Telescopes for Mathematicians

Andrew V. Sutherland

Massachusetts Institute of Technology

September 2, 2011

http://math.mit.edu/~drew

Algebraic curves

Solutions to a polynomial equation f(x, y) = 0:

$$y = 2x + 1 \qquad \qquad x^2 + y^2 = 1$$

2

2

. .

$$y^{2} = x^{5} + 3x^{3} - 5x + 4 \qquad \qquad 3x^{4} + 4y^{3} - xy^{3} + 2xy + 1 = 0$$

Algebraic curves

Solutions to a polynomial equation f(x, y) = 0:

$$y = 2x + 1$$
 $x^2 + y^2 = 1$

$$y^{2} = x^{5} + 3x^{3} - 5x + 4 \qquad \qquad 3x^{4} + 4y^{3} - xy^{3} + 2xy + 1 = 0$$

How many points are on these curves?

Let's counts points on the curve $x^2 + y^2 = 1 \mod p$.

Let's counts points on the curve $x^2 + y^2 = 1 \mod p$.

Let's counts points on the curve $x^2 + y^2 = 1 \mod p$.

Actually, we really should count the distinct (nonzero) projective points $(x, y, z) \sim (cx, cy, cz)$ on the curve $x^2 + y^2 = z^2 \mod p$.

Let's counts points on the curve $x^2 + y^2 = 1 \mod p$.

Actually, we really should count the distinct (nonzero) projective points $(x, y, z) \sim (cx, cy, cz)$ on the curve $x^2 + y^2 = z^2 \mod p$.

The Hasse-Weil bound

The number of points on a genus g curve over \mathbb{F}_p is

$$p + 1 - t_p$$

where the *trace of Frobenius* t_p is an integer satisfying

 $|t_p| \leq 2g\sqrt{p}.$

The Hasse-Weil bound

The number of points on a genus g curve over \mathbb{F}_p is

$$p + 1 - t_p$$

where the *trace of Frobenius* t_p is an integer satisfying

 $|t_p| \leq 2g\sqrt{p}.$

So $x_p = t_p / \sqrt{p}$ is a real number in the interval [-2g, 2g].

What is the distribution of x_p as p varies?

The Hasse-Weil bound

The number of points on a genus g curve over \mathbb{F}_p is

$$p + 1 - t_p$$

where the *trace of Frobenius* t_p is an integer satisfying

 $|t_p| \leq 2g\sqrt{p}.$

So $x_p = t_p / \sqrt{p}$ is a real number in the interval [-2g, 2g].

What is the distribution of x_p as p varies?

Let's compute the distribution of x_p over $p \leq N$, then look at what happens as $N \rightarrow \infty$.

Sato-Tate distributions in genus 1 (over \mathbb{Q})

1. Typical case (no CM)

All elliptic curves without CM have the semi-circular distribution.

[Clozel, Harris, Shepherd-Barron, Taylor, Barnet-Lamb, and Geraghty]

2. Exceptional case (CM)

All elliptic curves with CM have the same exceptional distribution.

[classical]

Zeta functions and L-polynomials

For a smooth projective curve C/\mathbb{Q} and a good prime *p* define

$$Z(C/\mathbb{F}_p;T) = \exp\left(\sum_{k=1}^{\infty} N_k T^k/k\right),$$

where $N_k = \#C/\mathbb{F}_{p^k}$. This is a rational function of the form

$$Z(C/\mathbb{F}_p;T) = \frac{L_p(T)}{(1-T)(1-pT)},$$

where $L_p(T)$ is an integer polynomial of degree 2g. For g = 2:

$$L_p(T) = p^2 T^4 + c_1 p T^3 + c_2 p T^2 + c_1 T + 1.$$

Unitarized L-polynomials

The polynomial

$$\bar{L}_p(T) = L_p(T/\sqrt{p}) = \sum_{i=0}^{2g} a_i T^i$$

has coefficients that satisfy $a_i = a_{2g-i}$ and $|a_i| \leq \binom{2g}{i}$.

Given a curve *C*, we may consider the distribution of $a_1, a_2, ..., a_g$, taken over primes $p \leq N$ of good reduction, as $N \rightarrow \infty$.

In this talk we will focus on genus g = 2.

http://math.mit.edu/~drew

The random matrix model

 $\bar{L}_p(T)$ is a real symmetric polynomial whose roots lie on the unit circle.

The random matrix model

 $L_p(T)$ is a real symmetric polynomial whose roots lie on the unit circle. Every such polynomial arises as the characteristic polynomial $\chi(T)$ of a unitary symplectic matrix in $\mathbb{C}^{2g \times 2g}$.

The random matrix model

 $\overline{L}_p(T)$ is a real symmetric polynomial whose roots lie on the unit circle. Every such polynomial arises as the characteristic polynomial $\chi(T)$ of a unitary symplectic matrix in $\mathbb{C}^{2g \times 2g}$.

Conjecture (Katz-Sarnak)

For a typical curve of genus g, the distribution of \overline{L}_p converges to the distribution of χ in USp(2g).

This conjecture has been proven "on average" for universal families of hyperelliptic curves, including all genus 2 curves, by Katz and Sarnak.

The Haar measure on USp(2g)

Let $e^{\pm i\theta_1}, \ldots, e^{\pm i\theta_g}$ denote the eigenvalues of a random conjugacy class in USp(2g). The Weyl integration formula yields the measure

$$\mu = \frac{1}{g!} \left(\prod_{j < k} (2\cos\theta_j - 2\cos\theta_k) \right)^2 \prod_j \left(\frac{2}{\pi} \sin^2\theta_j d\theta_j \right).$$

In genus 1 we have USp(2) = SU(2) and $\mu = \frac{2}{\pi} \sin^2 \theta d\theta$, which is the semi-circular distribution.

Note that
$$-a_1 = \sum 2 \cos \theta_j$$
 is the trace.

\bar{L}_p -distributions in genus 2

Our goal was to understand the \bar{L}_p -distributions that arise in genus 2, including all the exceptional cases.

This presented three challenges:

- Collecting data.
- Identifying and distinguishing distributions.
- Classifying the exceptional cases.

Collecting data

There are four ways to compute \bar{L}_p in genus 2:

- point counting: $\tilde{O}(p^2)$.
- 2 group computation: $\tilde{O}(p^{3/4})$.
- p-adic methods: $\tilde{O}(p^{1/2})$.
- ℓ -adic methods: $\tilde{O}(1)$.

Collecting data

There are four ways to compute \bar{L}_p in genus 2:

- point counting: $\tilde{O}(p^2)$.
- **2** group computation: $\tilde{O}(p^{3/4})$.
- 3 *p*-adic methods: $\tilde{O}(p^{1/2})$.
- ℓ -adic methods: $\tilde{O}(1)$.

For the feasible range of $p \le N$, we found (2) to be the best. We can accelerate the computation with partial use of (1) and (4).

Computing L-series of hyperelliptic curves, ANTS VIII, 2008, KS.

Time to compute \overline{L}_p for all $p \leq N$

2 cores	16 cores
1	< 1
4	2
12	3
40	7
2:32	24
10:46	1:38
40:20	5:38
2:23:56	19:04
8:00:09	1:16:47
26:51:27	3:24:40
	11:07:28
	36:48:52
	2 cores 1 4 12 40 2:32 10:46 40:20 2:23:56 8:00:09 26:51:27

Characterizing distributions

The moment sequence of a random variable X is

```
M[X] = (E[X^0], E[X^1], E[X^2], \ldots).
```

Provided *X* is suitably bounded, M[X] exists and uniquely determines the distribution of *X*.

Given sample values x_1, \ldots, x_N for X, the nth *moment statistic* is the mean of x_i^n . It converges to $E[X^n]$ as $N \to \infty$.

Characterizing distributions

The moment sequence of a random variable X is

```
M[X] = (E[X^0], E[X^1], E[X^2], \ldots).
```

Provided *X* is suitably bounded, M[X] exists and uniquely determines the distribution of *X*.

Given sample values x_1, \ldots, x_N for X, the nth *moment statistic* is the mean of x_i^n . It converges to $E[X^n]$ as $N \to \infty$.

If *X* is a symmetric integer polynomial of the eigenvalues of a random matrix in USp(2g), then M[X] is an *integer* sequence.

This applies to all the coefficients of $\chi(T)$.

Trace moment sequence in genus 1 (typical curve)

Using the measure μ in genus 1, for $t = -a_1$ we have

$$E[t^n] = \frac{2}{\pi} \int_0^{\pi} (2\cos\theta)^n \sin^2\theta d\theta.$$

Trace moment sequence in genus 1 (typical curve)

Using the measure μ in genus 1, for $t = -a_1$ we have

$$E[t^n] = \frac{2}{\pi} \int_0^{\pi} (2\cos\theta)^n \sin^2\theta d\theta.$$

This is zero when *n* is odd, and for n = 2m we obtain

$$E[t^{2m}] = \frac{1}{2m+1} \binom{2m}{m}.$$

and therefore

$$M[t] = (1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, \ldots).$$

This is sequence A126120 in the OEIS.

Andrew V. Sutherland (MIT)

Trace moment sequence in genus g > 1 (typical curve)

A similar computation in genus 2 yields

```
M[t] = (1, 0, 1, 0, 3, 0, 14, 0, 84, 0, 594, \ldots),
```

which is sequence A138349, and in genus 3 we have

 $M[t] = (1, 0, 1, 0, 3, 0, 15, 0, 104, 0, 909, \ldots),$

which is sequence A138540.

In genus *g*, the *n*th moment of the trace is the number of returning walks of length *n* on \mathbb{Z}^g with $x_1 \ge x_2 \ge \cdots \ge x_g \ge 0$ [Grabiner-Magyar].

Exceptional trace moment sequence in genus 1

For an elliptic curve with CM we find that

$$E[t^{2m}] = \frac{1}{2} \binom{2m}{m}, \quad \text{for } m > 0$$

yielding the moment sequence

$$M[t] = (1, 0, 1, 0, 3, 0, 10, 0, 35, 0, 126, 0, \ldots),$$

whose even entries are A008828.

An exceptional trace moment sequence in Genus 2

For a hyperelliptic curve whose Jacobian is isogenous to the direct product of two elliptic curves, we compute $M[t] = M[t_1 + t_2]$ via

$$\mathbf{E}[(t_1+t_2)^n] = \sum {\binom{n}{i}} \mathbf{E}[t_1^i] \mathbf{E}[t_2^{n-i}].$$

For example, using

$$M[t_1] = (1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, \ldots),$$

$$M[t_2] = (1, 0, 1, 0, 3, 0, 10, 0, 35, 0, 126, 0, 462, \ldots),$$

we obtain A138551,

$$M[t] = (1, 0, 2, 0, 11, 0, 90, 0, 889, 0, 9723, \ldots).$$

The second moment already differs from the standard sequence, and the fourth moment differs greatly (11 versus 3).

Searching for exceptional curves (take 1 [KS2009])

We surveyed the trace-distributions of genus 2 curves

$$y^2 = x^5 + c_4 x^4 + c_3 x^3 + c_2 x^2 + c_1 x + c_0,$$

$$y^{2} = b_{6}x^{6} + b_{5}x^{5} + b_{4}x^{4} + b_{3}x^{3} + b_{2}x^{2} + b_{1}x + b_{0},$$

with integer coefficients $|c_i| \leq 64$ and $|b_i| \leq 16$, over 2^{36} curves.

We initially set $N \approx 2^{12}$, discarded about 99% of the curves (those whose moment statistics were "unexceptional"), then repeated this process with $N = 2^{16}$ and $N = 2^{20}$.

We eventually found some 30,000 non-isogenous exceptional curves and a total of 23 distinct trace distributions.

Representative examples were computed to high precision $N = 2^{26}$.

Searching for exceptional curves (take 1 [KS2009])

We surveyed the trace-distributions of genus 2 curves

$$y^2 = x^5 + c_4 x^4 + c_3 x^3 + c_2 x^2 + c_1 x + c_0,$$

$$y^{2} = b_{6}x^{6} + b_{5}x^{5} + b_{4}x^{4} + b_{3}x^{3} + b_{2}x^{2} + b_{1}x + b_{0},$$

with integer coefficients $|c_i| \leq 64$ and $|b_i| \leq 16$, over 2^{36} curves.

We initially set $N \approx 2^{12}$, discarded about 99% of the curves (those whose moment statistics were "unexceptional"), then repeated this process with $N = 2^{16}$ and $N = 2^{20}$.

We eventually found some 30,000 non-isogenous exceptional curves and a total of 23 distinct trace distributions.

Representative examples were computed to high precision $N = 2^{26}$.

These results suggested a candidate 24th trace distribution, but we were unable to find any examples...

Searching for exceptional curves (take 1 [KS2009])

We surveyed the trace-distributions of genus 2 curves

$$y^2 = x^5 + c_4 x^4 + c_3 x^3 + c_2 x^2 + c_1 x + c_0,$$

$$y^{2} = b_{6}x^{6} + b_{5}x^{5} + b_{4}x^{4} + b_{3}x^{3} + b_{2}x^{2} + b_{1}x + b_{0},$$

with integer coefficients $|c_i| \leq 64$ and $|b_i| \leq 16$, over 2^{36} curves.

We initially set $N \approx 2^{12}$, discarded about 99% of the curves (those whose moment statistics were "unexceptional"), then repeated this process with $N = 2^{16}$ and $N = 2^{20}$.

We eventually found some 30,000 non-isogenous exceptional curves and a total of 23 distinct trace distributions.

Representative examples were computed to high precision $N = 2^{26}$.

These results suggested a candidate 24th trace distribution, but we were unable to find any examples...

...but in Dec 2010, Fité and Lario constructed just such a curve!

Random matrix subgroup model

Conjecture (Generalized Sato-Tate — naïve form)

For a genus g curve C, the distribution of $\overline{L}_p(T)$ converges to the distribution of $\chi(T)$ in some infinite compact subgroup $G \subseteq USp(2g)$.

The group G must satisfy several "Sato-Tate axioms". These imply that the number of possible Sato-Tate groups of a given genus is bounded: at most 3 in genus 1 and 55 in genus 2.

Sato-Tate groups in genus 1

The Sato-Tate group of an elliptic curve without CM is USp(2) = SU(2).

For CM curves (over \mathbb{Q}), consider the following subgroup of SU(2):

$$H = \left\{ \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}, \begin{pmatrix} i\cos\theta & i\sin\theta \\ i\sin\theta & -i\cos\theta \end{pmatrix} : \theta \in [0, 2\pi] \right\},\$$

the normalizer of SO(2) = U(1) in SU(2).

H is a (disconnected) compact group whose Haar measure yields the correct trace moment sequence for a CM curve.

The third Sato-Tate group in genus 1 is simply U(1), which occurs for CM curves E/k where the number field k contains the CM-field of E.

Sato-Tate groups in genus 2 (predicted)

There are a total of 55 groups $G \subseteq USp(4)$ (up to conjugacy) that satisfy the Sato-Tate axioms, of which 3 can be ruled out [Serre]. Of the remaining 52, only 34 can occur over \mathbb{Q} .

There are 6 possibile identity components G^0 .

The component group G/G^0 is a finite group whose order divides 48.

G^0	Number of groups	over $\mathbb Q$
U(1)	32	18
$U(1) \times U(1)$	5	2
SU(2)	10	10
$U(1) \times SU(2)$	2	1
$SU(2) \times SU(2)$	2	2
USp(4)	1	1

There are a total of 36 distinct trace distributions, 26 of which can occur over \mathbb{Q} .

d	c	G	$[G/G^0]$	z_1	Z2	$M[a_1^2]$	$M[a_2]$
1	1	C_1	Ci	0	0, 0, 0, 0, 0, 0	8, 96, 1280, 17920	4, 18, 88, 454
1	2	C_2	C2	1	0,0,0,0,0	4,48,640,8960	2, 10, 44, 230
1	3	C3	C3	0	0,0,0,0,0	4, 36, 440, 6020	2, 8, 34, 164
1	4	C4	4	1	0,0,0,0,0	4, 36, 400, 5040	2, 8, 32, 150
1	4	C ₆	C6	1	0,0,0,0,0	4, 30, 400, 4900	2, 6, 52, 146
1	*	D2	D2	2	0,0,0,0,0	2, 24, 320, 4480	1, 0, 22, 110
1	8	D3	D3	5	0,0,0,0,0	2, 18, 220, 3010	1, 5, 17, 65
i	12	D4	D4	7	0,0,0,0,0	2,18,200,2520	1, 5, 16, 77
i	12	I(C)	D6 C	í	1,0,0,0,0	4 48 640 8960	1, 11, 40, 225
i	â	I(C)	D2	2	1,0,0,0,0	2 24 220 4480	1 7 22 122
;	2	$J(C_2)$	D2	2	1,0,0,0,1	2, 24, 520, 4480	1, 7, 22, 125
1	0	$J(C_3)$	C6 V C	5	1,0,0,2,0	2, 18, 220, 3010	1, 5, 10, 85
1	12	J(C4)		2	1,0,2,0,1	2, 18, 200, 2320	1, 5, 16, 79
1	12	J(C6)		4	1, 2, 0, 2, 1	2, 18, 200, 2450	1, 5, 10, 77
1	12	$J(D_2)$	$D_2 \times C_2$	6	1,0,0,0,5	1, 12, 100, 2240	1, 3, 15, 67
1	12	$J(D_3)$	D ₆	12	1,0,0,2,5	1,9,110,1505	1, 4, 10, 48
-	10	$J(D_4)$	$D_4 \times C_2$	15	1,0,2,0,5	1,9,100,1200	1, 4, 10, 45
1	24	$J(D_6)$	$D_6 \times C_2$	19	1, 2, 0, 2, 7	1,9,100,1225	1, 4, 10, 44
1	4	C _{2,1}	C2	1	0,0,0,0,1	4,48,040,8900	5, 11, 46, 255
1	*	C4,1	6	2	0,0,2,0,0	2,24,320,4460	1, 5, 22, 115
1	4	C6,1 D	C6	3	0, 2, 0, 0, 1	2, 18, 220, 3010	2 7 26 122
i	-	D2,1	D2	7	0,0,0,0,2	1 12 160 2240	1 4 13 63
i	12	D4,1	D4 D.	ó	0,2,0,0,4	1 9 110 1505	1 4 11 48
i	.2	D.,	D.	á	0,0,0,0,3	2 18 220 3010	2 6 21 90
i	8	D42	D,	5	0.0.0.0.4	2, 18, 200, 2520	2, 6, 20, 83
i	12	D.,2	D,	7	0,0,0,0,6	2, 18, 200, 2450	2, 6, 20, 82
1	12	T	A.	3	0,0,0,0,0	2, 12, 120, 1540	1, 4, 12, 52
1	24	0	S4	9	0,0,0,0,0	2, 12, 100, 1050	1, 4, 11, 45
1	24	01	S4	15	0,0,6,0,6	1, 6, 60, 770	1, 3, 8, 30
1	24	J(T)	$A_4 \times C_2$	15	1,0,0,8,3	1, 6, 60, 770	1, 3, 7, 29
1	48	J(O)	$S_4 \times C_2$	33	1.0.6.8.9	1, 6, 50, 525	1.3.7.26
3	1	E_1	C1	0	0, 0, 0, 0, 0, 0	4, 32, 320, 3584	3, 10, 37, 150
3	2	E_2	C2	1	0,0,0,0,0	2, 16, 160, 1792	1, 6, 17, 78
3	3	E_3	C3	0	0,0,0,0,0	2, 12, 110, 1204	1, 4, 13, 52
3	4	E_4	C_4	1	0, 0, 0, 0, 0	2, 12, 100, 1008	1, 4, 11, 46
3	6	E_6	C_6	1	0, 0, 0, 0, 0	2, 12, 100, 980	1, 4, 11, 44
3	2	$J(E_1)$	C2	1	0, 0, 0, 0, 0	2, 16, 160, 1792	2, 6, 20, 78
3	4	$J(E_2)$	D ₂	3	0, 0, 0, 0, 0	1, 8, 80, 896	1, 4, 10, 42
3	6	$J(E_3)$	D3	3	0, 0, 0, 0, 0	1, 6, 55, 602	1, 3, 8, 29
3	8	$J(E_4)$	D_4	5	0, 0, 0, 0, 0	1, 6, 50, 504	1, 3, 7, 26
3	12	$J(E_6)$	D_6	7	0,0,0,0,0	1, 6, 50, 490	1, 3, 7, 25
2	1	F	C1	0	0, 0, 0, 0, 0	4, 36, 400, 4900	2, 8, 32, 148
2	2	F_a	C2	0	0, 0, 0, 0, 1	3, 21, 210, 2485	2, 6, 20, 82
2	2	F_c	C2	1	0, 0, 0, 0, 0	2, 18, 200, 2450	1, 5, 16, 77
2	2	F_{ab}	C ₂	1	0, 0, 0, 0, 1	2, 18, 200, 2450	2, 6, 20, 82
2	4	F_{ac}	C_4	3	0, 0, 2, 0, 1	1, 9, 100, 1225	1, 3, 10, 41
2	4	$F_{a,b}$	D ₂	1	0,0,0,0,3	2, 12, 110, 1260	2, 5, 14, 49
2	4	$F_{ab,c}$	D ₂	3	0,0,0,0,1	1,9,100,1225	1, 4, 10, 44
4	8	P _{a,b,c}	D4	5	0, 0, 2, 0, 3	1,0,00,030	1, 5, 7, 26
7	1	04		0	0,0,0,0,0	5, 20, 175, 1764	2, 0, 20, 76
4	2	N(G4)	C2	0	0,0,0,0,1	2, 11, 90, 889	2, 5, 14, 46
4	1	N(C)	C C	0	0,0,0,0,0	2, 10, 70, 588	2, 5, 14, 44
0	2	N(0 ₆)	C2	1	0,0,0,0,0	1, 5, 55, 294	1, 5, 7, 25
10	1	USP(4)	CI	0	0,0,0,0,0	1, 5, 14, 84	1, 2, 4, 10

Searching for exceptional curves (take 2 [FKRS11])

We surveyed the trace-distributions of genus 2 curves

$$y^2 = x^5 + c_4 x^4 + c_3 x^3 + c_2 x^2 + c_1 x + c_0,$$

$$y^{2} = x^{6} + c_{5}x^{5} + c_{4}x^{4} + c_{3}x^{3} + c_{2}x^{2} + c_{1}x + c_{0},$$

with integer coefficients $|c_i| \leq 128$, over 2^{48} curves.

We specifically searched for curves with zero trace density > 1/2.

We found over 10 million non-isogenous exceptional curves, including at least 3 examples matching each of the 34 Sato groups over \mathbb{Q} .

Representative examples were computed to high precision $N = 2^{28}$.

Key optimizations

Very fast algorithm (100ns per curve) to quickly compute the number of zero traces up to a small bound. This let us quickly discard curves that did not have many zero traces at small primes.

Key optimizations

- Very fast algorithm (100ns per curve) to quickly compute the number of zero traces up to a small bound. This let us quickly discard curves that did not have many zero traces at small primes.
- Additional group invariants z_{i,j} defined by

$$\Pr[a_i=j]=z_{i,j}/c,$$

where $c = \#G/G^0$, used to more quickly classify distributions.

Key optimizations

- Very fast algorithm (100ns per curve) to quickly compute the number of zero traces up to a small bound. This let us quickly discard curves that did not have many zero traces at small primes.
- Additional group invariants z_{i,j} defined by

$$\Pr[a_i=j]=z_{i,j}/c,$$

where $c = \#G/G^0$, used to more quickly classify distributions.

 More efficient handling of curves in sextic form allowed us to efficiently compute *a*₂ moments for every curve. (This is crucial for distinguishing several distributions).

For each of the 34 genus 2 Sato-Tate groups that can occur over \mathbb{Q} , we can exhibit a genus 2 curve with a closely matching \overline{L}_p distribution.

For each of the 34 genus 2 Sato-Tate groups that can occur over \mathbb{Q} , we can exhibit a genus 2 curve with a closely matching \overline{L}_p distribution.

By considering a subset of these curves over suitable number fields, we can obtain the remaining 18 Sato-Tate distributions in genus 2.

For each of the 34 genus 2 Sato-Tate groups that can occur over \mathbb{Q} , we can exhibit a genus 2 curve with a closely matching \overline{L}_p distribution.

By considering a subset of these curves over suitable number fields, we can obtain the remaining 18 Sato-Tate distributions in genus 2.

We now have curves matching all 52 Sato-Tate groups in genus 2.

For each of the 34 genus 2 Sato-Tate groups that can occur over \mathbb{Q} , we can exhibit a genus 2 curve with a closely matching \overline{L}_p distribution.

By considering a subset of these curves over suitable number fields, we can obtain the remaining 18 Sato-Tate distributions in genus 2.

We now have curves matching all 52 Sato-Tate groups in genus 2.

In 51 of 52 cases (all but the generic case) we can *prove* that the distributions match [FKRS11].

ST Group	Genus 2 curve $y^2 = f(x)$	Field	Type [KS]
$C_1 = U(1)$	$x^{6} + 1$	$\mathbb{Q}(\sqrt{-3})$	#27
$\dot{c_2}$	$x^{5} - x$	$\mathbb{Q}(\sqrt{-2})$	#13
C3	$x^{6} + 4$	$\mathbb{Q}(\sqrt{-3})$	#28
C_4	$x^{6} + x^{5} - 5x^{4} - 5x^{2} - x + 1$	$\mathbb{Q}(\sqrt{-2})$	#29
C ₆	$x^{6} + 2$	$\mathbb{Q}(\sqrt{-3})$	#30
D_2	$x^{5} + 9x$	$\mathbb{Q}(\sqrt{-2})$	#21
D_3	$x^{6} + 2x^{3} + 2$	$\mathbb{Q}(\sqrt{-6})$	#12
D_4	$x^{5} + 3x$	$\mathbb{Q}(\sqrt{-2})$	#17
D ₆	$x^6 + 3x^5 + 10x^3 - 15x^2 + 15x - 6$	$\mathbb{Q}(\sqrt{-3})$	#15
$J(C_1)$	x ⁵ - x	$\mathbb{Q}(i)$	#13
$J(C_2)$	$x^{5} - x$	Q	#21
$J(C_3)$	$x^{6} + 2x^{3} + 2$	$\mathbb{Q}(\sqrt{-3})$	#12
$J(C_4)$	$x^{6} + x^{5} - 5x^{4} - 5x^{2} - x + 1$	Q	#17
$J(C_6)$	$x^6 - 15x^4 - 20x^3 + 6x + 1$	Q	#15
$J(D_2)$	$x^{5} + 9x$	Q	#23
$J(D_3)$	$x^{6} + 2x^{3} + 2$	Q	#20
$J(D_4)$	$x^{5} + 3x$	Q	#22
$J(D_6)$	$x^6 + 3x^5 + 10x^3 - 15x^2 + 15x - 6$	Q	#24
D _{6.1}	$x^6 + 6x^5 - 30x^4 - 40x^3 + 60x^2 + 24x - 8$	Q	#20
$C_{2,1}$	$x^{6} + 1$	Q	#13
$C_{4,1}$	$x^{5} + 2x$	$\mathbb{Q}(i)$	#21
C _{6.1}	$x^{6} + 3x^{5} - 25x^{3} + 30x^{2} - 9x + 1$	Q	#12
D _{2 1}	$x^{5} + x$	0	#21
D ₄ 1	$x^{5} + 2x$	ō	#23
D-4,1	$x^{6} + 4$	õ	#12
D.	$x^{6} + x^{5} + 10x^{3} + 5x^{2} + x - 2$	õ	#17
- <u>4</u>	$r^{6} + 2$	Ň.	#15
D ₆ T	x ⁶ + 6x ⁵ 20x ⁴ + 20x ³ 20x ² 8x + 8	$\mathbb{Q}(\sqrt{2})$	#21
0	$x^{6} - 5x^{4} + 10x^{3} - 5x^{2} + 2x - 1$	$\mathbb{Q}(\sqrt{-2})$ $\mathbb{Q}(\sqrt{-2})$	#32
0	$x^{6} + 7x^{5} + 10x^{4} + 10x^{3} + 15x^{2} + 17x + 4$	Q(v = 2)	#25
I(T)	$r^{6} + 6r^{5} - 20r^{4} + 20r^{3} - 20r^{2} - 8r + 8$	Ň	#25
J(O)	$x^{6} - 5x^{4} + 10x^{3} - 5x^{2} + 2x - 1$	õ	#26

ST Group	ST Group Genus 2 curve $y^2 = f(x)$		Type [KS]
$F = U(1) \times U(1)$	$x^{6} + 3x^{3} + x^{2} - 1$	$\mathbb{O}(i,\sqrt{2})$	#33
Fa	$x^{6} + 3x^{3} + x^{2} - 1$	$\mathbb{Q}(i)$	#34
Fab	$x^{6} + 3x^{3} + x^{2} - 1$	$\mathbb{Q}(\sqrt{2})$	#35
Fac	$x^{5} + 1$	Q	#19
Fab	$x^{6} + 3x^{4} + x^{2} - 1$	Q	#8
$E_1 = SU(2)$	$x^{6} + x^{4} + x^{2} + 1$	Q	#5
E_2	$x^5 + x^4 + 2x^3 - 2x^2 - 2x + 2$	Q	#11
E3	$x^{5} + x^{4} - 3x^{3} - 4x^{2} - x$	Q	#4
E_{Δ}	$x^5 + x^4 + x^2 - x$	Q	#7
E6	$x^5 + 2x^4 - x^3 - 3x^2 - x$	Q	#6
$J(E_1)$	$x^{5} + x^{3} + x$	Q	#11
$J(E_2)$	$x^{5} + x^{3} - x$	Q	#18
$J(\overline{E_3})$	$x^{6} + x^{3} + 4$	Q	#10
$J(E_4)$	$x^5 + x^3 + 2x$	Q	#16
$J(E_6)$	$x^{6} + x^{3} - 2$	Q	#14
$U(1) \times SU(2)$	$x^{6} + 3x^{4} - 2$	$\mathbb{Q}(i)$	#36
$N(U(1) \times SU(2))$	$x^{6} + 3x^{4} - 2$	Q	#3
$SU(2) \times SU(2)$	$x^{6} + x^{2} + 1$	Q	#2
$N(SU(2) \times SU(2))$	$x^{6} + x^{5} + x - 1$	Q	#9
USp(4)	$x^{5} + x + 1$	0	#1

Telescopes for Mathematicians

Andrew V. Sutherland

Massachusetts Institute of Technology

September 2, 2011

http://math.mit.edu/~drew