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Algebraic curves

Solutions to a polynomial equation f (x, y) = 0:

y = 2x + 1 x2 + y2 = 1

y2 = x5 + 3x3 − 5x + 4 3x4 + 4y3 − xy3 + 2xy + 1 = 0

How many points are on these curves?
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Counting points modulo p

Let’s counts points on the curve x2 + y2 = 1 mod p.

p 3 5 7 11 13 17 19 23 29 . . .
4 4 8 12 12 16 20 24 28 p± 1

Actually, we really should count the distinct (nonzero) projective
points (x, y, z) ∼ (cx, cy, cz) on the curve x2 + y2 = z2 mod p.

p 3 5 7 11 13 17 19 23 29 . . .
4 6 8 12 14 18 20 24 30 p + 1
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The Hasse-Weil bound

The number of points on a genus g curve over Fp is

p + 1 − tp

where the trace of Frobenius tp is an integer satisfying

|tp| 6 2g
√

p.

So xp = tp/
√

p is a real number in the interval [−2g, 2g].

What is the distribution of xp as p varies?

Let’s compute the distribution of xp over p 6 N, then look at
what happens as N →∞.
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Sato-Tate distributions in genus 1 (over Q)

1. Typical case (no CM)
All elliptic curves without CM have the semi-circular distribution.

[Clozel, Harris, Shepherd-Barron, Taylor, Barnet-Lamb, and Geraghty]

2. Exceptional case (CM)
All elliptic curves with CM have the same exceptional distribution.

[classical]
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Zeta functions and L-polynomials

For a smooth projective curve C/Q and a good prime p define

Z(C/Fp; T) = exp

( ∞∑
k=1

NkTk/k

)
,

where Nk = #C/Fpk . This is a rational function of the form

Z(C/Fp; T) =
Lp(T)

(1 − T)(1 − pT)
,

where Lp(T) is an integer polynomial of degree 2g. For g = 2:

Lp(T) = p2T4 + c1pT3 + c2pT2 + c1T + 1.
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Unitarized L-polynomials

The polynomial

L̄p(T) = Lp(T/
√

p) =
2g∑

i=0

aiT i

has coefficients that satisfy ai = a2g−i and |ai| 6
(2g

i

)
.

Given a curve C, we may consider the distribution of a1, a2, . . . , ag,
taken over primes p 6 N of good reduction, as N →∞.

In this talk we will focus on genus g = 2.

http://math.mit.edu/˜drew
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The random matrix model

L̄p(T) is a real symmetric polynomial whose roots lie on the unit circle.

Every such polynomial arises as the characteristic polynomial χ(T) of
a unitary symplectic matrix in C2g×2g.

Conjecture (Katz-Sarnak)
For a typical curve of genus g, the distribution of L̄p converges to the
distribution of χ in USp(2g).

This conjecture has been proven “on average” for universal families of
hyperelliptic curves, including all genus 2 curves, by Katz and Sarnak.
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The Haar measure on USp(2g)

Let e±iθ1 , . . . , e±iθg denote the eigenvalues of a random conjugacy
class in USp(2g). The Weyl integration formula yields the measure

µ =
1
g!

(∏
j<k

(2 cos θj − 2 cos θk)
)2∏

j

(
2
π

sin2 θjdθj

)
.

In genus 1 we have USp(2) = SU(2) and µ = 2
π sin2 θdθ, which is the

semi-circular distribution.

Note that −a1 =
∑

2 cos θj is the trace.
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L̄p-distributions in genus 2

Our goal was to understand the L̄p-distributions that arise in genus 2,
including all the exceptional cases.

This presented three challenges:

Collecting data.

Identifying and distinguishing distributions.

Classifying the exceptional cases.
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Collecting data

There are four ways to compute L̄p in genus 2:

1 point counting: Õ(p2).

2 group computation: Õ(p3/4).

3 p-adic methods: Õ(p1/2).

4 `-adic methods: Õ(1).

For the feasible range of p 6 N, we found (2) to be the best.
We can accelerate the computation with partial use of (1) and (4).

Computing L-series of hyperelliptic curves, ANTS VIII, 2008, KS.
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Time to compute L̄p for all p 6 N

N 2 cores 16 cores

216 1 < 1
217 4 2
218 12 3
219 40 7
220 2:32 24
221 10:46 1:38
222 40:20 5:38
223 2:23:56 19:04
224 8:00:09 1:16:47
225 26:51:27 3:24:40
226 11:07:28
227 36:48:52
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Characterizing distributions

The moment sequence of a random variable X is

M[X] = (E[X0], E[X1], E[X2], . . .).

Provided X is suitably bounded, M[X] exists and uniquely determines
the distribution of X.

Given sample values x1, . . . , xN for X, the nth moment statistic is the
mean of xn

i . It converges to E[Xn] as N →∞.

If X is a symmetric integer polynomial of the eigenvalues of a random
matrix in USp(2g), then M[X] is an integer sequence.

This applies to all the coefficients of χ(T).
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Trace moment sequence in genus 1 (typical curve)

Using the measure µ in genus 1, for t = −a1 we have

E[tn] =
2
π

∫π
0
(2 cos θ)n sin2 θdθ.

This is zero when n is odd, and for n = 2m we obtain

E[t2m] =
1

2m + 1

(
2m
m

)
.

and therefore

M[t] = (1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, . . .).

This is sequence A126120 in the OEIS.
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Trace moment sequence in genus g > 1 (typical curve)

A similar computation in genus 2 yields

M[t] = (1, 0, 1, 0, 3, 0, 14, 0, 84, 0, 594, . . .),

which is sequence A138349, and in genus 3 we have

M[t] = (1, 0, 1, 0, 3, 0, 15, 0, 104, 0, 909, . . .),

which is sequence A138540.

In genus g, the nth moment of the trace is the number of returning
walks of length n on Zg with x1 > x2 > · · · > xg > 0 [Grabiner-Magyar].
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Exceptional trace moment sequence in genus 1

For an elliptic curve with CM we find that

E[t2m] =
1
2

(
2m
m

)
, for m > 0

yielding the moment sequence

M[t] = (1, 0, 1, 0, 3, 0, 10, 0, 35, 0, 126, 0, . . .),

whose even entries are A008828.
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An exceptional trace moment sequence in Genus 2
For a hyperelliptic curve whose Jacobian is isogenous to the
direct product of two elliptic curves, we compute M[t] = M[t1 + t2] via

E[(t1 + t2)n] =
∑(

n
i

)
E[ti

1]E[t
n−i
2 ].

For example, using

M[t1] = (1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, . . .),
M[t2] = (1, 0, 1, 0, 3, 0, 10, 0, 35, 0, 126, 0, 462, . . .),

we obtain A138551,

M[t] = (1, 0, 2, 0, 11, 0, 90, 0, 889, 0, 9723, . . .).

The second moment already differs from the standard sequence, and
the fourth moment differs greatly (11 versus 3).
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Searching for exceptional curves (take 1 [KS2009])
We surveyed the trace-distributions of genus 2 curves

y2 = x5 + c4x4 + c3x3 + c2x2 + c1x + c0,

y2 = b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x + b0,

with integer coefficients |ci| 6 64 and |bi| 6 16, over 236 curves.

We initially set N ≈ 212, discarded about 99% of the curves (those
whose moment statistics were “unexceptional”), then repeated this
process with N = 216 and N = 220.

We eventually found some 30,000 non-isogenous exceptional curves
and a total of 23 distinct trace distributions.

Representative examples were computed to high precision N = 226.

These results suggested a candidate 24th trace distribution,
but we were unable to find any examples...
...but in Dec 2010, Fité and Lario constructed just such a curve!
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...but in Dec 2010, Fité and Lario constructed just such a curve!

Andrew V. Sutherland (MIT) Telescopes for Mathematicians September 2, 2011 18 / 28



Random matrix subgroup model

Conjecture (Generalized Sato-Tate — naı̈ve form)
For a genus g curve C, the distribution of L̄p(T) converges to the
distribution of χ(T) in some infinite compact subgroup G ⊆ USp(2g).

The group G must satisfy several “Sato-Tate axioms”.
These imply that the number of possible Sato-Tate groups of a given
genus is bounded: at most 3 in genus 1 and 55 in genus 2.
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Sato-Tate groups in genus 1

The Sato-Tate group of an elliptic curve without CM is USp(2) = SU(2).

For CM curves (over Q), consider the following subgroup of SU(2):

H =

{(
cos θ sin θ
− sin θ cos θ

)
,
(

i cos θ i sin θ
i sin θ −i cos θ

)
: θ ∈ [0, 2π]

}
,

the normalizer of SO(2) = U(1) in SU(2).

H is a (disconnected) compact group whose Haar measure yields the
correct trace moment sequence for a CM curve.

The third Sato-Tate group in genus 1 is simply U(1), which occurs for
CM curves E/k where the number field k contains the CM-field of E.
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Sato-Tate groups in genus 2 (predicted)
There are a total of 55 groups G ⊆ USp(4) (up to conjugacy) that
satisfy the Sato-Tate axioms, of which 3 can be ruled out [Serre].
Of the remaining 52, only 34 can occur over Q.

There are 6 possibile identity components G0.
The component group G/G0 is a finite group whose order divides 48.

G0 Number of groups over Q
U(1) 32 18
U(1)× U(1) 5 2
SU(2) 10 10
U(1)× SU(2) 2 1
SU(2)× SU(2) 2 2
USp(4) 1 1

There are a total of 36 distinct trace distributions,
26 of which can occur over Q.
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d c G [G/G0] z1 z2 M[a2
1] M[a2]

1 1 C1 C1 0 0, 0, 0, 0, 0 8, 96, 1280, 17920 4, 18, 88, 454
1 2 C2 C2 1 0, 0, 0, 0, 0 4, 48, 640, 8960 2, 10, 44, 230
1 3 C3 C3 0 0, 0, 0, 0, 0 4, 36, 440, 6020 2, 8, 34, 164
1 4 C4 C4 1 0, 0, 0, 0, 0 4, 36, 400, 5040 2, 8, 32, 150
1 6 C6 C6 1 0, 0, 0, 0, 0 4, 36, 400, 4900 2, 8, 32, 148
1 4 D2 D2 3 0, 0, 0, 0, 0 2, 24, 320, 4480 1, 6, 22, 118
1 6 D3 D3 3 0, 0, 0, 0, 0 2, 18, 220, 3010 1, 5, 17, 85
1 8 D4 D4 5 0, 0, 0, 0, 0 2, 18, 200, 2520 1, 5, 16, 78
1 12 D6 D6 7 0, 0, 0, 0, 0 2, 18, 200, 2450 1, 5, 16, 77
1 2 J(C1) C2 1 1, 0, 0, 0, 0 4, 48, 640, 8960 1, 11, 40, 235
1 4 J(C2) D2 3 1, 0, 0, 0, 1 2, 24, 320, 4480 1, 7, 22, 123
1 6 J(C3) C6 3 1, 0, 0, 2, 0 2, 18, 220, 3010 1, 5, 16, 85
1 8 J(C4) C4 × C2 5 1, 0, 2, 0, 1 2, 18, 200, 2520 1, 5, 16, 79
1 12 J(C6) C6 × C2 7 1, 2, 0, 2, 1 2, 18, 200, 2450 1, 5, 16, 77
1 8 J(D2) D2 × C2 7 1, 0, 0, 0, 3 1, 12, 160, 2240 1, 5, 13, 67
1 12 J(D3) D6 9 1, 0, 0, 2, 3 1, 9, 110, 1505 1, 4, 10, 48
1 16 J(D4) D4 × C2 13 1, 0, 2, 0, 5 1, 9, 100, 1260 1, 4, 10, 45
1 24 J(D6) D6 × C2 19 1, 2, 0, 2, 7 1, 9, 100, 1225 1, 4, 10, 44
1 2 C2,1 C2 1 0, 0, 0, 0, 1 4, 48, 640, 8960 3, 11, 48, 235
1 4 C4,1 C4 3 0, 0, 2, 0, 0 2, 24, 320, 4480 1, 5, 22, 115
1 6 C6,1 C6 3 0, 2, 0, 0, 1 2, 18, 220, 3010 1, 5, 18, 85
1 4 D2,1 D2 3 0, 0, 0, 0, 2 2, 24, 320, 4480 2, 7, 26, 123
1 8 D4,1 D4 7 0, 0, 2, 0, 2 1, 12, 160, 2240 1, 4, 13, 63
1 12 D6,1 D6 9 0, 2, 0, 0, 4 1, 9, 110, 1505 1, 4, 11, 48
1 6 D3,2 D3 3 0, 0, 0, 0, 3 2, 18, 220, 3010 2, 6, 21, 90
1 8 D4,2 D4 5 0, 0, 0, 0, 4 2, 18, 200, 2520 2, 6, 20, 83
1 12 D6,2 D6 7 0, 0, 0, 0, 6 2, 18, 200, 2450 2, 6, 20, 82
1 12 T A4 3 0, 0, 0, 0, 0 2, 12, 120, 1540 1, 4, 12, 52
1 24 O S4 9 0, 0, 0, 0, 0 2, 12, 100, 1050 1, 4, 11, 45
1 24 O1 S4 15 0, 0, 6, 0, 6 1, 6, 60, 770 1, 3, 8, 30
1 24 J(T) A4 × C2 15 1, 0, 0, 8, 3 1, 6, 60, 770 1, 3, 7, 29
1 48 J(O) S4 × C2 33 1, 0, 6, 8, 9 1, 6, 50, 525 1, 3, 7, 26
3 1 E1 C1 0 0, 0, 0, 0, 0 4, 32, 320, 3584 3, 10, 37, 150
3 2 E2 C2 1 0, 0, 0, 0, 0 2, 16, 160, 1792 1, 6, 17, 78
3 3 E3 C3 0 0, 0, 0, 0, 0 2, 12, 110, 1204 1, 4, 13, 52
3 4 E4 C4 1 0, 0, 0, 0, 0 2, 12, 100, 1008 1, 4, 11, 46
3 6 E6 C6 1 0, 0, 0, 0, 0 2, 12, 100, 980 1, 4, 11, 44
3 2 J(E1) C2 1 0, 0, 0, 0, 0 2, 16, 160, 1792 2, 6, 20, 78
3 4 J(E2) D2 3 0, 0, 0, 0, 0 1, 8, 80, 896 1, 4, 10, 42
3 6 J(E3) D3 3 0, 0, 0, 0, 0 1, 6, 55, 602 1, 3, 8, 29
3 8 J(E4) D4 5 0, 0, 0, 0, 0 1, 6, 50, 504 1, 3, 7, 26
3 12 J(E6) D6 7 0, 0, 0, 0, 0 1, 6, 50, 490 1, 3, 7, 25
2 1 F C1 0 0, 0, 0, 0, 0 4, 36, 400, 4900 2, 8, 32, 148
2 2 Fa C2 0 0, 0, 0, 0, 1 3, 21, 210, 2485 2, 6, 20, 82
2 2 Fc C2 1 0, 0, 0, 0, 0 2, 18, 200, 2450 1, 5, 16, 77
2 2 Fab C2 1 0, 0, 0, 0, 1 2, 18, 200, 2450 2, 6, 20, 82
2 4 Fac C4 3 0, 0, 2, 0, 1 1, 9, 100, 1225 1, 3, 10, 41
2 4 Fa,b D2 1 0, 0, 0, 0, 3 2, 12, 110, 1260 2, 5, 14, 49
2 4 Fab,c D2 3 0, 0, 0, 0, 1 1, 9, 100, 1225 1, 4, 10, 44
2 8 Fa,b,c D4 5 0, 0, 2, 0, 3 1, 6, 55, 630 1, 3, 7, 26
4 1 G4 C1 0 0, 0, 0, 0, 0 3, 20, 175, 1764 2, 6, 20, 76
4 2 N(G4) C2 0 0, 0, 0, 0, 1 2, 11, 90, 889 2, 5, 14, 46
6 1 G6 C1 0 0, 0, 0, 0, 0 2, 10, 70, 588 2, 5, 14, 44
6 2 N(G6) C2 1 0, 0, 0, 0, 0 1, 5, 35, 294 1, 3, 7, 23

10 1 USp(4) C1 0 0, 0, 0, 0, 0 1, 3, 14, 84 1, 2, 4, 10
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Searching for exceptional curves (take 2 [FKRS11])

We surveyed the trace-distributions of genus 2 curves

y2 = x5 + c4x4 + c3x3 + c2x2 + c1x + c0,

y2 = x6 + c5x5 + c4x4 + c3x3 + c2x2 + c1x + c0,

with integer coefficients |ci| 6 128, over 248 curves.

We specifically searched for curves with zero trace density > 1/2.

We found over 10 million non-isogenous exceptional curves, including
at least 3 examples matching each of the 34 Sato groups over Q.

Representative examples were computed to high precision N = 228.
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Key optimizations

1 Very fast algorithm (100ns per curve) to quickly compute the
number of zero traces up to a small bound. This let us quickly
discard curves that did not have many zero traces at small primes.

2 Additional group invariants zi,j defined by

Pr[ai = j] = zi,j/c,

where c = #G/G0, used to more quickly classify distributions.

3 More efficient handling of curves in sextic form allowed us to
efficiently compute a2 moments for every curve.
(This is crucial for distinguishing several distributions).
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Sato-Tate groups in genus 2 (exhibited)

For each of the 34 genus 2 Sato-Tate groups that can occur over Q,
we can exhibit a genus 2 curve with a closely matching L̄p distribution.

By considering a subset of these curves over suitable number fields,
we can obtain the remaining 18 Sato-Tate distributions in genus 2.

We now have curves matching all 52 Sato-Tate groups in genus 2.

In 51 of 52 cases (all but the generic case) we can prove that the
distributions match [FKRS11].
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ST Group Genus 2 curve y2 = f(x) Field Type [KS]

C1 = U(1) x6 + 1 Q(
√

−3) #27
C2 x5 − x Q(

√
−2) #13

C3 x6 + 4 Q(
√

−3) #28
C4 x6 + x5 − 5x4 − 5x2 − x + 1 Q(

√
−2) #29

C6 x6 + 2 Q(
√

−3) #30
D2 x5 + 9x Q(

√
−2) #21

D3 x6 + 2x3 + 2 Q(
√

−6) #12
D4 x5 + 3x Q(

√
−2) #17

D6 x6 + 3x5 + 10x3 − 15x2 + 15x − 6 Q(
√

−3) #15
J(C1) x5 − x Q(i) #13
J(C2) x5 − x Q #21
J(C3) x6 + 2x3 + 2 Q(

√
−3) #12

J(C4) x6 + x5 − 5x4 − 5x2 − x + 1 Q #17
J(C6) x6 − 15x4 − 20x3 + 6x + 1 Q #15
J(D2) x5 + 9x Q #23
J(D3) x6 + 2x3 + 2 Q #20
J(D4) x5 + 3x Q #22
J(D6) x6 + 3x5 + 10x3 − 15x2 + 15x − 6 Q #24
D6,1 x6 + 6x5 − 30x4 − 40x3 + 60x2 + 24x − 8 Q #20
C2,1 x6 + 1 Q #13
C4.1 x5 + 2x Q(i) #21
C6,1 x6 + 3x5 − 25x3 + 30x2 − 9x + 1 Q #12
D2,1 x5 + x Q #21
D4,1 x5 + 2x Q #23
D−

3 x6 + 4 Q #12

D−
4 x6 + x5 + 10x3 + 5x2 + x − 2 Q #17

D−
6 x6 + 2 Q #15

T x6 + 6x5 − 20x4 + 20x3 − 20x2 − 8x + 8 Q(
√

−2) #31
O x6 − 5x4 + 10x3 − 5x2 + 2x − 1 Q(

√
−2) #32

O1 x6 + 7x5 + 10x4 + 10x3 + 15x2 + 17x + 4 Q #25
J(T) x6 + 6x5 − 20x4 + 20x3 − 20x2 − 8x + 8 Q #25
J(O) x6 − 5x4 + 10x3 − 5x2 + 2x − 1 Q #26
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ST Group Genus 2 curve y2 = f(x) Field Type [KS]

F = U(1)× U(1) x6 + 3x3 + x2 − 1 Q(i,
√

2) #33
Fa x6 + 3x3 + x2 − 1 Q(i) #34
Fab x6 + 3x3 + x2 − 1 Q(

√
2) #35

Fac x5 + 1 Q #19
Fa,b x6 + 3x4 + x2 − 1 Q #8
E1 = SU(2) x6 + x4 + x2 + 1 Q #5
E2 x5 + x4 + 2x3 − 2x2 − 2x + 2 Q #11
E3 x5 + x4 − 3x3 − 4x2 − x Q #4
E4 x5 + x4 + x2 − x Q #7
E6 x5 + 2x4 − x3 − 3x2 − x Q #6
J(E1) x5 + x3 + x Q #11
J(E2) x5 + x3 − x Q #18
J(E3) x6 + x3 + 4 Q #10
J(E4) x5 + x3 + 2x Q #16
J(E6) x6 + x3 − 2 Q #14
U(1)× SU(2) x6 + 3x4 − 2 Q(i) #36
N(U(1)× SU(2)) x6 + 3x4 − 2 Q #3
SU(2)× SU(2) x6 + x2 + 1 Q #2
N(SU(2)× SU(2)) x6 + x5 + x − 1 Q #9
USp(4) x5 + x + 1 Q #1
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