Decomposing class polynomials with the CRT method

Andrew V. Sutherland

Massachusetts Institute of Technology
April 15, 2010
http://math.mit.edu/~drew/

Constructing elliptic curves with dice

1. Write down a random curve $y^{2}=x^{3}+a x+b$ over \mathbb{F}_{q}.
2. Compute $N=\# E\left(\mathbb{F}_{q}\right)$.
3. Repeat steps 1 and 2 until you get an answer you like.

If you are picky, this might take a while...

Constructing elliptic curves with the CM method

Pick the values of q and N, with $t=q+1-N \not \equiv 0$ (in \mathbb{F}_{q}).
Let $D<0$ be a discriminant satisfying $4 q=t^{2}-v^{2} D$.

1. Compute the Hilbert class polynomial H_{D}.
2. Find a root j of H_{D} in \mathbb{F}_{q}.

This yields the j-invariant of a curve E / \mathbb{F}_{q} with N points.
Assuming $j \neq 0,1728$, we set $k=j /(1728-j)$ and use either

$$
y^{2}=x^{3}+3 k x+2 k
$$

or its quadratic twist.

Andrew V. Sutherland

Complex multiplication (CM) in its simplest setting

Let Λ be a 2-d lattice in \mathbb{C}.
The torus \mathbb{C} / Λ corresponds to an elliptic curve E / \mathbb{C}.
If $\alpha \in \mathbb{C}$ is nonzero, then $\mathbb{C} / \Lambda \cong \mathbb{C} /(\alpha \Lambda)$.

$$
\operatorname{End}(E / \mathbb{C}) \cong\{\alpha \in \mathbb{C}: \alpha \Lambda \subset \Lambda\}
$$

So $\mathbb{Z} \in \operatorname{End}(E / \mathbb{C})$, and if Λ is an imaginary quadratic order \mathcal{O} (a 2-d subring of \mathcal{O}_{K}), or any ideal in \mathcal{O}, then $\operatorname{End}(E / \mathbb{C}) \cong \mathcal{O}$.

Every ordinary elliptic curve E / \mathbb{F}_{p} is the reduction of some E^{\prime} / \mathbb{C} with CM by an imaginary quadratic order \mathcal{O} [Deuring].

Elliptic curves with CM by \mathcal{O}.

Let \mathcal{O} be an imaginary quadratic order with discriminant D.
Let $\operatorname{Ell}(\mathcal{O})=\{j(E): \operatorname{End}(E) \cong \mathcal{O}\}$.

1. $\operatorname{Ell}(\mathcal{O}) \cong \operatorname{cl}(\mathcal{O})$ is a finite set with $h(D)$ elements.
2. These are precisely the roots of $H_{D}(X)$.

To obtain H_{D} we enumerate $\operatorname{Ell}(\mathcal{O})$ and compute

$$
H_{D}(X)=\prod_{j \in \operatorname{Ell}(\mathcal{O})}(X-j)
$$

We can do this in \mathbb{C}, or in \mathbb{F}_{p}, if H_{D} splits completely in $\mathbb{F}_{p}[X]$. Any prime p of the form $4 p=t^{2}-v^{2} D$ will suffice.

The Hilbert class polynomial H_{D}

Good news: The coefficients of H_{D} are integers!
Bad news: They are really big integers!

The total size of H_{D} is $O\left(|D| \log ^{1+\epsilon}|D|\right)$ bits.

Computing H_{D} with the CRT

Compute $H_{D} \bmod p$ for many "small" primes p, use the CRT to obtain H_{D} [CNST '98], or $H_{D} \bmod q$ via the explicit CRT [ALV '06].

Compute H_{D} in $O\left(|D| \log ^{7+\epsilon}|D|\right)$ time (GRH) [BBEL '08].
Compute $H_{D} \bmod q$ in $O\left(|D|^{1 / 2+\epsilon} \log q\right)$ space and $O\left(|D| \log ^{5+\epsilon}|D|\right)$ time (GRH), (up to 100x speedup) [S '09].

Alternative class invariants (up to 200x speedup) [ES '10].
State of the art (as of Jan 2010): $|D| \approx 10^{15}$ and $h(D) \approx 10^{7}$.

But stay tuned for more...

Decomposing class polynomials [нм 2001, ем 2003]

Let \mathcal{O} have fraction field K and ring class field M. Let
$G=\operatorname{cl}(\mathcal{O}) \cong \operatorname{Gal}(M / K)$ have subgroup $H=\operatorname{Gal}(M / L)$.

$$
\mathbb{Q} \subset K \subset L \subset M
$$

Let $\beta_{1}, \ldots, \beta_{m}$ be the elements of H.
Let $\alpha_{1} H \ldots, \alpha_{n} H$ be the cosets of H in G.
For i from 1 to n define the values $\theta_{i j} \in L$ via

$$
\sum_{j=0}^{m} \theta_{i j} X^{j}=\prod_{j=1}^{m}\left(X-\left[\alpha_{i} \beta_{j}\right] j_{0}\right)
$$

where j_{0} is a root of H_{D} with Galois conjugates $\left[\alpha_{i} \beta_{j}\right] j_{0}$.

Decomposing class polynomials (continued)

Let $t_{i}=\theta_{i}, m-1$ and define

$$
V(Y)=\prod_{i=1}^{n}\left(Y-t_{i}\right)
$$

and

$$
W_{j}(Y)=\sum_{i=1}^{n} \theta_{i j} \frac{V(Y)}{Y-t_{i}}
$$

so that $W_{j}\left(t_{i}\right)=\theta_{i j} V^{\prime}\left(t_{i}\right)$. Finally, let

$$
U(X, Y)=\frac{1}{V^{\prime}(Y)} \sum_{j=0}^{m} W_{j}(Y) X^{j}
$$

The coefficients of V and W_{j} are integers in $\mathbb{Q}($ not just $K)$.

Modified CM method (version 1)

If r is a root of V then the roots of $U(X, r)$ are roots of H_{D}. Modified CM method:

1. Compute V and the $W_{j} \bmod q$ (using explicit CRT).
2. Find a root r of V and j of $U(X, r)$ in \mathbb{F}_{q}.

Suppose $m \approx n$. Step 2 is much improved. What about Step 1?
The cost of computing V and the W_{j} modulo each CRT prime p is reduced by a factor of up to 4 (typically about 2).
The number of CRT primes is reduced by a factor of about 2. The space required is unchanged.

We can do better, assuming q is prime.

Modified CM method (version 2, q prime)

Recall that $W_{j}(Y)=\sum_{i=1}^{n} \theta_{i j} \frac{V(Y)}{Y-t_{i}}$.
We don't need to compute W_{j} in order to evaluate it!

1. Compute V (using explicit CRT mod q).
2. Find a root r of $V \bmod q$ and "lift" it to \mathbb{Z}.
3. Evaluate $W_{j}(r)$ (using explicit CRT $\bmod q$).
4. Construct $U(X, r) \bmod q$ and find a root j in \mathbb{F}_{q}.

The number of \mathbb{F}_{p}-operations to compute the $\theta_{i j}$ is

$$
O((h / m) \mathrm{M}(m) \log m)
$$

When $m \approx \log ^{2} h$ this is $O\left(h(\log \log h)^{2+\epsilon}\right)$, versus $O\left(h \log ^{2+\epsilon} h\right)$.
Evaluating all the $W_{j}(r)$ costs $O(h)$ versus $O\left(h \log ^{2+\epsilon} h\right)$.

Asmptotic results

Assume q is prime.
Theorem (Heuristic)
For any $\delta<1$ there is a set of discriminants D with density δ for which version 2 of the modified CM method runs in time $O\left(|D| \log ^{5 / 2+o(1)}|D|\right)$, provided $\log q=O\left(\log ^{5 / 2}|D|\right)$.

Theorem (GRH)
The space required by version 2 of the modified CM method is $O((m+n) \log q+h \log h)$ bits, where $h(D)=h=m n$.

Using the CM method is easier than computing $H_{D} \bmod q$!

Practical results

Tests were run on a cluster of 8 quad-core AMD Phenom Ils. Timings for 256 -bit prime fields (1024-bit essentially the same).

Previous record $|D| \approx 10^{15}$ and $h \approx 10^{7}$ used 200 cpu-days (about a week). Now under 50 cpu-days (about 36 hours).
New record $|D| \approx 10^{15}$ and $h \approx 2 \cdot 10^{7}$ used 170 cpu-days.
New record $|D| \approx 5 \cdot 10^{14}$ and $h \approx 5 \cdot 10^{7}$ used 200 cpu-days. Space: $H_{D} \approx 30 \mathrm{~PB}, H_{D} \bmod q \approx 1.6 \mathrm{~GB}, U, V \bmod q \approx 3 \mathrm{MB}$
$|D|>10^{16}$ and $h>10^{8}$ are certainly within reach.

ECC Brainpool Standard

Taken from page 5 of www.ecc-brainpool.org/
download/Domain-parameters.pdf.
3.2 Security Requirements.
3. The class number of the maximal order of the endomorphism ring of E is larger than 10000000.

This condition excludes curves that are generated by the well-known CM-method.

Not anymore.

Challenges

Challenge to number-theorists: Barreto and Naehrig have proposed pairing-friendly curve parameterizations that require 80 -bit or 100 -bit CM discriminants. Can we get there?

Challenge to cryptographers: Assume you can use 50 -bit CM discriminants. What can you do with this?

A parameterization with $q \approx|D|^{4}$ would be interesting.

Decomposing class polynomials with the CRT method

Andrew V. Sutherland

Massachusetts Institute of Technology
April 15, 2010
http://math.mit.edu/~drew/

