 have genus 1.

For each of these 248 groups G we have an explicit $J_{G}: X_{G} \rightarrow X(1)$.
2-adic cases independently addressed by Rouse and Zureick-Brown.

Corollary

For each of these G we can completely describe the set of j-invariants of elliptic curves E / \mathbb{Q} for which $G_{E} \subseteq G$.

Corollary

There are 1294 non-conjugate open subgroups of $\mathrm{GL}_{2}(\hat{\mathbb{Z}})$ of prime power level that occur as G_{E} for infinitely many E / \mathbb{Q} with distinct $j(E)$.

Determining $E\left(\mathbb{Q}\left(3^{\infty}\right)\right)\left[p^{\infty}\right]$ for $p \in\{2,3,5,7,13\}$

Lemma

For $j(E) \neq 1728$ the structure of $E\left(\mathbb{Q}\left(3^{\infty}\right)\right)_{\text {tors }}$ is determined by $j(E)$.
For $j(E)=1728$ we have $E\left(\mathbb{Q}\left(3^{\infty}\right)\right)_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ or $\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$.
Now we start computing possible Galois images G in $\mathrm{GL}_{2}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)$ and corresponding modular curves X_{G}, leaning heavily on results of Rouse-Zureick-Brown and S.-Zywina.

The most annoying case is 27 -torsion. We get the genus 4 curve

$$
x: x^{3} y^{2}-x^{3} y-y^{3}+6 y^{2}-3 y=1 .
$$

As shown by Morrow, $\operatorname{Aut}\left(X_{\mathbb{Q}\left(\zeta_{3}\right)}\right) \simeq \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}$, and the two cyclic quotients are hyperelliptic curves over $\mathbb{Q}\left(\zeta_{3}\right)$ with only three rational points; none of these give a non-cuspidal \mathbb{Q}-rational point on X.

Determining $E\left(\mathbb{Q}\left(3^{\infty}\right)\right)\left[p^{\infty}\right]$ for $p \in\{2,3,5,7,13\}$

Lemma

For $j(E) \neq 1728$ the structure of $E\left(\mathbb{Q}\left(3^{\infty}\right)\right)_{\text {tors }}$ is determined by $j(E)$.
For $j(E)=1728$ we have $E\left(\mathbb{Q}\left(3^{\infty}\right)\right)_{\text {tors }} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ or $\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$.
Now we start computing possible Galois images G in $\mathrm{GL}_{2}\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)$ and corresponding modular curves X_{G}, leaning heavily on results of Rouse-Zureick-Brown and S.-Zywina.

The most annoying case is 27 -torsion. We get the genus 4 curve

$$
x: x^{3} y^{2}-x^{3} y-y^{3}+6 y^{2}-3 y=1
$$

As shown by Morrow, $\operatorname{Aut}\left(X_{\mathbb{Q}\left(\zeta_{3}\right)}\right) \simeq \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}$, and the two cyclic quotients are hyperelliptic curves over $\mathbb{Q}\left(\zeta_{3}\right)$ with only three rational points; none of these give a non-cuspidal \mathbb{Q}-rational point on X.

We eventually find $E\left(\mathbb{Q}\left(3^{\infty}\right)\right)_{\text {tors }}$ must be isomorphic to a subgroup of

$$
\mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 16 \mathbb{Z} \oplus \mathbb{Z} / 9 \mathbb{Z} \oplus \mathbb{Z} / 9 \mathbb{Z} \oplus \mathbb{Z} / 5 \mathbb{Z} \oplus \mathbb{Z} / 7 \mathbb{Z} \oplus \mathbb{Z} / 7 \mathbb{Z} \oplus \mathbb{Z} / 13 \mathbb{Z}
$$

An algorithm to compute $E\left(\mathbb{Q}\left(3^{\infty}\right)\right)_{\text {tors }}$

Naive approach is not practical, need to be clever.

- Compute each $E\left(\mathbb{Q}\left(3^{\infty}\right)\right)\left[p^{\infty}\right]$ separately.
- $\mathbb{Q}\left(E\left[p^{n}\right]\right) \subseteq \mathbb{Q}\left(3^{\infty}\right)$ iff $\mathbb{Q}\left(E\left[p^{n}\right]\right)$ is of generalized S_{3}-type.
- $\mathbb{Q}(P) \subseteq \mathbb{Q}\left(3^{\infty}\right)$ iff $\mathbb{Q}(P)$ is of generalized S_{3}-type.
- Use fields defined by division polynomials (+ quadratic ext).
- If the exponent does not divide 6 we can detect this locally.
- Use isogeny kernel polynomials to speed things up.
- Prove theorems to rule out annoying cases.
theorem \Rightarrow algorithm \Rightarrow theorem \Rightarrow algorithm \Rightarrow theorem $\Rightarrow \cdots$

An algorithm to compute $E\left(\mathbb{Q}\left(3^{\infty}\right)\right)_{\text {tors }}$

Naive approach is not practical, need to be clever.

- Compute each $E\left(\mathbb{Q}\left(3^{\infty}\right)\right)\left[p^{\infty}\right]$ separately.
- $\mathbb{Q}\left(E\left[p^{n}\right]\right) \subseteq \mathbb{Q}\left(3^{\infty}\right)$ iff $\mathbb{Q}\left(E\left[p^{n}\right]\right)$ is of generalized S_{3}-type.
- $\mathbb{Q}(P) \subseteq \mathbb{Q}\left(3^{\infty}\right)$ iff $\mathbb{Q}(P)$ is of generalized S_{3}-type.
- Use fields defined by division polynomials (+ quadratic ext).
- If the exponent does not divide 6 we can detect this locally.
- Use isogeny kernel polynomials to speed things up.
- Prove theorems to rule out annoying cases.
theorem \Rightarrow algorithm \Rightarrow theorem \Rightarrow algorithm \Rightarrow theorem $\Rightarrow \cdots$

Eventually you don't need much of an algorithm.

Ruling out combinations of p-primary parts

Having determined all the minimal and maximal p-primary possibilities leaves 648 possible torsion structures.

- Work top down (divisible by 13 , divisible by 7 but not $13, \ldots$).
- Use known isogeny results to narrow the possibilities (rational points on $X_{0}(15)$ and $X_{0}(21)$ for example).
- Search for rational points on fiber products built from Z-S curves. (side benefit: gives parameterizations for genus 0 cases).
- Hardest case: ruling out a point of order 36.

Eventually we whittle our way down to 20 torsion structures, all of which we know occur because we have examples.

Constructing a complete set of parameterizations

For each torsion structure T with $\lambda(T)=n$ we enumerate subgroups G of $\mathrm{GL}_{2}(\mathbb{Z} / n \mathbb{Z})$ that are maximal subject to:

1. det: $G \rightarrow(\mathbb{Z} / n \mathbb{Z})^{\times}$is surjective.
2. G contains an element γ corresponding to complex conjugation ($\operatorname{tr} \gamma=0$, det $\gamma=-1, \gamma$-action trivial on $\mathbb{Z} / n \mathbb{Z}$ submodule).
3. The submodule of $\mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z} / n \mathbb{Z}$ fixed by the minimal $N \triangleleft G$ for which G / N is of generalized S_{3}-type is isomorphic to T.

Each such G will contain $-I$ and the modular curve X_{G} will be defined over \mathbb{Q}. For $j(E) \neq 0,1728$ the non-cuspidal points in $X_{G}(\mathbb{Q})$ give $j(E)$ for which $E\left(\mathbb{Q}\left(3^{\infty}\right)\right)_{\text {tors }}$ contains a subgroup isomorphic to T.

There are 33 such G for the 20 possible T. In each case either: (a) X_{G} has genus 0 and a rational point, (b) X_{G} has genus 1 and no rational points, (c) X_{G} is an elliptic curve of rank 0 , or (d) $g\left(X_{G}\right)>1$.

```
\(\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \quad t\)
\(\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z} \quad \frac{\left(t^{2}+16 t+16\right)^{3}}{t(t+16)}\)
\(\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z} \quad \frac{\left(t^{4}-16 t^{2}+16\right)^{3}}{t^{2}\left(t^{2}-16\right)}\)
\(\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 10 \mathbb{Z} \quad \frac{\left(t^{4}-12 t^{3}+14 t^{2}+12 t+1\right)^{3}}{t^{5}\left(t^{2}-11 t-1\right)}\)
\(\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 14 \mathbb{Z} \quad \frac{\left(t^{2}+13 t+49\right)\left(t^{2}+5 t+1\right)^{3}}{t}\)
\(\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 16 \mathbb{Z} \quad \frac{\left(t^{16}-8 t^{14}+12 t^{12}+8 t^{10}-10 t^{8}+8 t^{6}+12 t^{4}-8 t^{2}+1\right)^{3}}{t^{16}\left(t^{4}-6 t^{2}+1\right)\left(t^{2}+1\right)^{2}\left(t^{2}-1\right)^{4}}\)
\(\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 26 \mathbb{Z} \quad \frac{\left(t^{4}-t^{3}+5 t^{2}+t+1\right)\left(t^{8}-5 t^{7}+7 t^{6}-5 t^{5}+5 t^{3}+7 t^{2}+5 t+1\right)^{3}}{t^{13}\left(t^{2}-3 t-1\right)}\)
\(\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z} \quad \frac{\left(t^{2}+192\right)^{3}}{\left(t^{2}-64\right)^{2}}, \frac{-16\left(t^{4}-14 t^{2}+1\right)^{3}}{t^{2}\left(t^{2}+1\right)^{4}}, \frac{-4\left(t^{2}+2 t-2\right)^{3}\left(t^{2}+10 t-2\right)}{t^{4}}\)
\(\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z} \quad \frac{16\left(t^{4}+4 t^{3}+20 t^{2}+32 t+16\right)^{3}}{t^{4}(t+1)^{2}(t+2)^{4}}, \frac{-4\left(t^{8}-60 t^{6}+134 t^{4}-60 t^{2}+1\right)^{3}}{t^{2}\left(t^{2}-1\right)^{2}\left(t^{2}+1\right)^{8}}\)
\(\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 16 \mathbb{Z} \quad \frac{\left(t^{16}-8 t^{14}+12 t^{12}+8 t^{10}+230 t^{8}+8 t^{6}+12 t^{4}-8 t^{2}+1\right)^{3}}{t^{8}\left(t^{2}-1\right)^{8}\left(t^{2}+1\right)^{4}\left(t^{4}-6 t^{2}+1\right)^{2}}\)
\(\mathbb{Z} / 4 \mathbb{Z} \oplus \mathbb{Z} / 28 \mathbb{Z} \quad\left\{\frac{351}{4}, \frac{-38575685889}{16384}\right\}\)
\(\mathbb{Z} / 6 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z} \quad \frac{(t+27)(t+3)^{3}}{t}\)
\(\mathbb{Z} / 6 \mathbb{Z} \oplus \mathbb{Z} / 12 \mathbb{Z} \quad \frac{\left(t^{2}-3\right)^{3}\left(t^{6}-9 t^{4}+3 t^{2}-3\right)^{3}}{t^{4}\left(t^{2}-9\right)\left(t^{2}-1\right)^{3}}\)
\(\mathbb{Z} / 6 \mathbb{Z} \oplus \mathbb{Z} / 18 \mathbb{Z} \quad \frac{(t+3)^{3}\left(t^{3}+9 t^{2}+27 t+3\right)^{3}}{t\left(t^{2}+9 t+27\right)}, \frac{(t+3)\left(t^{2}-3 t+9\right)\left(t^{3}+3\right)^{3}}{t^{3}}\)
\(\mathbb{Z} / 6 \mathbb{Z} \oplus \mathbb{Z} / 30 \mathbb{Z}\)
\(\mathbb{Z} / 6 \mathbb{Z} \oplus \mathbb{Z} / 42 \mathbb{Z} \quad\left\{\frac{3375}{2}, \frac{-140625}{8}, \frac{-1159088625}{2097152}, \frac{-189613868625}{128}\right\}\)
\(\left\{\frac{-121945}{32}, \frac{46969655}{32768}\right\}\)
\(\mathbb{Z} / 8 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z} \quad \frac{\left(t^{8}+224 t^{4}+256\right)^{3}}{t^{4}\left(t^{4}-16\right)^{4}}\)
\(\mathbb{Z} / 12 \mathbb{Z} \oplus \mathbb{Z} / 12 \mathbb{Z} \quad \frac{\left(t^{2}+3\right)^{3}\left(t^{6}-15 t^{4}+75 t^{2}+3\right)^{3}}{t^{2}\left(t^{2}-9\right)^{2}\left(t^{2}-1\right)^{6}},\left\{\frac{-35937}{4}, \frac{109503}{64}\right\}\)
\(\mathbb{Z} / 14 \mathbb{Z} \oplus \mathbb{Z} / 14 \mathbb{Z}\)
\(\mathbb{Z} / 18 \mathbb{Z} \oplus \mathbb{Z} / 18 \mathbb{Z}\)
\(\left\{\frac{2268945}{128}\right\}\)
    \(\frac{27 t^{3}\left(8-t^{3}\right)^{3}}{\left(t^{3}+1\right)^{3}}, \quad \frac{432 t\left(t^{2}-9\right)\left(t^{2}+3\right)^{3}\left(t^{3}-9 t+12\right)^{3}\left(t^{3}+9 t^{2}+27 t+3\right)^{3}\left(5 t^{3}-9 t^{2}-9 t-3\right)^{3}}{\left(t^{3}-3 t^{2}-9 t+3\right)^{9}\left(t^{3}+3 t^{2}-9 t-3\right)^{3}}\)
```


References

[F15] Y. Fujita, Torsion subgroups of elliptic curves in elementary abelian 2-extensions of \mathbb{Q}, J. Number Theory 114 (2005), 124-134.
[GG14] I. Gal and R. Grizzard, On the compositum of all degree d extensions of a number field, J. Théor Nombres Bordeaux 26 (2014), 655-672.
[LL85] M. Laska and M. Lorenz, Rational points on elliptic curves over \mathbb{Q} in elementary abelian 2-extensions of \mathbb{Q}, J. Reine Agnew. Math. 355 (1985), 163-172.
[L13] A. Lozano-Robledo, On the field of definition of p-torsion points on elliptic curves over the rationals, Math. Ann. 357 (2013), 279-305.
[N15] F. Najman, Torsion of rational elliptic curves over cubic fields and sporadic points on $X_{1}(n)$, Math. Res. Lett., to appear.
[RZ15] J. Rouse and D. Zureick-Brown, Elliptic curves over \mathbb{Q} and 2-adic images of Galois, arXiv:1402.5997.
[S15] A.V. Sutherland, Computing image of Galois representations attached to elliptic curves, arXiv:1504.07618.
[SZ15] A.V. Sutherland and D. Zywina, Modular curves of prime power level with infinitely many rational points, in preparation.
[Z15] D. Zywina, Possible indices for the Galois image of elliptic curves over \mathbb{Q}, arXiv:1508.07663.

