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Creating a shared secret
Shared secrets enable fast secure communication. Classical methods:

RSA Alice picks a random a ∈ [1, n] and sends ae mod n to Bob.
Bob computes (ae)d = a, where d ≡ e−1 mod lcm(p − 1, q − 1).
• n and e are public, while d (and pq = n) is secret.
• security: hard to compute d (or p and q).
• 128-bit security: take n ≥ 23072.

DH Alice pick a random a ∈ [1, p] and sends ra mod p to Bob.
Bob picks a random b ∈ [1, p] and sends rb mod p to Alice.
Alice computes (rb)a = rab and Bob computes (ra)b = rab.

• r and p are public (no fixed secrets).
• security: hard to compute r ab given r a, rb (or a given r a).
• 128-bit security: take p ≥ 23072.

Advantage of DH over RSA: forward secrecy.
Advantage of RSA over DH: no man-in-the-middle attack.
Disadvantage of both: large key size (due to subexponential-time attacks).



Elliptic curve Diffie-Hellman (ECDHE)

Alice picks a random a ∈ [1, p] and sends aP to Bob.
Bob pick a random b ∈ [1, p] and sends bP to Alice.
Alice authenticates bP and computes abP, Bob computes baP = abP.

E/Fp with n = #E (Fp) and point P ∈ E (Fp) are public.
security: hard to compute abP given aP, bP (or a given aP).
128-bit security: take p ≥ 2256.

All the advantages of DH with much smaller key size.
To avoid man in the middle attack Bob uses private RSA key to sign bP
(which Alice authenticates using Bob’s certified public RSA key).

ECDHE is a standard part of the transport security layer (TLS)
underlying the secure hyper text transfer protocol (https).
As of 2017, more than 50% of all internet traffic uses this protocol.

Disadvantage: poly-time quantum attack (6 log p qbits =⇒ Õ(log3p))
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Supersingular elliptic curves

Let Fq be a finite field of characteristic p. An elliptic curve E/Fq is
supersingular if any of the following equivalent conditions holds:

1 E [p] is trivial;
2 End(EF̄q) is a maximal order in the quaternion algebra Bp,∞/Q;
3 The Hasse-Witt matrix of E is zero;
4 #E (Fq) ≡ 1 mod p;
5 j(E ) ∈ Fp2 and the `-isogeny graph component of j(E ) is regular.

Supersingular elliptic curves are rare; the probability that a randomly
chosen E/Fq is supersingular is O(q−1/2).

Monte Carlo test to check if E/Fp2 is supersingular: pick a random
P ∈ E (Fp2) and check if (p + 1)P = 0 or (p − 1)P = 0.
Schoof’s algorithm identifies supersingular curves in Õ(log5p) time; this
can be improved to Õ(log4p), but we will give a faster algorithm.



Constructing supersingular elliptic curves
Let O be the imaginary quadratic order of discriminant D and let
HD ∈ Z[X ] be the minimal polynomial of j(C/O) over Q(

√
D).

Bröker’s algorithm [Br08] to construct a supersingular elliptic curve E/Fp:
1 If p = 2 then return E : y2 + y = x3.
2 If p ≡ 2 mod 3 return E : y2 = x3 + 1.
3 If p ≡ 3 mod 4 return E : y2 = x3 + x .
4 Let q ≡ 3 mod 4 be the least prime q that is not a square modulo p

and let j0 be a root of H−q(X ) mod p.
5 Return E : y2 = x3 + 3cx + 2c where c := j0/(1728− j0).

Why it works: 4pr = t2− v2D has no solutions, so roots of H−q(X ) in F̄p
are supersingular and lie in Fp2 , and h(−q) is odd, so root j0 ∈ Fp exists.

Why it’s fast: under GRH we have q = O(log2p) and h(−q) = O(log p).
We can then find a root of H−q(X ) mod p in Õ(log3p) expected time.



Modular polynomials
Let j(z) be the modular j-function. For each prime ` the minimal
polynomial Φ` of j(`z) over C(j) is the modular polynomial

Φ` ∈ (Z[j])[X ] ' Z[X ,Y ].

The polynomial Φ`(X ,Y ) = Φ`(Y ,X ) has degree `+ 1 in both X and Y .

Φ`(X ,Y ) is a canonical (singular) model for the modular curve Y0(`).
It parametrizes isogenies ϕ : E1 → E2 of degree ` as points (j(E1), j(E2)).

This moduli interpretation remains valid over fields k with char(k) 6= `.
For any elliptic curve E/k, there are `+ 1 distinct isogenies ϕi : E → Ei
over k, corresponding to `+ 1 order ` subgroups of E [`], and we have

Φ`(j(E ),Y ) =
`+1∏
i=1

(Y − j(Ei)).



Isogeny graph

Let ` be a prime and Fq a finite field of characteristic p 6= `.

Definition
The graph G`(Fq) has vertex set Fq and edges (j1, j2) present with
multiplicity m`(j1, j2) := ordt=j2 Φ`(j1, t).

For j ∈ Fq, let n(j) = 6, 4, 2 for j = 0, j = 1728, j 6= 0, 1728. Then

m`(j1, j2)n(j2) = m`(j2, j1)n(j1)

In particular, m(j1, j2) = m(j2, j1) whenever j1, j2 6∈ {0, 1728}.

If E1 and E2 are isogenous then End(E1)⊗Z Q ' End(E2)⊗Z Q.

This implies that the connected components of G`(Fq) can be
classified as ordinary or supersingular.



Supersingular `-isogeny graphs
For each prime ` 6= p the graph G`(Fp2) has a single supersingular
component, which is an (`+ 1)-regular graph with Np ≈ p

12 vertices.

Definition
A d-regular graph is a Ramanujan graph if λ2 ≤

√
d − 1, where λ2 is the

second largest eigenvalue of its adjacency matrix.

Theorem (Pizer)
The supersingular component of G`(Fp2) is a Ramanujan graph.

Corollary (GPS17)
Fix a supersingular j1 ∈ Fp2 , and let j2 be the endpoint of an e-step
random walk in G`(Fp2) originating at j1. For all j ∈ Fp2 :

∣∣∣Pr[j = j2]− N−1p

∣∣∣ ≤ ( 2
√
`

`+ 1

)e

.



Vélu’s formulas

Given an elliptic curve E/k and a point P ∈ E (k) of order n there is a
separable isogeny ϕP : E → E/〈P〉 of degree n, unique up to isomorphism.
The isogeny ϕP can be explicitly computed using Vélu’s formulas.

If E : y2 = x3 + ax + b and P := (x0, 0) ∈ E (k) is a point of order 2, then

ϕP(x , y) :=
(
x2 − x0x + t

x − x0
,

(x − x0)2 − t
(x − x0)2 y

)

and E/〈P〉 : y2 = x3 + (a − 5t)x + b − 7x0t, where t = 3x20 + a.

For P := (x0, y0) ∈ E (k) of odd order n there are similar explicit formulas
for ϕP(x , y) and E/〈P〉 as rational expressions in x0, y0, a, b over k.

The complexity of computing ϕP depends heavily on the field over
which P is defined; ideally one would like P ∈ E (k).



Supersingular isogeny Diffie-Hellman (SIDH)

Following [DJ11], fix supersingular E0/Fp2 with E0(Fp2) = E [`eAA `
eB
B ]

(provided p = `eAA `
eB
B ± 1 is prime, such an E0 exists).

Fix public bases {PA,QA} for E [`eAA ] and {PB,QB} for E [`eBB ].

1 Alice: mA, nA ∈ Z/`eAA Z, let ϕA : E → EA := E0/〈mAPA + nAQA〉,
send ϕA(PB), ϕA(QB),EA to Bob.

2 Bob: mB, nB ∈ Z/`eBB Z, let ϕB : E → EB := E0/〈mBPB + nBQB〉,
send ϕB(PA), ϕB(QA),EB to Alice.

3 Alice computes EAB := EB/〈mAϕB(PA) + nAϕB(QA)〉.
4 Bob computes EBA := EA/〈mBϕA(PB) + nBϕA(QB)〉.

Then kerϕAB = 〈mAPA + nAQA,mBPB + nBQB〉 = kerϕBA,
so EAB ' EBA, and j(EAB) = j(EBA) is a shared secret.1

1We have omitted verification details important to security. Random integers
mA, nA, mB , nB should always be used (static keys are not secure, see [GPST16]).



Computing `-power isogenies

Given P ∈ E (Fq) of order `n and Q ∈ E (Fq), compute E ′ := E/〈P〉 and
the image Q′ of Q under E → E/〈P〉 as follows:

1 Compute Pn := P, Pn−i = `Pn−i+1 for 1 ≤ i < n, E1 := E , Q1 := Q.
2 For i from 1 to n:

1 Compute ϕi : Ei → Ei+1 := Ei/〈Pi〉 via Vélu and Qi+1 := ϕi(Qi).
2 For j from i + 1 to n replace Pj with ϕi(Pj).

3 Output E ′ := En and Q′ := Qn.

This algorithm is optimized for small `, where evaluating an isogeny of
degree ` is faster than scalar multiplication by ` (true for ` = 2, 3).

For fixed `, it uses Õ(n2 log q) bit operations, Õ(log3p) in SIDH.
For comparison, ECDH uses Õ(log2p) bit operations.



Security assumptions

Definition (`-power isogeny path problem)
Given elliptic curves E , E ′/Fq related by an isogeny of `-power degree,
compute `-isogenies ϕ1 : E → E2, ϕ2 : E2 → E3, . . . , ϕn : En → E ′.

Easy if E is ordinary, polynomial-time in n, `, log q.

Definition (Endomorphism ring problem)
Given E/Fq compute explicit generators for its endomorphism ring.

For ordinary E , subexponential-time under GRH [B11, BS11].

For supersingular E the problems are polynomially equivalent [KLPT14],
[GPST16], [EHLMP18].

Currently the best known algorithms take exponential-time:
O(p1/2) classical (meet-in-the-middle), O(p1/3) quantum.



Quaternion algebras
Let k be a field of characteristic not 2.
Recall that a quaternion algebra B over k is a k-algebra of the form

k〈i , j〉/(i2 = a, j2 = b, ij = −ji),

with a, b ∈ k×. Either B ' M2(k) (splits) or B is a division algebra.
We have a k-basis {1, i , j , ij} and canonical involution α 7→ ᾱ that fixes k
and negates i , j , ij , and we define trd(α) := α + ᾱ and nrd(α) := αᾱ.

When k is a global field, we say that B is ramified at a place v of k if the
quaternion algebra Bv := B ⊗k kv is not split. The set Σ of ramified
places has finite even cardinality and determines B up to isomorphism;
conversely, for every such Σ there is a corresponding B.

For each prime p there is thus a unique quaternion algebra Bp,∞/Q for
which Σ = {p,∞}. An order in a quaternion algebra B/Q is a lattice
(finitely generated Z-submodule that spans) that is also a ring.



The Deuring correspondence
Theorem (Deuring)
For each prime p there is a bijection

{maximal orders O ⊆ Bp,∞}/∼ → {supersingular j ∈ Fp2}/Gal(Fp2/Fp)

that sends O to j(E ) with End(E ) ' O.

Let I be a lattice in Bp,∞. The orders
OL(I) := {α ∈ Bp,∞ : αI = I}, OR(I) := {α ∈ Bp,∞ : Iα = I},

are linked by I. Every pair of maximal orders are linked by some I.

Let nrd(I) := gcd{nrd(α) : α ∈ I}; I Ī = nrd(I)OL(I) and Ī I = nrd(I)OR(I).
Now consider the graph G`(Bp,∞) on {maximal orders O ⊆ Bp,∞}/∼ with
edges (O,O′) whenever O and O′ are linked by a lattice of norm `.

The Deuring correspondence induces a graph isomorphism∗

G`(Bp,∞) ∼−→ G`(Fp2)/Gal(Fp2/Fp).



More on the Deuring correspondence
Let E/Fp2 is supersingular and let I be a left ideal in End(E ) ' Bp,∞,
with p - nrd(I). Define the I-torsion subgroup

E [I] :=
⋂
α∈I

ker(α) = {P ∈ E (F̄p) : α(P) = 0 for all α ∈ I}

Then End(E/E [I]) ' OR(I) and ϕI : E → E/E [I] has degree nrd(I).

Theorem (KLPT14)
Under reasonable heuristics, the analog of the `-power isogeny path
problem can be solved in G`(Bp,∞) in probabilistic polynomial-time.

Theorem (EHLMP18)
Under reasonable heuristics, the Deuring correspondence can be computed
in probabilistic polynomial-time.

The endomorphism ring problem is inverse to the Deuring correspondence.



Ordinary components of G`(Fq)

Let E/Fq be ordinary. Then End(E ) ' O with Z[π] ⊂ O ⊂ OK .
Here π is the Frobenius endomorphism and K = Q(

√
D), where

4q = tr(π)2 − v2D.

Each ordinary component of G`(Fq) consists of levels V0, . . . ,Vd .
The vertex j(E ) belongs to level Vi , where i = ν`([OK : O]).

The vertices in level V0 form a (possibly trivial) cycle corresponding
to the CM action of an invertible O-ideal l of norm ` (when one exists).

Indeed, if we put

E [l] := {P ∈ E (F̄q) : α(P) = 0 for all α ∈ l},

then E → E/E [l] is a horizontal `-isogeny (End(E/E [l]) ' End(E )).
The ideal l̄ ⊆ End(E/E [l]) corresponds to the dual isogeny.



Isogeny volcanoes

An `-volcano is a connected graph with vertices partitioned into levels
V0, . . . ,Vd such that
• The subgraph on V0 is d-regular with 0 ≤ d ≤ 2.
• There are no edges contained in level Vi for i > 0.
• Vertices on levels Vi with i < d have degree `+ 1.
• Vertices on levels Vi with i > 0 have one neighbor in level Vi−1

Level V0 is the surface and Vd is the floor (possibly V0 = Vd).

Theorem (Kohel)
Ordinary components of G`(Fq) not containing 0, 1728 are `-volcanoes.

The degree of the subgraph on V0 is 1 +
(
D
`

)
, the cardinality of V0 is the

order of l in cl(O), and the depth d is the power of ` dividing [OK : Z[π]].





A 3-volcano of depth 2



Finding a shortest path to the floor



Finding a shortest path to the floor



Finding a shortest path to the floor



Identifying supersingular curves using isogeny graphs

Given an elliptic curve E over a field of characteristic p, the following
algorithm determines whether E is ordinary or supersingular:

1 If j(E ) 6∈ Fp2 then return ordinary.
2 If p ≤ 3 return supersingular if j(E ) = 0 and ordinary otherwise.
3 Attempt to find 3 roots of Φ2(j(E ),Y ) in Fp2 .

If this is not possible, return ordinary.
4 Walk 3 paths in parallel for up to dlog2 pe+ 1 steps.

If any of these paths hits the floor, return ordinary.
5 Return supersingular.

Φ2(X ,Y ) = X 3 + Y 3 − X 2Y 2 + 1488(X 2Y + Y 2X )− 162000(X 2 + Y 2)
+ 40773375XY + 8748000000(X + Y )− 157464000000000.



Complexity analysis
In step 4, we remove the known linear factor so that only a quadratic
equation remains, obtaining ji+1 as a root of Φ2(ji ,Y )/(Y − ji−1).
We need to be able to compute square roots (and solve a cubic) in Fp2 .

Proposition (S12)
We can identify ordinary/supersingular elliptic curves over Fp2 via

A Las Vegas algorithm that runs in Õ(log3p) expected time.

Under GRH, a deterministic algorithm that runs in Õ(log3p) time

Given quadratic and cubic non-residues in Fp2 , a deterministic
algorithm that run in Õ(log3p) time.

For a random elliptic curve over Fp2 , average running time is Õ(log2p).

An alternative algorithm based on polynomial identity testing [D18]
achieves a similar complexity (under GRH).



Performance results (CPU milliseconds)

ordinary supersingular

Magma New Magma New

b Fp Fp2 Fp Fp2 Fp Fp2 Fp Fp2

64 1 25 0.1 0.1 226 770 2 8
128 2 60 0.1 0.1 2010 9950 5 13
192 4 99 0.2 0.1 8060 41800 8 33
256 7 140 0.3 0.2 21700 148000 20 63
320 10 186 0.4 0.3 41500 313000 39 113
384 14 255 0.6 0.4 95300 531000 66 198
448 19 316 0.8 0.5 152000 789000 105 310
512 24 402 1.0 0.7 316000 2280000 164 488
576 30 484 1.3 0.9 447000 3350000 229 688
640 37 595 1.6 1.0 644000 4790000 316 945
704 46 706 2.0 1.2 847000 6330000 444 1330
768 55 790 2.4 1.5 1370000 8340000 591 1770
832 66 924 3.1 1.9 1850000 10300000 793 2410
896 78 1010 3.2 2.1 2420000 12600000 1010 3040
960 87 1180 4.0 2.5 3010000 16000000 1280 3820
1024 101 1400 4.8 3.1 5110000 35600000 1610 4880
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