Sato-Tate distributions

Andrew V. Sutherland

Massachusetts Institute of Technology
February 4, 2016

Mikio Sato

John Tate

Sato-Tate in dimension 1

Let E / \mathbb{Q} be an elliptic curve, which we can write in the form

$$
y^{2}=x^{3}+a x+b
$$

and let p be a prime of good reduction $\left(4 a^{3}+27 b^{2} \not \equiv 0 \bmod p\right)$.
The number of \mathbb{F}_{p}-points on the reduction E_{p} of E modulo p is

$$
\# E_{p}\left(\mathbb{F}_{p}\right)=p+1-t_{p}
$$

where the trace of Frobenius $t_{p} \in \mathbb{Z}$ lies in the interval $[-2 \sqrt{p}, 2 \sqrt{p}]$.
We are interested in the limiting distribution of $x_{p}=-t_{p} / \sqrt{p} \in[-2,2]$, as p varies over primes of good reduction up to N, as $N \rightarrow \infty$.

Example: $y^{2}=x^{3}+x+1$

p	t_{p}	x_{p}	p	t_{p}	x_{p}	p	t_{p}	x_{p}
3	0	$\mathbf{0 . 0 0 0 0 0 0}$	71	13	$\mathbf{- 1 . 5 4 2 8 1 6}$	157	-13	$\mathbf{1 . 0 3 7 5 1 3}$
5	-3	$\mathbf{1 . 3 4 1 6 4 1}$	73	2	$\mathbf{- 0 . 2 3 4 0 8 2}$	163	-25	$\mathbf{1 . 9 5 8 1 5 1}$
7	3	$\mathbf{- 1 . 1 3 3 8 9 3}$	79	-6	$\mathbf{0 . 6 7 5 0 5 3}$	167	24	$\mathbf{- 1 . 8 5 7 1 7 6}$
11	-2	$\mathbf{0 . 6 0 3 0 2 3}$	83	-6	$\mathbf{0 . 6 5 8 5 8 6}$	173	2	$\mathbf{- 0 . 1 5 2 0 5 7}$
13	-4	$\mathbf{1 . 1 0 9 4 0 0}$	89	-10	$\mathbf{1 . 0 5 9 9 9 8}$	179	0	$\mathbf{0 . 0 0 0 0 0 0}$
17	0	$\mathbf{0 . 0 0 0 0 0 0}$	97	1	$\mathbf{- 0 . 1 0 1 5 3 5}$	181	-8	$\mathbf{0 . 5 9 4 6 3 5}$
19	-1	$\mathbf{0 . 2 2 9 4 1 6}$	101	-3	$\mathbf{0 . 2 9 8 5 1 1}$	191	-25	$\mathbf{1 . 8 0 8 9 3 7}$
23	-4	$\mathbf{0 . 8 3 4 0 5 8}$	103	17	$\mathbf{- 1 . 6 7 5 0 6 0}$	193	-7	$\mathbf{0 . 5 0 3 8 7 1}$
29	-6	$\mathbf{1 . 1 1 4 1 7 2}$	107	3	$\mathbf{- 0 . 2 9 0 0 2 1}$	197	-24	$\mathbf{1 . 7 0 9 9 2 9}$
37	-10	$\mathbf{1 . 6 4 3 9 9 0}$	109	-13	$\mathbf{1 . 2 4 5 1 7 4}$	199	-18	$\mathbf{1 . 2 7 5 9 8 6}$
41	7	$\mathbf{- 1 . 0 9 3 2 1 6}$	113	-11	$\mathbf{1 . 0 3 4 7 9 3}$	211	-11	$\mathbf{0 . 7 5 7 2 7 1}$
43	10	$\mathbf{- 1 . 5 2 4 9 8 6}$	127	2	$\mathbf{- 0 . 1 7 7 4 7 1}$	223	-20	$\mathbf{1 . 3 3 9 2 9 9}$
47	-12	$\mathbf{1 . 7 5 0 3 8 0}$	131	4	$\mathbf{- 0 . 3 4 9 4 8 2}$	227	0	$\mathbf{0 . 0 0 0 0 0 0}$
53	-4	$\mathbf{0 . 5 4 9 4 4 2}$	137	12	$\mathbf{- 1 . 0 2 5 2 2 9}$	229	-2	$\mathbf{0 . 1 3 2 1 6 4}$
59	-3	$\mathbf{0 . 3 9 0 5 6 7}$	139	14	$-\mathbf{1 . 1 8 7 4 6 5}$	233	-3	$\mathbf{0 . 1 9 6 5 3 7}$
61	12	$\mathbf{- 1 . 5 3 6 4 4 3}$	149	14	$\mathbf{- 1 . 1 4 6 9 2 5}$	239	-22	$\mathbf{1 . 4 2 3 0 6 2}$
67	12	$\mathbf{- 1 . 4 6 6 0 3 3}$	151	-2	$\mathbf{0 . 1 6 2 7 5 8}$	241	22	$\mathbf{- 1 . 4 1 7 1 4 5}$

http://math.mit.edu/~drew/g1SatoTateDistributions.html

click histogram to animate (requires adobe reader)
al histogram of $y^{\wedge} 2+x y+y=x^{\wedge} 3-x^{\wedge} 2-20067762415575526585033208209338542750930230312178956502 x$
+34481611795030556467032985690390720374855944359319180361266008296291939448732243429 for $p<=2^{\wedge} 10$ 172 data points in 13 buckets, $z 1=0.023$, out of range data has area 0.250

click histogram to animate (requires adobe reader)

click histogram to animate (requires adobe reader)

click histogram to animate (requires adobe reader)

Sato-Tate distributions in dimension 1

1. Typical case (no CM)

Elliptic curves E / \mathbb{Q} without CM have the semicircular trace distribution. (This is also known for E / k, where k is a totally real number field). [Barnet-Lamb, Clozel, Geraghty, Harris, Shepherd-Barron, Taylor]

2. Exceptional cases (CM)

Elliptic curves E / k with CM have one of two distinct trace distributions, depending on whether k contains the CM field or not. [classical (Hecke, Deuring)]

Sato-Tate groups in dimension 1

The Sato-Tate group of E is a closed subgroup G of $\operatorname{SU}(2)=\operatorname{USp}(2)$ derived from the ℓ-adic Galois representation attached to E.

The refined Sato-Tate conjecture implies that the distribution of normalized traces of E_{p} converges to the distribution of traces in the Sato-Tate group of G, under the Haar measure.

G	G / G^{0}	E	k	$\mathrm{E}\left[a_{1}^{0}\right], \mathrm{E}\left[a_{1}^{2}\right], \mathrm{E}\left[a_{1}^{4}\right] \ldots$
$\mathrm{U}(1)$	C_{1}	$y^{2}=x^{3}+1$	$\mathbb{Q}(\sqrt{-3})$	$1,2,6,20,70,252, \ldots$
$N(\mathrm{U}(1))$	C_{2}	$y^{2}=x^{3}+1$	\mathbb{Q}	$1,1,3,10,35,126, \ldots$
$\mathrm{SU}(2)$	C_{1}	$y^{2}=x^{3}+x+1$	\mathbb{Q}	$1,1,2,5,14,42, \ldots$

In dimension 1 there are three possible Sato-Tate groups, two of which arise for elliptic curves defined over \mathbb{Q}.

Zeta functions and L-polynomials

Let C / \mathbb{Q} be a nice curve of genus g and p a prime of good reduction. Define the zeta function

$$
Z_{p}(T):=\exp \left(\sum_{r=1}^{\infty} N_{r} T^{r} / r\right)
$$

where $N_{r}=\# C_{p}\left(\mathbb{F}_{p^{r}}\right)$. This is a rational function of the form

$$
Z_{p}(T)=\frac{L_{p}(T)}{(1-T)(1-p T)}
$$

where $L_{p}(T)$ is an integer polynomial of degree $2 g$.
For $g=1$ we have $L_{p}(t)=p T^{2}+c_{1} T+1$, and for $g=2$,

$$
L_{p}(T)=p^{2} T^{4}+c_{1} p T^{3}+c_{2} T^{2}+c_{1} T+1
$$

Normalized L-polynomials

The normalized L-polynomial

$$
\bar{L}_{p}(T):=L_{p}(T / \sqrt{p})=\sum_{i=0}^{2 g} a_{i} T^{i} \in \mathbb{R}[T]
$$

is monic, reciprocal ($a_{i}=a_{2 g-i}$), and unitary (roots on the unit circle).
The coefficients a_{i} satisfy the Weil bounds $\left|a_{i}\right| \leq\binom{ 2 g}{i}$.
We now consider the limiting distribution of $a_{1}, a_{2}, \ldots, a_{g}$ over all primes $p \leq N$ of good reduction, as $N \rightarrow \infty$.
http://math.mit.edu/~drew/g2SatoTateDistributions.html

click histogram to animate (requires adobe reader)

click histogram to animate (requires adobe reader)

click histogram to animate (requires adobe reader)
a2 histogram of $y^{\wedge} 2=x^{\wedge} 5+2 x^{\wedge} 4-x^{\wedge} 3-3 x^{\wedge} 2-x$ for $p<=2^{\wedge} 10$

click histogram to animate (requires adobe reader)

Exceptional distributions for abelian surfaces over \mathbb{Q} :

L-polynomials of Abelian varieties

Let A be an abelian variety of dimension $g \geq 1$ over a number field k, and let us fix a prime ℓ.

Let $\rho_{\ell}: G_{k} \rightarrow \operatorname{Aut}_{\mathbb{Q}_{\ell}}\left(V_{\ell}(A)\right) \simeq \operatorname{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right)$ be the Galois representation arising from the action of $G_{k}:=\operatorname{Gal}(k / k)$ on the ℓ-adic Tate module

$$
V_{\ell}(A):=\lim _{\leftarrow} A\left[\ell^{n}\right] \otimes \mathbb{Q} .
$$

For each prime \mathfrak{p} of good reduction for A we have the L-polynomial

$$
\begin{aligned}
L_{\mathfrak{p}}(T) & :=\operatorname{det}\left(1-\rho_{\ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right) T\right), \\
\bar{L}_{\mathfrak{p}}(T) & :=L_{\mathfrak{p}}(T / \sqrt{\|\mathfrak{p}\|})=\sum a_{i} T^{i} .
\end{aligned}
$$

When A is the Jacobian of a genus g curve C, this agrees with our earlier definition of $L_{\mathfrak{p}}(T)$ as the numerator of the zeta function $Z_{\mathfrak{p}}(T)$.

The Sato-Tate problem for an abelian variety

The $\bar{L}_{\mathfrak{p}} \in \mathbb{R}[T]$ are monic, symmetric, unitary polynomials of degree $2 g$.
Every such polynomial arises as the characteristic polynomial of a conjugacy class in the unitary symplectic group $\operatorname{USp}(2 g)$.

Each probability measure on $\mathrm{USp}(2 g)$ determines a distribution of conjugacy classes (hence a distribution of characteristic polynomials).

The Sato-Tate problem, in its simplest form, is to find a measure for which these classes are equidistributed.

Conjecturally, such a measure arises as the Haar measure of a compact subgroup ST_{A} of $\mathrm{USp}(2 g)$.

The Sato-Tate group

Recall that the action of G_{k} on $V_{\ell}(A)$ induces the representation

$$
\rho_{\ell}: G_{k} \rightarrow \operatorname{Aut}_{\mathbb{Q}_{\ell}}\left(V_{\ell}(A)\right) \simeq \operatorname{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right)
$$

Let $G_{\ell}^{1, \text { zar }}$ denote the kernel of the similitude character of $\mathrm{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right)$ on the Zariski closure of $\rho_{\ell}\left(G_{k}\right)$. Now fix $\iota: \mathbb{Q}_{\ell} \hookrightarrow \mathbb{C}$, and define ST_{A} to be a maximal compact subgroup of the image $G_{\ell}^{1, \text { zar }}$ under

$$
\mathrm{Sp}_{2 g}\left(\mathbb{Q}_{\ell}\right) \xrightarrow{\otimes_{\mathbb{C}} \mathbb{C}} \mathrm{Sp}_{2 g}(\mathbb{C}) .
$$

Conjecturally, ST_{A} does not depend on ℓ or ι; this is known for $g \leq 3$.

Definition [Serre]

$\mathrm{ST}_{A} \subseteq \mathrm{USp}(2 g)$ is the Sato-Tate group of A.

The refined Sato-Tate conjecture

Let $s(\mathfrak{p})$ denote the conjugacy class of the image of $\mathrm{Frob}_{\mathfrak{p}}$ in ST_{A}.
Let $\mu_{\mathrm{ST}_{A}}$ denote the image of the Haar measure on $\operatorname{Conj}\left(\mathrm{ST}_{A}\right)$, which does not depend on the choice of ℓ or ι.

Conjecture

The conjugacy classes $s(\mathfrak{p})$ are equidistributed with respect to $\mu_{\mathrm{ST}_{A}}$.

In particular, the distribution of $\bar{L}_{\mathfrak{p}}(T)$ matches the distribution of characteristic polynomials of random matrices in ST_{A}.

We can test this numerically by comparing statistics of the coefficients a_{1}, \ldots, a_{g} of $\bar{L}_{\mathfrak{p}}(T)$ over $\|\mathfrak{p}\| \leq N$ to the predictions given by $\mu_{\mathrm{ST}_{A}}$.
https://hensel.mit.edu:8000/home/pub/6

The Sato-Tate axioms

The Sato-Tate axioms for abelian varieties (weight-1 motives):
(1) G is closed subgroup of $\operatorname{USp}(2 g)$.
(2) Hodge condition: G contains a Hodge circle ${ }^{1}$ whose conjugates generate a dense subset of G.
(3) Rationality condition: for each component H of G and each irreducible character χ of $\mathrm{GL}_{2 g}(\mathbb{C})$ we have $\mathrm{E}[\chi(\gamma): \gamma \in H] \in \mathbb{Z}$.
For any fixed g, the set of subgroups $G \subseteq \operatorname{USp}(2 g)$ that satisfy the Sato-Tate axioms is finite up to conjugacy (3 for $g=1,55$ for $g=2$).

[^0]
The Sato-Tate axioms

The Sato-Tate axioms for abelian varieties (weight-1 motives):
(1) G is closed subgroup of $\operatorname{USp}(2 g)$.
(2) Hodge condition: G contains a Hodge circle ${ }^{1}$ whose conjugates generate a dense subset of G.
(3) Rationality condition: for each component H of G and each irreducible character χ of $\mathrm{GL}_{2 g}(\mathbb{C})$ we have $\mathrm{E}[\chi(\gamma): \gamma \in H] \in \mathbb{Z}$.
For any fixed g, the set of subgroups $G \subseteq \operatorname{USp}(2 g)$ that satisfy the Sato-Tate axioms is finite up to conjugacy (3 for $g=1,55$ for $g=2$).

Theorem

For $g \leq 3$, the group ST_{A} satisfies the Sato-Tate axioms.
This is expected to hold for all g.
${ }^{1}$ An embedding $\theta: \mathrm{U}(1) \rightarrow G^{0}$ where $\theta(u)$ has eigenvalues u, u^{-1} with multiplicity g.

Galois endomorphism modules

Let A be an abelian variety defined over a number field k.
Let K be the minimal extension of k in \bar{k} for which $\operatorname{End}\left(A_{K}\right)=\operatorname{End}\left(A_{\bar{k}}\right)$. $\operatorname{Gal}(K / k)$ acts on the \mathbb{R}-algebra $\operatorname{End}\left(A_{K}\right)_{\mathbb{R}}:=\operatorname{End}\left(A_{K}\right) \otimes_{\mathbb{Z}} \mathbb{R}$.

Definition

The Galois (endomorphism module) type of A is the isomorphism class of $\left[\operatorname{Gal}(K / k), \operatorname{End}\left(A_{K}\right)_{\mathbb{R}}\right]$, where $[G, E] \simeq\left[G^{\prime}, E^{\prime}\right]$ iff there are isomorphisms $G \simeq G^{\prime}$ and $E \simeq E^{\prime}$ that are compatible with the Galois action.

Galois endomorphism modules

Let A be an abelian variety defined over a number field k.
Let K be the minimal extension of k in \bar{k} for which $\operatorname{End}\left(A_{K}\right)=\operatorname{End}\left(A_{\bar{k}}\right)$. $\operatorname{Gal}(K / k)$ acts on the \mathbb{R}-algebra $\operatorname{End}\left(A_{K}\right)_{\mathbb{R}}:=\operatorname{End}\left(A_{K}\right) \otimes_{\mathbb{Z}} \mathbb{R}$.

Definition

The Galois (endomorphism module) type of A is the isomorphism class of $\left[\operatorname{Gal}(K / k), \operatorname{End}\left(A_{K}\right)_{\mathbb{R}}\right]$, where $[G, E] \simeq\left[G^{\prime}, E^{\prime}\right]$ iff there are isomorphisms $G \simeq G^{\prime}$ and $E \simeq E^{\prime}$ that are compatible with the Galois action.

Theorem [FKRS 2012]

For abelian varieties A / k of dimension $g \leq 3$ there is a one-to-one correspondence between Sato-Tate groups and Galois types.

More precisely, the identity component ST_{A}^{0} is determined by $\operatorname{End}\left(A_{K}\right)_{\mathbb{R}}$, and there is a natural isomorphism $\mathrm{ST}_{A} / \mathrm{ST}_{A}^{0} \simeq \operatorname{Gal}(K / k)$.

Real endomorphism algebras of abelian surfaces

abelian surface	$\operatorname{End}\left(\boldsymbol{A}_{\boldsymbol{K}}\right)_{\mathbb{R}}$	$\mathbf{S T}_{\boldsymbol{A}}^{\mathbf{0}}$
square of CM elliptic curve	$\mathrm{M}_{2}(\mathbb{C})$	$\mathrm{U}(1)_{2}$
- QM abelian surface - square of non-CM elliptic curve	$\mathrm{M}_{2}(\mathbb{R})$	$\mathrm{SU}(2)_{2}$
- CM abelian surface - product of CM elliptic curves	$\mathbb{C} \times \mathbb{C}$	$\mathrm{U}(1) \times \mathrm{U}(1)$
product of CM and non-CM elliptic curves	$\mathbb{C} \times \mathbb{R}$	$\mathrm{U}(1) \times \mathrm{SU}(2)$
- RM abelian surface - product of non-CM elliptic curves	$\mathbb{R} \times \mathbb{R}$	$\mathrm{SU}(2) \times \mathrm{SU}(2)$
generic abelian surface	\mathbb{R}	$\mathrm{USp}(4)$

(factors in products are assumed to be non-isogenous)

Sato-Tate groups in dimension 2

Theorem [Fité-Kedlaya-Rotger-S 2012]

Up to conjugacy, 55 subgroups of $\mathrm{USp}(4)$ satisfy the Sato-Tate axioms:

$$
\begin{aligned}
\mathrm{U}(1)_{2}: & C_{1}, C_{2}, C_{3}, C_{4}, C_{6}, D_{2}, D_{3}, D_{4}, D_{6}, T, O, \\
& J\left(C_{1}\right), J\left(C_{2}\right), J\left(C_{3}\right), J\left(C_{4}\right), J\left(C_{6}\right), \\
& J\left(D_{2}\right), J\left(D_{3}\right), J\left(D_{4}\right), J\left(D_{6}\right), J(T), J(O), \\
& C_{2,1}, C_{4,1}, C_{6,1}, D_{2,1}, D_{3,2}, D_{4,1}, D_{4,2}, D_{6,1}, D_{6,2}, O_{1} \\
\mathrm{SU}(2)_{2}: & E_{1}, E_{2}, E_{3}, E_{4}, E_{6}, J\left(E_{1}\right), J\left(E_{2}\right), J\left(E_{3}\right), J\left(E_{4}\right), J\left(E_{6}\right) \\
\mathrm{U}(1) \times \mathrm{U}(1): & F, F_{a}, F_{c}, F_{a, b}, F_{a b}, F_{a c}, F_{a b, c}, F_{a, b, c} \\
\mathrm{U}(1) \times \mathrm{SU}(2): & \mathrm{U}(1) \times \mathrm{SU}(2), N(\mathrm{U}(1) \times \mathrm{SU}(2)) \\
\mathrm{SU}(2) \times \mathrm{SU}(2): & \mathrm{SU}(2) \times \mathrm{SU}(2), N(\mathrm{SU}(2) \times \mathrm{SU}(2)) \\
\mathrm{USp}(4): & \mathrm{USp}(4)
\end{aligned}
$$

Sato-Tate groups in dimension 2

Theorem [Fité-Kedlaya-Rotger-S 2012]

Up to conjugacy, 55 subgroups of $\mathrm{USp}(4)$ satisfy the Sato-Tate axioms:

$$
\begin{aligned}
\mathrm{U}(1)_{2}: & C_{1}, C_{2}, C_{3}, C_{4}, C_{6}, D_{2}, D_{3}, D_{4}, D_{6}, T, O, \\
& J\left(C_{1}\right), J\left(C_{2}\right), J\left(C_{3}\right), J\left(C_{4}\right), J\left(C_{6}\right), \\
& J\left(D_{2}\right), J\left(D_{3}\right), J\left(D_{4}\right), J\left(D_{6}\right), J(T), J(O), \\
& C_{2,1}, C_{4,1}, C_{6,1}, D_{2,1}, D_{3,2}, D_{4,1}, D_{4,2}, D_{6,1}, D_{6,2}, O_{1} \\
\mathrm{SU}(2)_{2}: & E_{1}, E_{2}, E_{3}, E_{4}, E_{6}, J\left(E_{1}\right), J\left(E_{2}\right), J\left(E_{3}\right), J\left(E_{4}\right), J\left(E_{6}\right) \\
\mathrm{U}(1) \times \mathrm{U}(1): & F, F_{a}, F_{c}, F_{a, b}, F_{a b}, F_{a c}, F_{a b, c}, F_{a, b, c} \\
\mathrm{U}(1) \times \mathrm{SU}(2): & \mathrm{U}(1) \times \mathrm{SU}(2), N(\mathrm{U}(1) \times \mathrm{SU}(2)) \\
\mathrm{SU}(2) \times \mathrm{SU}(2): & \mathrm{SU}(2) \times \mathrm{SU}(2), N(\mathrm{SU}(2) \times \mathrm{SU}(2)) \\
\mathrm{USp}(4): & \mathrm{USp}(4)
\end{aligned}
$$

Of these, exactly 52 arise as ST_{A} for an abelian surface $A(34$ over $\mathbb{Q})$.

Sato-Tate groups in dimension 2

Theorem [Fité-Kedlaya-Rotger-S 2012]

Up to conjugacy, 55 subgroups of $\mathrm{USp}(4)$ satisfy the Sato-Tate axioms:

$$
\begin{aligned}
\mathrm{U}(1)_{2}: & C_{1}, C_{2}, C_{3}, C_{4}, C_{6}, D_{2}, D_{3}, D_{4}, D_{6}, T, O, \\
& J\left(C_{1}\right), J\left(C_{2}\right), J\left(C_{3}\right), J\left(C_{4}\right), J\left(C_{6}\right), \\
& J\left(D_{2}\right), J\left(D_{3}\right), J\left(D_{4}\right), J\left(D_{6}\right), J(T), J(O), \\
& C_{2,1}, C_{4,1}, C_{6,1}, D_{2,1}, D_{3,2}, D_{4,1}, D_{4,2}, D_{6,1}, D_{6,2}, O_{1} \\
\mathrm{SU}(2)_{2}: & E_{1}, E_{2}, E_{3}, E_{4}, E_{6}, J\left(E_{1}\right), J\left(E_{2}\right), J\left(E_{3}\right), J\left(E_{4}\right), J\left(E_{6}\right) \\
\mathrm{U}(1) \times \mathrm{U}(1): & F, F_{a}, F_{c}, F_{a, b}, F_{a b}, F_{a c}, F_{a b, c}, F_{a, b, c} \\
\mathrm{U}(1) \times \mathrm{SU}(2): & \mathrm{U}(1) \times \mathrm{SU}(2), N(\mathrm{U}(1) \times \mathrm{SU}(2)) \\
\mathrm{SU}(2) \times \mathrm{SU}(2): & \mathrm{SU}(2) \times \mathrm{SU}(2), N(\mathrm{SU}(2) \times \mathrm{SU}(2)) \\
\mathrm{USp}(4): & \mathrm{USp}(4)
\end{aligned}
$$

Of these, exactly 52 arise as ST_{A} for an abelian surface $A(34$ over $\mathbb{Q})$.

This theorem says nothing about equidistribution, however this is now known in many special cases [FS 2012, Johansson 2013].

Sato-Tate groups in dimension 2 with $G^{0}=\mathrm{U}(1)_{2}$.

d	c	G	G / G^{0}	z_{1}	z_{2}	$M\left[a_{1}^{2}\right]$	$M\left[a_{2}\right]$
1	1	C_{1}	C_{1}	0	$0,0,0,0,0$	$8,96,1280,17920$	$4,18,88,454$
1	2	C_{2}	C_{2}	1	$0,0,0,0,0$	$4,48,640,8960$	$2,10,44,230$
1	3	C_{3}	C_{3}	0	$0,0,0,0,0$	$4,36,440,6020$	$2,8,34,164$
1	4	C_{4}	C_{4}	1	$0,0,0,0,0$	$4,36,400,5040$	$2,8,32,150$
1	6	C_{6}	C_{6}	1	$0,0,0,0,0$	$4,36,400,4900$	$2,8,32,148$
1	4	D_{2}	D_{2}	3	$0,0,0,0,0$	$2,24,320,4480$	$1,6,22,118$
1	6	D_{3}	D_{3}	3	$0,0,0,0,0$	$2,18,220,3010$	$1,5,17,85$
1	8	D_{4}	D_{4}	5	$0,0,0,0,0$	$2,18,200,2520$	$1,5,16,78$
1	12	D_{6}	D_{6}	7	$0,0,0,0,0$	$2,18,200,2450$	$1,5,16,77$
1	2	$J\left(C_{1}\right)$	C_{2}	1	$1,0,0,0,0$	$4,48,640,8960$	$1,11,40,235$
1	4	$J\left(C_{2}\right)$	D_{2}	3	$1,0,0,0,1$	$2,24,320,4480$	$1,7,22,123$
1	6	$J\left(C_{3}\right)$	C_{6}	3	$1,0,0,2,0$	$2,18,220,3010$	$1,5,16,85$
1	8	$J\left(C_{4}\right)$	$\mathrm{C}_{4} \times \mathrm{C}_{2}$	5	$1,0,2,0,1$	$2,18,200,2520$	$1,5,16,79$
1	12	$J\left(C_{6}\right)$	$\mathrm{C}_{6} \times \mathrm{C}_{2}$	7	$1,2,0,2,1$	$2,18,200,2450$	$1,5,16,77$
1	8	$J\left(D_{2}\right)$	$\mathrm{D}_{2} \times \mathrm{C}_{2}$	7	$1,0,0,0,3$	$1,12,160,2240$	$1,5,13,67$
1	12	$J\left(D_{3}\right)$	D_{6}	9	$1,0,0,2,3$	$1,9,110,1505$	$1,4,10,48$
1	16	$J\left(D_{4}\right)$	$\mathrm{D}_{4} \times \mathrm{C}_{2}$	13	$1,0,2,0,5$	$1,9,100,1260$	$1,4,10,45$
1	24	$J\left(D_{6}\right)$	$\mathrm{D}_{6} \times \mathrm{C}_{2}$	19	$1,2,0,2,7$	$1,9,100,1225$	$1,4,10,44$
1	2	$C_{2,1}$	C_{2}	1	$0,0,0,0,1$	$4,48,640,8960$	$3,11,48,235$
1	4	$C_{4,1}$	C_{4}	3	$0,0,2,0,0$	$2,24,320,4480$	$1,5,22,115$
1	6	$C_{6,1}$	C_{6}	3	$0,2,0,0,1$	$2,18,220,3010$	$1,5,18,85$
1	4	$D_{2,1}$	D_{2}	3	$0,0,0,0,2$	$2,24,320,4480$	$2,7,26,123$
1	8	$D_{4,1}$	D_{4}	7	$0,0,2,0,2$	$1,12,160,2240$	$1,4,13,63$
1	12	$D_{6,1}$	D_{6}	9	$0,2,0,0,4$	$1,9,110,1505$	$1,4,11,48$
1	6	$D_{3,}$	D_{3}	3	$0,0,0,0,3$	$2,18,220,3010$	$2,6,21,90$
1	8	$D_{4,2}$	D_{4}	5	$0,0,0,0,4$	$2,18,200,2520$	$2,6,20,83$
1	12	$D_{6,2}$	D_{6}	7	$0,0,0,0,6$	$2,18,200,2450$	$2,6,20,82$
1	12	T	$\mathrm{~A}_{4}$	3	$0,0,0,0,0$	$2,12,120,1540$	$1,4,12,52$
1	24	O	$\mathrm{~S}_{4}$	9	$0,0,0,0,0$	$2,12,100,1050$	$1,4,11,45$
1	24	O_{1}	$\mathrm{~S}_{4}$	15	$0,0,6,0,6$	$1,6,60,770$	$1,3,8,30$
1	24	$J(T)$	$\mathrm{A}_{4} \times \mathrm{C}_{2}$	15	$1,0,0,8,3$	$1,6,60,770$	$1,3,7,29$
1	48	$J(O)$	$\mathrm{S}_{4} \times \mathrm{C}_{2}$	33	$1,0,6,8,9$	$1,6,50,525$	$1,3,7,26$

Sato-Tate groups in dimension 2 with $G^{0} \neq \mathrm{U}(1)_{2}$.

d	c	G	G / G^{0}	z_{1}	z_{2}	$M\left[a_{1}^{2}\right]$	$M\left[a_{2}\right]$
3	1	E_{1}	C_{1}	0	$0,0,0,0,0$	$4,32,320,3584$	$3,10,37,150$
3	2	E_{2}	C_{2}	1	$0,0,0,0,0$	$2,16,160,1792$	$1,6,17,78$
3	3	E_{3}	C_{3}	0	$0,0,0,0,0$	$2,12,110,1204$	$1,4,13,52$
3	4	E_{4}	C_{4}	1	$0,0,0,0,0$	$2,12,100,1008$	$1,4,11,46$
3	6	E_{6}	C_{6}	1	$0,0,0,0,0$	$2,12,100,980$	$1,4,11,44$
3	2	$J\left(E_{1}\right)$	C_{2}	1	$0,0,0,0,0$	$2,16,160,1792$	$2,6,20,78$
3	4	$J\left(E_{2}\right)$	D_{2}	3	$0,0,0,0,0$	$1,8,80,896$	$1,4,10,42$
3	6	$J\left(E_{3}\right)$	D_{3}	3	$0,0,0,0,0$	$1,6,55,602$	$1,3,8,29$
3	8	$J\left(E_{4}\right)$	D_{4}	5	$0,0,0,0,0$	$1,6,50,504$	$1,3,7,26$
3	12	$J\left(E_{6}\right)$	D_{6}	7	$0,0,0,0,0$	$1,6,50,490$	$1,3,7,25$
2	1	F	C_{1}	0	$0,0,0,0,0$	$4,36,400,4900$	$2,8,32,148$
2	2	F_{a}	C_{2}	0	$0,0,0,0,1$	$3,21,210,2485$	$2,6,20,82$
2	2	F_{c}	C_{2}	1	$0,0,0,0,0$	$2,18,200,2450$	$1,5,16,77$
2	2	$F_{a b}$	C_{2}	1	$0,0,0,0,1$	$2,18,200,2450$	$2,6,20,82$
2	4	$F_{a c}$	C_{4}	3	$0,0,2,0,1$	$1,9,100,1225$	$1,3,10,41$
2	4	$F_{a, b}$	D_{2}	1	$0,0,0,0,3$	$2,12,110,1260$	$2,5,14,49$
2	4	$F_{a b, c}$	D_{2}	3	$0,0,0,0,1$	$1,9,100,1225$	$1,4,10,44$
2	8	$F_{a, b, c}$	D_{4}	5	$0,0,2,0,3$	$1,6,55,630$	$1,3,7,26$
4	1	G_{4}	C_{1}	0	$0,0,0,0,0$	$3,20,175,1764$	$2,6,20,76$
4	2	$N\left(G_{4}\right)$	C_{2}	0	$0,0,0,0,1$	$2,11,90,889$	$2,5,14,46$
6	1	G_{6}	C_{1}	0	$0,0,0,0,0$	$2,10,70,588$	$2,5,14,44$
6	2	$N\left(G_{6}\right)$	C_{2}	1	$0,0,0,0,0$	$1,5,35,294$	$1,3,7,23$
10	1	$\mathrm{USp}(4)$	C_{1}	0	$0,0,0,0,0$	$1,3,14,84$	$1,2,4,10$

Genus 2 curves realizing Sato-Tate groups with $G^{0}=\mathrm{U}(1)_{2}$

Group	Curve $y^{2}=f(x)$		K
C_{1}	$x^{6}+1$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3})$
C_{2}	$x^{5}-x$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(i, \sqrt{2})$
C_{3}	$x^{6}+4$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3}, \sqrt[3]{2})$
C_{4}	$x^{6}+x^{5}-5 x^{4}-5 x^{2}-x+1$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(\sqrt{-2}, a) ; a^{4}+17 a^{2}+68=0$
C_{6}	$x^{6}+2$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{2})$
D_{2}	$x^{5}+9 x$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(i, \sqrt{2}, \sqrt{3})$
D_{3}	$x^{6}+10 x^{3}-2$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{-2})$
D_{4}	$x^{5}+3 x$	$\mathbb{Q}(\sqrt{-2})$	$Q(i, \sqrt{2}, \sqrt[4]{3})$
D_{6}	$x^{6}+3 x^{5}+10 x^{3}-15 x^{2}+15 x-6$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(i, \sqrt{2}, \sqrt{3}, a) ; a^{3}+3 a-2=0$
T	$x^{6}+6 x^{5}-20 x^{4}+20 x^{3}-20 x^{2}-8 x+8$	$\mathbb{Q}(\sqrt{-2})$	$\begin{aligned} & \mathbb{Q}(\sqrt{-2}, a, b) ; \\ & \quad a^{3}-7 a+7=b^{4}+4 b^{2}+8 b+8=0 \end{aligned}$
O	$x^{6}-5 x^{4}+10 x^{3}-5 x^{2}+2 x-1$	$\mathbb{Q}(\sqrt{-2})$	$\begin{aligned} & \mathbb{Q}(\sqrt{-2}, \sqrt{-11}, a, b) \\ & \quad a^{3}-4 a+4=b^{4}+22 b+22=0 \end{aligned}$
$J\left(C_{1}\right)$	$x^{5}-x$	$\mathbb{Q}(i)$	$\mathbb{Q}(i, \sqrt{2})$
$J\left(C_{2}\right)$	$x^{5}-x$	Q	$\mathbb{Q}(i, \sqrt{2})$
$J\left(C_{3}\right)$	$x^{6}+10 x^{3}-2$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{-2})$
$J\left(C_{4}\right)$	$x^{6}+x^{5}-5 x^{4}-5 x^{2}-x+1$	Q	see entry for C_{4}
$J\left(C_{6}\right)$	$x^{6}-15 x^{4}-20 x^{3}+6 x+1$	Q	$\mathbb{Q}(i, \sqrt{3}, a) ; a^{3}+3 a^{2}-1=0$
$J\left(D_{2}\right)$	$x^{5}+9 x$	\mathbb{Q}	$\mathbb{Q}(i, \sqrt{2}, \sqrt{3})$
$J\left(D_{3}\right)$	$x^{6}+10 x^{3}-2$	Q	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{-2})$
$J\left(D_{4}\right)$	$x^{5}+3 x$	\mathbb{Q}	$\mathbb{Q}(i, \sqrt{2}, \sqrt[4]{3})$
$J\left(D_{6}\right)$	$x^{6}+3 x^{5}+10 x^{3}-15 x^{2}+15 x-6$	Q	see entry for D_{6}
$J(T)$	$x^{6}+6 x^{5}-20 x^{4}+20 x^{3}-20 x^{2}-8 x+8$	Q	see entry for T
$J(O)$	$x^{6}-5 x^{4}+10 x^{3}-5 x^{2}+2 x-1$	Q	see entry for O
$C_{2,1}$	$x^{6}+1$	Q	Q ($\sqrt{-3}$)
$C_{4.1}$	$x^{5}+2 x$	$\mathbb{Q}(i)$	$\mathbb{Q}(i, \sqrt[4]{2})$
$C_{6,1}$	$x^{6}+6 x^{5}-30 x^{4}+20 x^{3}+15 x^{2}-12 x+1$	Q	$\mathbb{Q}(\sqrt{-3}, a) ; a^{3}-3 a+1=0$
$D_{2,1}$	$x^{5}+x$	\mathbb{Q}	$\mathbb{Q}(i, \sqrt{2})$
$D_{4,1}$	$x^{5}+2 x$	Q	Q $(i, \sqrt[4]{2})$
$D_{6,1}$	$x^{6}+6 x^{5}-30 x^{4}-40 x^{3}+60 x^{2}+24 x-8$	Q	$\mathbb{Q}(\sqrt{-2}, \sqrt{-3}, a) ; a^{3}-9 a+6=0$
$D_{3,2}$	$x^{6}+4$	Q	$\mathbb{Q}(\sqrt{-3}, \sqrt[3]{2})$
$D_{4,2}$	$x^{6}+x^{5}+10 x^{3}+5 x^{2}+x-2$	\mathbb{Q}	$\mathbb{Q}(\sqrt{-2}, a) ; a^{4}-14 a^{2}+28 a-14=0$
$D_{6,2}$	$x^{6}+2$	Q	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{2})$
O_{1}	$x^{6}+7 x^{5}+10 x^{4}+10 x^{3}+15 x^{2}+17 x+4$	Q	$\begin{aligned} & \mathbb{Q}(\sqrt{-2}, a, b) ; \\ & a^{3}+5 a+10=b^{4}+4 b^{2}+8 b+2=0 \end{aligned}$

Genus 2 curves realizing Sato-Tate groups with $G^{0} \neq \mathrm{U}(1)_{2}$

Group	Curve $y^{2}=f(x)$	k	K
F	$x^{6}+3 x^{4}+x^{2}-1$	$\mathbb{Q}(i, \sqrt{2})$	$\mathbb{Q}(i, \sqrt{2})$
F_{a}	$x^{6}+3 x^{4}+x^{2}-1$	$\mathbb{Q}(i)$	$\mathbb{Q}(i, \sqrt{2})$
$F_{a b}$	$x^{6}+3 x^{4}+x^{2}-1$	$\mathbb{Q}(\sqrt{2})$	$\mathbb{Q}(i, \sqrt{2})$
$F_{a c}$	$x^{5}+1$	\mathbb{Q}	$\mathbb{Q}(a) ; a^{4}+5 a^{2}+5=0$
$F_{a, b}$	$x^{6}+3 x^{4}+x^{2}-1$	\mathbb{Q}	$\mathbb{Q}(i, \sqrt{2})$
E_{1}	$x^{6}+x^{4}+x^{2}+1$	\mathbb{Q}	\mathbb{Q}
E_{2}	$x^{6}+x^{5}+3 x^{4}+3 x^{2}-x+1$	\mathbb{Q}	$\mathbb{Q}(\sqrt{2})$
E_{3}	$x^{5}+x^{4}-3 x^{3}-4 x^{2}-x$	\mathbb{Q}	$\mathbb{Q}(a) ; a^{3}-3 a+1=0$
E_{4}	$x^{5}+x^{4}+x^{2}-x$	\mathbb{Q}	$\mathbb{Q}(a) ; a^{4}-5 a^{2}+5=0$
E_{6}	$x^{5}+2 x^{4}-x^{3}-3 x^{2}-x$	\mathbb{Q}	$\mathbb{Q}(\sqrt{7}, a) ; a^{3}-7 a-7=0$
$J\left(E_{1}\right)$	$x^{5}+x^{3}+x$	\mathbb{Q}	$\mathbb{Q}(i)$
$J\left(E_{2}\right)$	$x^{5}+x^{3}-x$	\mathbb{Q}	$\mathbb{Q}(i, \sqrt{2})$
$J\left(E_{3}\right)$	$x^{6}+x^{3}+4$	\mathbb{Q}	$\mathbb{Q}(\sqrt{-3}, \sqrt[3]{2})$
$J\left(E_{4}\right)$	$x^{5}+x^{3}+2 x$	\mathbb{Q}	$\mathbb{Q}(i, \sqrt[4]{2})$
$J\left(E_{6}\right)$	$x^{6}+x^{3}-2$	\mathbb{Q}	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{-2})$
$G_{1,3}$	$x^{6}+3 x^{4}-2$	$\mathbb{Q}(i)$	$\mathbb{Q}(i)$
$N\left(G_{1,3}\right)$	$x^{6}+3 x^{4}-2$	\mathbb{Q}	$\mathbb{Q}(i)$
$G_{3,3}$	$x^{6}+x^{2}+1$	\mathbb{Q}	\mathbb{Q}
$N\left(G_{3,3}\right)$	$x^{6}+x^{5}+x-1$	\mathbb{Q}	$\mathbb{Q}(i)$
$U S p(4)$	$x^{5}-x+1$	\mathbb{Q}	\mathbb{Q}

Part Two

Searching for curves

We surveyed the \bar{L}-polynomial distributions of genus 2 curves

$$
\begin{gathered}
y^{2}=x^{5}+c_{4} x^{4}+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0} \\
y^{2}=x^{6}+c_{5} x^{5}+c_{4} x^{4}+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0}
\end{gathered}
$$

with integer coefficients $\left|c_{i}\right| \leq 128$. More than 2^{48} curves.
We found over 10 million non-isomorphic curves with exceptional distributions, including at least 3 apparent matches for each of the 34 Sato-Tate groups that can occur over \mathbb{Q}.

Representative examples were computed to high precision $N=2^{30}$.
For each example, the field K was then determined, allowing the Galois type, and hence the Sato-Tate group, to be provably identified.

Exhibiting Sato-Tate groups of abelian surfaces

The 34 Sato-Tate groups that can arise for an abelian surface over \mathbb{Q} are all realized by Jacobians of genus 2 curves.

By extending the base field from \mathbb{Q} to a suitable subfield k of K, we can restrict $G / G^{0} \simeq \operatorname{Gal}(K / k)$ to any normal subgroup of $\operatorname{Gal}(K / k)$ (base extension does not change the identity component G^{0}).

This allows us to realize all 52 Sato-Tate groups using base extensions of 34 curves defined over \mathbb{Q} (in fact, 9 suffice).

Serre asks: can all 52 can be realized over a single base field k ?

Exhibiting Sato-Tate groups of abelian surfaces

The 34 Sato-Tate groups that can arise for an abelian surface over \mathbb{Q} are all realized by Jacobians of genus 2 curves.

By extending the base field from \mathbb{Q} to a suitable subfield k of K, we can restrict $G / G^{0} \simeq \operatorname{Gal}(K / k)$ to any normal subgroup of $\operatorname{Gal}(K / k)$ (base extension does not change the identity component G^{0}).

This allows us to realize all 52 Sato-Tate groups using base extensions of 34 curves defined over \mathbb{Q} (in fact, 9 suffice).

Serre asks: can all 52 can be realized over a single base field k ?

Theorem (Fité-Guitart 2015)

All 52 possible Sato-Tate groups arise for abelian surfaces defined over

$$
k:=\mathbb{Q}(\sqrt{-10}, \sqrt{-51}, \sqrt{-163}, \sqrt{-67}, \sqrt{817}, \sqrt{-57}) .
$$

Computing zeta functions

Algorithms to compute $L_{p}(T)$ for low genus hyperelliptic curves

	complexity (ignoring factors of $O(\log \log p)$)		
algorithm	$g=1$	$g=2$	$g=3$
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3} \log p$
group computation	$p^{1 / 4} \log p$	$p^{3 / 4} \log p$	$p^{5 / 4} \log p$
p-adic cohomology	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$
CRT (Schoof-Pila)	$\log ^{5} p$	$\log ^{8} p$	$\log ^{12} p$

Computing zeta functions

Algorithms to compute $L_{p}(T)$ for low genus hyperelliptic curves

	complexity (ignoring factors of $O(\log \log p))$		
algorithm	$g=1$	$g=2$	$g=3$
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3} \log p$
group computation	$p^{1 / 4} \log p$	$p^{3 / 4} \log p$	$p^{5 / 4} \log p$
p-adic cohomology	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$
CRT (Schoof-Pila)	$\log ^{5} p$	$\log ^{8} p$	$\log ^{12} p$

(see [Kedlaya-S 2008]).

An average polynomial-time algorithm

All of these methods perform separate computations for each p. But we want to compute $L_{p}(T)$ for all good $p \leq N$ using reductions of the same curve in each case. Can we take advantage of this?

An average polynomial-time algorithm

All of these methods perform separate computations for each p. But we want to compute $L_{p}(T)$ for all good $p \leq N$ using reductions of the same curve in each case. Can we take advantage of this?

Theorem (Harvey 2012)

There exists a deterministic algorithm that, given a hyperelliptic curve $y^{2}=f(x)$ of genus g with a rational Weierstrass point and an integer N, computes $L_{p}(T)$ for all good primes $p \leq N$ in time

$$
O\left(g^{8+\epsilon} N \log ^{3+\epsilon} N\right)
$$

assuming the coefficients of $f \in \mathbb{Z}[x]$ have size bounded by $O(\log N)$.

Average time is $O\left(g^{8+\epsilon} \log ^{4+\epsilon} N\right)$ per prime, polynomial in g and $\log p$. Recently generalized to arithmetic schemes.

An average polynomial-time algorithm

	complexity (ignoring factors of $O(\log \log p)$)		
algorithm	$g=1$	$g=2$	$g=3$
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3} \log p$
group computation	$p^{1 / 4} \log p$	$p^{3 / 4} \log p$	$p^{5 / 4} \log p$
p-adic cohomology	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$
CRT (Schoof-Pila)	$\log ^{5} p$	$\log ^{8} p$	$\log ^{12} p$
Average polytime	$\log ^{4} p$	$\log ^{4} p$	$\log ^{4} p$

But is it practical?

The Hasse-Witt matrix of a hyperelliptic curve

The Hasse-Witt matrix of a hyperelliptic curve $y^{2}=f(x)$ over \mathbb{F}_{p} of genus g is the $g \times g$ matrix $W_{p}=\left[w_{i j}\right]$ with entries

$$
w_{i j}=f_{p i-j}^{(p-1) / 2} \bmod p \quad(1 \leq i, j \leq g)
$$

The $w_{i j}$ can each be computed using recurrence relations between the coefficients of f^{n} and those of f^{n-1}.

The congruence

$$
L_{P}(T) \equiv \operatorname{det}\left(I-T W_{p}\right) \bmod p
$$

allows us to determine the coefficients a_{1}, \ldots, a_{g} of $L_{p}(T)$ modulo p. This is enough to compute $\# C_{p}\left(\mathbb{F}_{p}\right)$ for $p>16 g^{2}$.

The Hasse-Witt matrix of a hyperelliptic curve

The Hasse-Witt matrix of a hyperelliptic curve $y^{2}=f(x)$ over \mathbb{F}_{p} of genus g is the $g \times g$ matrix $W_{p}=\left[w_{i j}\right]$ with entries

$$
w_{i j}=f_{p i-j}^{(p-1) / 2} \bmod p \quad(1 \leq i, j \leq g)
$$

The $w_{i j}$ can each be computed using recurrence relations between the coefficients of f^{n} and those of f^{n-1}.

The congruence

$$
L_{P}(T) \equiv \operatorname{det}\left(I-T W_{p}\right) \bmod p
$$

allows us to determine the coefficients a_{1}, \ldots, a_{g} of $L_{p}(T)$ modulo p. This is enough to compute $\# C_{p}\left(\mathbb{F}_{p}\right)$ for $p>16 g^{2}$.

The algorithm can be extended to compute $L_{p}(T)$ modulo higher powers of p (and thereby obtain $L_{p} \in \mathbb{Z}[T]$), but for $g \leq 3$ it's easier to derive $L_{p}(T)$ from $L_{p}(T) \bmod p$ using computations in $\operatorname{Jac}(C)$.

Complexity

Theorem (Harvey-S 2014)

Given a hyperelliptic curve $y^{2}=f(x)$ of genus g, and an integer N, one can compute the Hasse-Witt matrices W_{p} for all good primes $p \leq N$ in

$$
O\left(g^{3} N \log ^{3} N \log \log N\right) \text { time } \quad \text { and } \quad O\left(g^{2} N\right) \text { space, }
$$

assuming g and the bit-size of each coefficient of f are $O(\log N)$.

The complexity is close to optimal (nearly quasi-linear in output size).
Extends to computing $L_{p} \in \mathbb{Z}[T]$ in $O\left(g^{4+\epsilon} N \log ^{3+\epsilon} N\right)$ time.
In progress: smooth plane quartics.

	genus 2		genus 3		
N	smalljac	hwlpoly		hypellfrob	hwlpoly
2^{14}	0.2	0.1		7.2	0.4
2^{15}	0.6	0.3		16.3	1.0
2^{16}	1.7	0.9		39.1	2.9
2^{17}	5.5	2.2		98.3	7.8
2^{18}	19.2	5.3		255	18.3
2^{19}	78.4	12.5		695	43.2
2^{20}	271	27.8		1950	98.8
2^{21}	1120	64.5		5600	229
2^{22}	2820	155		16700	537
2^{23}	9840	357		51200	1240
2^{24}	31900	823		158000	2800
2^{25}	105000	1890		501000	6280
2^{26}	349000	4250		1480000	13900
2^{27}	1210000	9590		4360000	31100
2^{28}	4010000	21200		12500000	69700
2^{29}	13200000	48300	39500000	155000	
2^{30}	45500000	108000		120000000	344000

(Intel Xeon E5-2697v2 2.7 GHz CPU seconds).

Naïve approach

For each good prime $p<N$ we want to compute the entries

$$
w_{i j}=f_{p i-j}^{(p-1) / 2} \bmod p \quad(1 \leq i, j \leq g)
$$

of the Hasse-Witt matrix $W_{p}=\left[w_{i j}\right]$.
So we could iteratively compute $f, f^{2}, f^{3}, \ldots, f^{(N-1) / 2}$ in $\mathbb{Z}[x]$ and just reduce the $x^{p i-j}$ coefficients of $f(x)^{(p-1) / 2} \bmod p$ for each prime $p \leq N$.

Naïve approach

For each good prime $p<N$ we want to compute the entries

$$
w_{i j}=f_{p i-j}^{(p-1) / 2} \bmod p \quad(1 \leq i, j \leq g)
$$

of the Hasse-Witt matrix $W_{p}=\left[w_{i j}\right]$.
So we could iteratively compute $f, f^{2}, f^{3}, \ldots, f^{(N-1) / 2}$ in $\mathbb{Z}[x]$ and just reduce the $x^{p i-j}$ coefficients of $f(x)^{(p-1) / 2} \bmod p$ for each prime $p \leq N$.

But the polynomials f^{n} are huge, each has $\Omega\left(n^{2}\right)$ bits. It would take $\Omega\left(N^{3}\right)$ time to compute $f, \ldots, f^{(N-1) / 2}$ in $\mathbb{Z}[x]$.

So this is a terrible idea...

Naïve approach

For each good prime $p<N$ we want to compute the entries

$$
w_{i j}=f_{p i-j}^{(p-1) / 2} \bmod p \quad(1 \leq i, j \leq g)
$$

of the Hasse-Witt matrix $W_{p}=\left[w_{i j}\right]$.
So we could iteratively compute $f, f^{2}, f^{3}, \ldots, f^{(N-1) / 2}$ in $\mathbb{Z}[x]$ and just reduce the $x^{p i-j}$ coefficients of $f(x)^{(p-1) / 2} \bmod p$ for each prime $p \leq N$.

But the polynomials f^{n} are huge, each has $\Omega\left(n^{2}\right)$ bits. It would take $\Omega\left(N^{3}\right)$ time to compute $f, \ldots, f^{(N-1) / 2}$ in $\mathbb{Z}[x]$.

So this is a terrible idea...
But we don't need all the coefficients of f^{n}, we only need one, and we only need to know its value modulo $p=2 n+1$.

A better approach

For any integer $n \geq 0$ the equations

$$
f^{n+1}=f \cdot f^{n} \quad \text { and } \quad\left(f^{n+1}\right)^{\prime}=(n+1) f^{\prime} f^{n}
$$

yield the relations

$$
f_{k}^{n+1}=\sum_{j=0}^{d} f_{j} f_{k-j}^{n} \quad \text { and } \quad k f_{k}^{n+1}=(n+1) \sum_{j=0}^{d} j f_{j} f_{k-j}^{n}
$$

where f_{k}^{n} denotes the coefficient of x^{k} in f^{n}. Subtracting k times the first from the second and solving for f_{k}^{n} yields the identity

$$
\begin{equation*}
f_{k}^{n}=\frac{1}{k f_{0}} \sum_{j=1}^{d}(n j+j-k) f_{j} f_{k-j}^{n} \tag{1}
\end{equation*}
$$

which is valid for all positive integers k and n (assuming $f_{0} \neq 0$).

If we now define

$$
v_{k}^{n}:=\left[f_{k-d+1}^{n}, \ldots, f_{k}^{n}\right] \in \mathbb{Z}^{d}
$$

then the last g entries of $v_{p-1}^{(p-1) / 2} \bmod p$ form the first row of W_{p}, and

$$
f_{k}^{n} \equiv \frac{1}{2 k f_{0}} \sum_{j=1}^{d}(j-2 k) f_{j} f_{k-j}^{n} \bmod p
$$

holds for $k \leq p-1=2 n$. Starting from $v_{0}^{n}=\left[0, \ldots, 0, f_{0}^{n}\right]$, we compute

$$
v_{p-1}^{n} \equiv \frac{v_{0}^{n}}{2^{p-1}(p-1)!f_{0}^{p-1}} \prod_{k=1}^{p-1} M_{k} \equiv-v_{0}^{n} \prod_{i=1}^{p-1} M_{k} \bmod p
$$

where the $d \times d$ matrices

$$
M_{k}:=\left[\begin{array}{cccc}
0 & \cdots & 0 & (d-2 k) f_{d} \\
2 k f_{0} & \cdots & 0 & (d-1-2 k) f_{d-1} \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 2 k f_{0} & (1-2 k) f_{1}
\end{array}\right]
$$

do not depend on p !

Computing a sequence of reduced partial products

Computing the first row of W_{p} for all $p<N$ reduces to compute the sequence of reduced partial products

$$
\begin{array}{r}
M_{1} M_{2} \bmod 3 \\
M_{1} M_{2} M_{3} M_{4} \bmod 5 \\
M_{1} M_{2} M_{3} M_{4} M_{5} M_{6} \bmod 7
\end{array}
$$

$$
M_{1} M_{2} M_{3} M_{4} M_{5} M_{6} \cdots M_{N-2} \bmod N-1
$$

Doing this naïvely would take time quasi-quadratic in N.
But quasi-linear time is achieved with an accumulating remainder tree.

Accumulating remainder trees

Input: integer matrices M_{0}, \ldots, M_{N-1} and moduli m_{0}, \ldots, m_{N-1}.
Output: $A_{0}, A_{1}, \ldots, A_{N-1}$, where $A_{i}:=\prod_{j<i} M_{j} \bmod m_{i}$.

Algorithm:

(1) If $N=1$ then output $A_{0}:=1$ and terminate (base case).
(2) Use $M_{i}^{\prime}:=M_{2 i} M_{2 i+1}$ and $m_{i}^{\prime}:=m_{2 i} m_{2 i+1}$ to recursively compute $A_{1}^{\prime}, \ldots, A_{N / 2}^{\prime}$.
(3) Output

$$
A_{i}:= \begin{cases}A_{i / 2}^{\prime} \bmod m_{i} & i \text { even } \\ A_{(i-1) / 2}^{\prime} M_{i-1} \bmod m_{i} & i \text { odd }\end{cases}
$$

Using FFT-multiplication, this runs in quasi-linear time.
The space complexity can be improved using a remainder forest.

click histogram to animate (requires adobe reader)

Real endomorphism algebras of abelian threefolds

abelian threefold	End ($\left.\boldsymbol{A}_{\boldsymbol{K}}\right)_{\mathbb{R}}$	$\mathrm{ST}_{\boldsymbol{A}}^{\mathbf{0}}$
cube of a CM elliptic curve	$\mathrm{M}_{3}(\mathbb{C})$	$\mathrm{U}(1)_{3}$
cube of a non-CM elliptic curve	$\mathrm{M}_{3}(\mathbb{R})$	$\mathrm{SU}(2){ }_{3}$
product of CM elliptic curve and square of CM elliptic curve	$\mathbb{C} \times \mathrm{M}_{2}(\mathbb{C})$	$\mathrm{U}(1) \times \mathrm{U}(1)_{2}$
- product of CM elliptic curve and QM abelian surface - product of CM elliptic curve and square of non-CM elliptic curve	$\mathbb{C} \times \mathrm{M}_{2}(\mathbb{R})$	$\mathrm{U}(1) \times \mathrm{SU}(2)_{2}$
product of non-CM elliptic curve and square of CM elliptic curve	$\mathbb{R} \times \mathrm{M}_{2}(\mathbb{C})$	$\mathrm{SU}(2) \times \mathrm{U}(1)_{2}$
- product of non-CM elliptic curve and QM abelian surface - product of non-CM elliptic curve and square of non-CM elliptic curve	$\mathbb{R} \times \mathrm{M}_{2}(\mathbb{R})$	$\mathrm{SU}(2) \times \mathrm{SU}(2)_{2}$
- CM abelian threefold - product of CM elliptic curve and CM abelian surface - product of three CM elliptic curves	$\mathbb{C} \times \mathbb{C} \times \mathbb{C}$	$\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)$
- product of non-CM elliptic curve and CM abelian surface - product of non-CM elliptic curve and two CM elliptic curves	$\mathbb{C} \times \mathbb{C} \times \mathbb{R}$	$\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{SU}(2)$
- product of CM elliptic curve and RM abelian surface - product of CM elliptic curve and two non-CM elliptic curves	$\mathbb{C} \times \mathbb{R} \times \mathbb{R}$	$\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(2)$
- RM abelian threefold - product of non-CM elliptic curve and RM abelian surface - product of 3 non-CM elliptic curves	$\mathbb{R} \times \mathbb{R} \times \mathbb{R}$	$\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{SU}(2)$
product of CM elliptic curve and abelian surface	$\mathbb{C} \times \mathbb{R}$	$\mathrm{U}(1) \times \mathrm{USp}(4)$
product of non-CM elliptic curve and abelian surface	$\mathbb{R} \times \mathbb{R}$	$\mathrm{SU}(2) \times \mathrm{USp}(4)$
quadratic CM abelian threefold	\mathbb{C}	$\mathrm{U}(3)$
generic abelian threefold	\mathbb{R}	USp(6)

Connected Sato-Tate groups of abelian threefolds:

Partial classification of component groups

G_{0}	$G / G_{0} \hookrightarrow$	$\left\|G / G_{0}\right\|$ divides
$\mathrm{USp}(6)$	C_{1}	1
$\mathrm{U}(3)$	C_{2}	2
$\mathrm{SU}(2) \times \mathrm{USp}(4)$	C_{1}	1
$\mathrm{U}(1) \times \mathrm{USp}(4)$	C_{2}	2
$\mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{SU}(2)$	S_{3}	6
$\mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(2)$	D_{2}	4
$\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{SU}(2)$	D_{4}	8
$\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1)$	$\mathrm{C}_{2} 2 \mathrm{~S}_{3}$	48
$\mathrm{SU}(2) \times \mathrm{SU}(2)_{2}$	$\mathrm{D}_{4}, \mathrm{D}_{6}$	8,12
$\mathrm{SU}(2) \times \mathrm{U}(1)_{2}$	$\mathrm{D}_{6} \times \mathrm{C}_{2}$,	$\mathrm{S}_{4} \times \mathrm{C}_{2}$
$\mathrm{U}(1) \times \mathrm{SU}(2)_{2}$	$\mathrm{D}_{4} \times \mathrm{C}_{2}$,	$\mathrm{D}_{6} \times \mathrm{C}_{2}$
$\mathrm{U}(1) \times \mathrm{U}(1)_{2}$	$\mathrm{D}_{6} \times \mathrm{C}_{2} \times \mathrm{C}_{2}$,	$\mathrm{S}_{4} \times \mathrm{C}_{2} \times \mathrm{C}_{2}$
$\mathrm{SU}(2)_{3}$	D_{6},	S_{4}
$\mathrm{U}(1)_{3}$	\ldots	16,24

(disclaimer: this is work in progress subject to verification)

[^0]: ${ }^{1}$ An embedding $\theta: \mathrm{U}(1) \rightarrow G^{0}$ where $\theta(u)$ has eigenvalues u, u^{-1} with multiplicity g.

