The refined Sato-Tate conjecture

Andrew V. Sutherland
Massachusetts Institute of Technology
June 16, 2014

Mikio Sato

John Tate

Joint work with Fité, Kedlaya, and Rotger.

Sato-Tate in dimension 1

Let E / \mathbb{Q} be an elliptic curve, which we can write in the form

$$
y^{2}=x^{3}+a x+b,
$$

and let p be a prime of good reduction $\left(4 a^{3}+27 b^{2} \not \equiv 0 \bmod p\right)$.
The number of \mathbb{F}_{p}-points on the reduction E_{p} of E modulo p is

$$
\# E_{p}\left(\mathbb{F}_{p}\right)=p+1-t_{p}
$$

where the trace of Frobenius t_{p} is an integer in $[-2 \sqrt{p}, 2 \sqrt{p}]$.
We are interested in the limiting distribution of $x_{p}=-t_{p} / \sqrt{p} \in[-2,2]$, as p varies over primes of good reduction.
http://math.mit.edu/~drew

Sato-Tate distributions in dimension 1

1. Typical case (no CM)

Elliptic curves E / \mathbb{Q} w/o CM have the semi-circular trace distribution. (This is also known for E / k, where k is a totally real number field). [Taylor et al.]

2. Exceptional cases (CM)

Elliptic curves E / k with CM have one of two distinct trace distributions, depending on whether k contains the CM field or not.
[classical]

Sato-Tate groups in dimension 1

The Sato-Tate group of E is a closed subgroup G of $\mathrm{SU}(2)=\mathrm{USp}(2)$ derived from the ℓ-adic Galois representation attached to E.

The refined Sato-Tate conjecture implies that the normalized trace distribution of E converges to the distribution of traces in G given by Haar measure (the unique translation-invariant measure).

G	G / G^{0}	E	k	$\mathrm{E}\left[a_{1}^{0}\right], \mathrm{E}\left[a_{1}^{2}\right], \mathrm{E}\left[a_{1}^{4}\right] \ldots$
$\mathrm{U}(1)$	C_{1}	$y^{2}=x^{3}+1$	$\mathbb{Q}(\sqrt{-3})$	$1,2,6,20,70,252, \ldots$
$N(\mathrm{U}(1))$	C_{2}	$y^{2}=x^{3}+1$	\mathbb{Q}	$1,1,3,10,35,126, \ldots$
$\mathrm{SU}(2)$	C_{1}	$y^{2}=x^{3}+x+1$	\mathbb{Q}	$1,1,2,5,14,42, \ldots$

In dimension 1 there are three possible Sato-Tate groups, two of which arise for elliptic curves defined over \mathbb{Q}.

Zeta functions and L-polynomials

For a smooth projective curve C / \mathbb{Q} of genus g and each prime p of good redution for C we have the zeta function

$$
Z\left(C_{p} / \mathbb{F}_{p} ; T\right):=\exp \left(\sum_{k=1}^{\infty} N_{k} T^{k} / k\right),
$$

where $N_{k}=\# C_{p}\left(\mathbb{F}_{p^{k}}\right)$. This is a rational function of the form

$$
Z\left(C_{p} / \mathbb{F}_{p} ; T\right)=\frac{L_{p}(T)}{(1-T)(1-p T)},
$$

where $L_{p}(T)$ is an integer polynomial of degree $2 g$.
For $g=1$ we have $L_{p}(t)=p T^{2}+c_{1} T+1$, and for $g=2$,

$$
L_{p}(T)=p^{2} T^{4}+c_{1} p T^{3}+c_{2} T^{2}+c_{1} T+1 .
$$

Normalized L-polynomials

The normalized polynomial

$$
\bar{L}_{p}(T):=L_{p}(T / \sqrt{p})=\sum_{i=0}^{2 g} a_{i} T^{i} \in \mathbb{R}[T]
$$

is monic, reciprocal ($a_{i}=a_{2 g-i}$), and unitary (roots on the unit circle). The coefficients a_{i} necessarily satisfy $\left|a_{i}\right| \leq\binom{ 2 g}{i}$.

We now consider the limiting distribution of $a_{1}, a_{2}, \ldots, a_{g}$ over all primes $p \leq N$ of good reduction, as $N \rightarrow \infty$.

In this talk we will focus primarily on the case $g=2$.
http://math.mit.edu/~drew

L-polynomials of Abelian varieties

Let A be an abelian variety of dimension $g \geq 1$ over a number field k.
Let $\rho_{\ell}: G_{k} \rightarrow \operatorname{Aut}_{\mathbb{Q}_{\ell}}\left(V_{\ell}(A)\right) \simeq \mathrm{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right)$ be the Galois representation arising from the action of $G_{k}=\operatorname{Gal}(\bar{k} / k)$ on the ℓ-adic Tate module

$$
V_{\ell}(A):=\lim _{\leftarrow} A\left[\ell^{n}\right] .
$$

For each prime \mathfrak{p} of good reduction for A we have the L-polynomial

$$
\begin{aligned}
L_{\mathfrak{p}}(T) & :=\operatorname{det}\left(1-\rho_{\ell}\left(\operatorname{Frob}_{\mathfrak{p}}\right) T\right) \\
\bar{L}_{\mathfrak{p}}(T) & :=L_{\mathfrak{p}}(T / \sqrt{\|\mathfrak{p}\|})=\sum a_{i} T^{i} .
\end{aligned}
$$

In the case that A is the Jacobian of a genus g curve C, this agrees with our earlier definition of $L_{\mathfrak{p}}(T)$ as the numerator of the zeta function of C.

The Sato-Tate group of an abelian variety

Let $\rho_{\ell}: G_{k} \rightarrow \operatorname{Aut}_{\mathbb{Q}_{\ell}}\left(V_{\ell}(A)\right) \simeq \operatorname{GSp}_{2 g}\left(\mathbb{Q}_{\ell}\right)$ be as above.
Let G_{k}^{1} be the kernel of the cyclotomic character $\chi_{\ell}: G_{k} \rightarrow \mathbb{Q}_{\ell}^{\times}$.
Let $G_{\ell}^{1, \mathrm{Zar}}$ be the Zariski closure of $\rho_{\ell}\left(G_{k}^{1}\right)$ in $\operatorname{Sp}_{2 g}\left(\mathbb{Q}_{\ell}\right)$.
Choose $\iota: \mathbb{Q}_{\ell} \hookrightarrow \mathbb{C}$, and let $G^{1}=G_{\ell}^{1, \text { Zar }} \otimes_{\iota} \mathbb{C} \subseteq \operatorname{Sp}_{2 g}(\mathbb{C})$.

Definition [Serre]

$\mathrm{ST}_{A} \subseteq \mathrm{USp}(2 g)$ is a maximal compact subgroup of $G^{1} \subseteq \mathrm{Sp}_{2 g}(\mathbb{C})$. For each prime \mathfrak{p} of good reduction for A, let $s(\mathfrak{p})$ denote the conjugacy class of $\rho_{\ell}\left(\right.$ Frob $\left._{\mathfrak{p}}\right) / \sqrt{\|\mathfrak{p}\|} \in G^{1}$ in $^{\mathrm{ST}_{A}}$.

Conjecturally, ST_{A} does not depend on ℓ or ι; this is known for $g \leq 3$. In any case, the characteristic polynomial of $s(\mathfrak{p})$ is always $\bar{L}_{\mathfrak{p}}(T)$.

Equidistribution

Let $\mu_{\mathrm{ST}_{A}}$ denote the image of the Haar measure on $\operatorname{Conj}\left(\mathrm{ST}_{A}\right)$ (which does not depend on the choice of ℓ or ι).

The Refined Sato-Tate Conjecture

The conjugacy classes $s(\mathfrak{p})$ are equidistributed with respect to $\mu_{\mathrm{ST}_{A}}$.

In particular, the distribution of $\bar{L}_{\mathfrak{p}}(T)$ matches the distribution of characteristic polynomials of random matrices in ST_{A}.

We can test this numerically by comparing statistics of the coefficients a_{1}, \ldots, a_{g} of $\bar{L}_{\mathfrak{p}}(T)$ over $\|\mathfrak{p}\| \leq N$ to the predictions given by $\mu_{\mathrm{ST}_{A}}$.

The Sato-Tate axioms for abelian varieties

A subgroup G of $\operatorname{USp}(2 g)$ satisfies the Sato-Tate axioms ${ }^{1}$ if:
(1) G is closed.
(2) G contains a Hodge circle (an embedding $\theta: \mathrm{U}(1) \rightarrow G^{0}$ where $\theta(u)$ has eigenvalue u with multiplicity g), whose conjugates generate a dense subset of G.
(3) For each component H of G and every irreducible character χ of $\mathrm{GL}_{2 g}(\mathbb{C})$ we have $\mathrm{E}[\chi(\gamma): \gamma \in H] \in \mathbb{Z}$.

For any fixed g, the set of subgroups $G \subseteq \operatorname{USp}(2 g)$ that satisfy the Sato-Tate axioms is finite (up to conjugacy).

[^0]
The Sato-Tate axioms for abelian varieties

A subgroup G of $\operatorname{USp}(2 g)$ satisfies the Sato-Tate axioms ${ }^{1}$ if:
(1) G is closed.
(2) G contains a Hodge circle (an embedding $\theta: \mathrm{U}(1) \rightarrow G^{0}$ where $\theta(u)$ has eigenvalue u with multiplicity g), whose conjugates generate a dense subset of G.
(0) For each component H of G and every irreducible character χ of $\mathrm{GL}_{2 g}(\mathbb{C})$ we have $\mathrm{E}[\chi(\gamma): \gamma \in H] \in \mathbb{Z}$.
For any fixed g, the set of subgroups $G \subseteq \operatorname{USp}(2 g)$ that satisfy the Sato-Tate axioms is finite (up to conjugacy).

Theorem

For $g \leq 3$, the group ST_{A} satisfies the Sato-Tate axioms.
This is expected to hold for all g.
${ }^{1}$ Here we consider only motives of weight 1, see [Serre 2012] for the general case.

Sato-Tate groups in dimension 2

Theorem 1 [FKRS 2012]

Up to conjugacy, 55 subgroups of $\operatorname{USp}(4)$ satisfy the Sato-Tate axioms:

$$
\begin{aligned}
\mathrm{U}(1): & C_{1}, C_{2}, C_{3}, C_{4}, C_{6}, D_{2}, D_{3}, D_{4}, D_{6}, T, O, \\
& J\left(C_{1}\right), J\left(C_{2}\right), J\left(C_{3}\right), J\left(C_{4}\right), J\left(C_{6}\right), \\
& J\left(D_{2}\right), J\left(D_{3}\right), J\left(D_{4}\right), J\left(D_{6}\right), J(T), J(O), \\
& C_{2,1}, C_{4,1}, C_{6,1}, D_{2,1}, D_{3,2}, D_{4,1}, D_{4,2}, D_{6,1}, D_{6,2}, O_{1} \\
\mathrm{SU}(2): & E_{1}, E_{2}, E_{3}, E_{4}, E_{6}, J\left(E_{1}\right), J\left(E_{2}\right), J\left(E_{3}\right), J\left(E_{4}\right), J\left(E_{6}\right) \\
\mathrm{U}(1) \times \mathrm{U}(1): & F, F_{a}, F_{c}, F_{a, b}, F_{a b}, F_{a c}, F_{a b, c}, F_{a, b, c} \\
\mathrm{U}(1) \times \mathrm{SU}(2): & \mathrm{U}(1) \times \mathrm{SU}(2), N(\mathrm{U}(1) \times \mathrm{SU}(2)) \\
\mathrm{SU}(2) \times \mathrm{SU}(2): & \mathrm{SU}(2) \times \mathrm{SU}(2), N(\mathrm{SU}(2) \times \mathrm{SU}(2)) \\
\mathrm{USp}(4): & \mathrm{USp}(4)
\end{aligned}
$$

Sato-Tate groups in dimension 2

Theorem 1 [FKRS 2012]

Up to conjugacy, 55 subgroups of $\operatorname{USp}(4)$ satisfy the Sato-Tate axioms:

$$
\begin{aligned}
\mathrm{U}(1): & C_{1}, C_{2}, C_{3}, C_{4}, C_{6}, D_{2}, D_{3}, D_{4}, D_{6}, T, O, \\
& J\left(C_{1}\right), J\left(C_{2}\right), J\left(C_{3}\right), J\left(C_{4}\right), J\left(C_{6}\right), \\
& J\left(D_{2}\right), J\left(D_{3}\right), J\left(D_{4}\right), J\left(D_{6}\right), J(T), J(O), \\
& C_{2,1}, C_{4,1}, C_{6,1}, D_{2,1}, D_{3,2}, D_{4,1}, D_{4,2}, D_{6,1}, D_{6,2}, O_{1} \\
\mathrm{SU}(2): & E_{1}, E_{2}, E_{3}, E_{4}, E_{6}, J\left(E_{1}\right), J\left(E_{2}\right), J\left(E_{3}\right), J\left(E_{4}\right), J\left(E_{6}\right) \\
\mathrm{U}(1) \times \mathrm{U}(1): & F, F_{a}, F_{c}, F_{a, b}, F_{a b}, F_{a c}, F_{a b, c, c}, F_{a, b, c} \\
\mathrm{U}(1) \times \operatorname{SU}(2): & \mathrm{U}(1) \times \operatorname{SU}(2), N(\mathrm{U}(1) \times \operatorname{SU}(2)) \\
\mathrm{SU}(2) \times \operatorname{SU}(2): & \mathrm{SU}(2) \times \operatorname{SU}(2), N(\mathrm{SU}(2) \times \operatorname{SU}(2)) \\
\mathrm{USp}(4): & \mathrm{USp}(4)
\end{aligned}
$$

Of these, exactly 52 arise as ST_{A} for an abelian surface $A(34$ over $\mathbb{Q})$.

Sato-Tate groups in dimension 2

Theorem 1 [FKRS 2012]

Up to conjugacy, 55 subgroups of $\operatorname{USp}(4)$ satisfy the Sato-Tate axioms:

$$
\begin{aligned}
\mathrm{U}(1): & C_{1}, C_{2}, C_{3}, C_{4}, C_{6}, D_{2}, D_{3}, D_{4}, D_{6}, T, O, \\
& J\left(C_{1}\right), J\left(C_{2}\right), J\left(C_{3}\right), J\left(C_{4}\right), J\left(C_{6}\right), \\
& J\left(D_{2}\right), J\left(D_{3}\right), J\left(D_{4}\right), J\left(D_{6}\right), J(T), J(O), \\
& C_{2,1}, C_{4,1}, C_{6,1}, D_{2,1}, D_{3,2}, D_{4,1}, D_{4,2}, D_{6,1}, D_{6,2}, O_{1} \\
\mathrm{SU}(2): & E_{1}, E_{2}, E_{3}, E_{4}, E_{6}, J\left(E_{1}\right), J\left(E_{2}\right), J\left(E_{3}\right), J\left(E_{4}\right), J\left(E_{6}\right) \\
\mathrm{U}(1) \times \mathrm{U}(1): & F, F_{a}, F_{c}, F_{a, b}, F_{a b}, F_{a c}, F_{a b b, c, c}, F_{a, b, c} \\
\mathrm{U}(1) \times \mathrm{SU}(2): & \mathrm{U}(1) \times \operatorname{SU}(2), N(\mathrm{U}(1) \times \operatorname{SU}(2)) \\
\mathrm{SU}(2) \times \mathrm{SU}(2): & \mathrm{SU}(2) \times \operatorname{SU}(2), N(\mathrm{SU}(2) \times \operatorname{SU}(2)) \\
\mathrm{USp}(4): & \mathrm{USp}(4)
\end{aligned}
$$

Of these, exactly 52 arise as ST_{A} for an abelian surface $A(34$ over $\mathbb{Q})$.
This theorem says nothing about equidistribution, however this is now known in many special cases [FS 2012, Johansson 2013].

Sato-Tate groups in dimension 2 with $G^{0}=\mathrm{U}(1)$.

d	c	G	G / G^{0}	z_{1}	z_{2}	$M\left[a_{1}^{2}\right]$	$M\left[a_{2}\right]$
1	1	C_{1}	C_{1}	0	$0,0,0,0,0$	$8,96,1280,17920$	$4,18,88,454$
1	2	C_{2}	C_{2}	1	$0,0,0,0,0$	$4,48,640,8960$	$2,10,44,230$
1	3	C_{3}	C_{3}	0	$0,0,0,0,0$	$4,36,440,6020$	$2,8,34,164$
1	4	C_{4}	C_{4}	1	$0,0,0,0,0$	$4,36,400,5040$	$2,8,32,150$
1	6	C_{6}	C_{6}	1	$0,0,0,0,0$	$4,36,400,4900$	$2,8,32,148$
1	4	D_{2}	D_{2}	3	$0,0,0,0,0$	$2,24,320,4480$	$1,6,22,118$
1	6	D_{3}	D_{3}	3	$0,0,0,0,0$	$2,18,220,3010$	$1,5,17,85$
1	8	D_{4}	D_{4}	5	$0,0,0,0,0$	$2,18,200,2520$	$1,5,16,78$
1	12	D_{6}	D_{6}	7	$0,0,0,0,0$	$2,18,200,2450$	$1,5,16,77$
1	2	$J\left(C_{1}\right)$	C_{2}	1	$1,0,0,0,0$	$4,48,640,8960$	$1,11,40,235$
1	4	$J\left(C_{2}\right)$	D_{2}	3	$1,0,0,0,1$	$2,24,220,4480$	$1,7,22,123$
1	6	$J\left(C_{3}\right)$	C_{6}	3	$1,0,0,2,0$	$2,18,220,3010$	$1,5,16,85$
1	8	$J\left(C_{4}\right)$	$\mathrm{C}_{4} \times \mathrm{C}_{2}$	5	$1,0,2,0,1$	$2,18,200,2520$	$1,5,16,79$
1	12	$J\left(C_{6}\right)$	$\mathrm{C}_{6} \times \mathrm{C}_{2}$	7	$1,2,0,2,1$	$2,18,200,2450$	$1,5,16,77$
1	8	$J\left(D_{2}\right)$	$\mathrm{D}_{2} \times \mathrm{C}_{2}$	7	$1,0,0,0,3$	$1,12,160,2240$	$1,5,13,67$
1	12	$J\left(D_{3}\right)$	D_{6}	9	$1,0,0,2,3$	$1,9,110,1505$	$1,4,10,48$
1	16	$J\left(D_{4}\right)$	$\mathrm{D}_{4} \times \mathrm{C}_{2}$	13	$1,0,2,0,5$	$1,9,100,1260$	$1,4,10,45$
1	24	$J\left(D_{6}\right)$	$\mathrm{D}_{6} \times \mathrm{C}_{2}$	19	$1,2,0,2,7$	$1,9,10,1225$	$1,4,10,44$
1	2	$C_{2,1}$	C_{2}	1	$0,0,0,0,1$	$4,48,640,8960$	$3,11,48,235$
1	4	$C_{4,1}$	C_{4}	3	$0,0,2,0,0$	$2,24,320,4480$	$1,5,22,115$
1	6	$C_{6,1}$	C_{6}	3	$0,2,0,0,1$	$2,18,220,3010$	$1,5,18,85$
1	4	$D_{2,1}$	D_{2}	3	$0,0,0,0,2$	$2,24,320,4480$	$2,7,26,123$
1	8	$D_{4,1}$	D_{4}	7	$0,0,2,0,2$	$1,12,160,2240$	$1,4,13,63$
1	12	$D_{6,1}$	D_{6}	9	$0,2,0,0,4$	$1,9,110,1505$	$1,4,11,48$
1	6	$D_{3,2}$	D_{3}	3	$0,0,0,0,3$	$2,18,220,3010$	$2,6,21,90$
1	8	$D_{4,2}$	D_{4}	5	$0,0,0,0,4$	$2,18,200,2520$	$2,6,20,83$
1	12	$D_{6,2}$	D_{6}	7	$0,0,0,0,6$	$2,18,200,2450$	$2,6,20,82$
1	12	T,	A_{4}	3	$0,0,0,0,0$	$2,12,120,1540$	$1,4,12,52$
1	24	O	$\mathrm{~S}_{4}$	9	$0,0,0,0,0$	$2,12,100,1050$	$1,4,11,45$
1	24	O_{1}	$\mathrm{~S}_{4}$	15	$0,0,6,0,6$	$1,6,60,770$	$1,3,8,30$
1	24	$J(T)$	$\mathrm{A}_{4} \times \mathrm{C}_{2}$	15	$1,0,0,8,3$	$1,6,60,770$	$1,3,7,29$
1	48	$J(O)$	$\mathrm{S}_{4} \times \mathrm{C}_{2}$	33	$1,0,6,8,9$	$1,6,50,525$	$1,3,7,26$

Sato-Tate groups in dimension 2 with $G^{0} \neq \mathrm{U}(1)$.

d	c	G	G / G^{0}	z_{1}	z_{2}	$M\left[a_{1}^{2}\right]$	$M\left[a_{2}\right]$
3	1	E_{1}	C_{1}	0	$0,0,0,0,0$	$4,32,320,3584$	$3,10,37,150$
3	2	E_{2}	C_{2}	1	$0,0,0,0,0$	$2,16,160,1792$	$1,6,17,78$
3	3	E_{3}	C_{3}	0	$0,0,0,0,0$	$2,12,110,1204$	$1,4,13,52$
3	4	E_{4}	C_{4}	1	$0,0,0,0,0$	$2,12,100,1008$	$1,4,11,46$
3	6	E_{6}	C_{6}	1	$0,0,0,0,0$	$2,12,100,980$	$1,4,11,44$
3	2	$J\left(E_{1}\right)$	C_{2}	1	$0,0,0,0,0$	$2,16,160,1792$	$2,6,20,78$
3	4	$J\left(E_{2}\right)$	D_{2}	3	$0,0,0,0,0$	$1,8,80,896$	$1,4,10,42$
3	6	$J\left(E_{3}\right)$	D_{3}	3	$0,0,0,0,0$	$1,6,55,602$	$1,3,8,29$
3	8	$J\left(E_{4}\right)$	D_{4}	5	$0,0,0,0,0$	$1,6,50,504$	$1,3,7,26$
3	12	$J\left(E_{6}\right)$	D_{6}	7	$0,0,0,0,0$	$1,6,50,490$	$1,3,7,25$
2	1	F	C_{1}	0	$0,0,0,0,0$	$4,36,400,4900$	$2,8,32,148$
2	2	F_{a}	C_{2}	0	$0,0,0,0,1$	$3,21,210,2485$	$2,6,20,82$
2	2	F_{c}	C_{2}	1	$0,0,0,0,0$	$2,18,200,2450$	$1,5,16,77$
2	2	$F_{a b}$	C_{2}	1	$0,0,0,0,1$	$2,18,200,2450$	$2,6,20,82$
2	4	$F_{a c}$	C_{4}	3	$0,0,2,0,1$	$1,9,100,1225$	$1,3,10,41$
2	4	$F_{a, b}$	D_{2}	1	$0,0,0,0,3$	$2,12,110,1260$	$2,5,14,49$
2	4	$F_{a b, c}$	D_{2}	3	$0,0,0,0,1$	$1,9,100,1225$	$1,4,10,44$
2	8	$F_{a, b, c}$	D_{4}	5	$0,0,2,0,3$	$1,6,55,630$	$1,3,7,26$
4	1	G_{4}	C_{1}	0	$0,0,0,0,0$	$3,20,175,1764$	$2,6,20,76$
4	2	$N\left(G_{4}\right)$	C_{2}	0	$0,0,0,0,1$	$2,11,90,889$	$2,5,14,46$
6	1	G_{6}	C_{1}	0	$0,0,0,0,0$	$2,10,70,588$	$2,5,14,44$
6	2	$N\left(G_{6}\right)$	C_{2}	1	$0,0,0,0,0$	$1,5,35,294$	$1,3,7,23$
10	1	$\mathrm{USp}(4)$	C_{1}	0	$0,0,0,0,0$	$1,3,14,84$	$1,2,4,10$

Galois types

Let A be an abelian surface defined over a number field k.
Let K be the minimal extension of k for which $\operatorname{End}\left(A_{K}\right)=\operatorname{End}\left(A_{\overline{\mathbb{Q}}}\right)$.
The group $\operatorname{Gal}(K / k)$ acts on the \mathbb{R}-algebra $\operatorname{End}\left(A_{K}\right)_{\mathbb{R}}=\operatorname{End}\left(A_{K}\right) \otimes_{\mathbb{Z}} \mathbb{R}$.

Definition

The Galois type of A is the isomorphism class of $\left[\operatorname{Gal}(K / k), \operatorname{End}\left(A_{K}\right)_{\mathbb{R}}\right]$, where $[G, E] \simeq\left[G^{\prime}, E^{\prime}\right]$ if there is an isomorphism $G \simeq G^{\prime}$ and a compaitble isomorphism $E \simeq E^{\prime}$ of \mathbb{R}-algebras.
(Note: $G \simeq G^{\prime}$ and $E \simeq E^{\prime}$ does not necessarily imply $[G, E] \simeq\left[G^{\prime}, E^{\prime}\right]$).

Galois types and Sato-Tate groups in dimension 2

Theorem 2 [FKRS 2012]

Up to conjugacy, the Sato-Tate group G of an abelian surface A is uniquely determined by its Galois type, and vice versa.

We also have $G / G^{0} \simeq \operatorname{Gal}(K / k)$, and G^{0} is uniquely determined by the isomorphism class of $\operatorname{End}\left(A_{K}\right)_{\mathbb{R}}$, and vice versa:

$$
\begin{array}{rrrr}
\mathrm{U}(1) & \mathrm{M}_{2}(\mathbb{C}) & \mathrm{U}(1) \times \operatorname{SU}(2) & \mathbb{C} \times \mathbb{R} \\
\mathrm{SU}(2) & \mathrm{M}_{2}(\mathbb{R}) & \operatorname{SU}(2) \times \operatorname{SU}(2) & \mathbb{R} \times \mathbb{R} \\
\mathrm{U}(1) \times \mathrm{U}(1) & \mathbb{C} \times \mathbb{C} & \mathrm{USp}(4) & \mathbb{R}
\end{array}
$$

There are 52 distinct Galois types of abelian surfaces.

The proof uses the algebraic Sato-Tate group of Banaszak and Kedlaya, which, for $g \leq 3$, uniquely determines ST_{A}.

Exhibiting Sato-Tate groups of abelian surfaces

Remarkably, the 34 Sato-Tate groups that can arise for an abelian surface over \mathbb{Q} can all be realized via Jacobians of genus 2 curves.

By extending the base field from \mathbb{Q} to a suitable subfield k of K, we can restrict $G / G^{0} \simeq \operatorname{Gal}(K / k)$ to any normal subgroup of $\operatorname{Gal}(K / k)$ (this does not change the identity component G^{0}).

This allows us to realize all 52 Sato-Tate groups using 34 curves. In
fact, these 52 Sato-Tate groups can be realized using just 9 hyperelliptic curves over varying base fields.

Genus 2 curves realizing Sato-Tate groups with $G^{0}=\mathrm{U}(1)$

Group	Curve $y^{2}=f(x)$	k	K
C_{1}	$x^{6}+1$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3})$
C_{2}	$x^{5}-x$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(i, \sqrt{2})$
C_{3}	$x^{6}+4$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3}, \sqrt[3]{2})$
C_{4}	$x^{6}+x^{5}-5 x^{4}-5 x^{2}-x+1$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(\sqrt{-2}, a) ; a^{4}+17 a^{2}+68=0$
C_{6}	$x^{6}+2$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{2})$
D_{2}	$x^{5}+9 x$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(i, \sqrt{2}, \sqrt{3})$
D_{3}	$x^{6}+10 x^{3}-2$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{-2})$
D_{4}	$x^{5}+3 x$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(i, \sqrt{2}, \sqrt[4]{3})$
D_{6}	$x^{6}+3 x^{5}+10 x^{3}-15 x^{2}+15 x-6$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(i, \sqrt{2}, \sqrt{3}, a) ; a^{3}+3 a-2=0$
T	$x^{6}+6 x^{5}-20 x^{4}+20 x^{3}-20 x^{2}-8 x+8$	$\mathbb{Q}(\sqrt{-2})$	$\begin{aligned} & \mathbb{Q}(\sqrt{-2}, a, b) ; \\ & \quad a^{3}-7 a+7=b^{4}+4 b^{2}+8 b+8=0 \end{aligned}$
O	$x^{6}-5 x^{4}+10 x^{3}-5 x^{2}+2 x-1$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(\sqrt{-2}, \sqrt{-11}, a, b) ;$
			$a^{3}-4 a+4=b^{4}+22 b+22=0$
$J\left(C_{1}\right)$	$x^{5}-x$	$\mathbb{Q}($ i $)$	$\mathbb{Q}(i, \sqrt{2})$
$J\left(C_{2}\right)$	$x^{5}-x$	Q	$\mathbb{Q}(i, \sqrt{2})$
$J\left(C_{3}\right)$	$x^{6}+10 x^{3}-2$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{-2})$
$J\left(C_{4}\right)$	$x^{6}+x^{5}-5 x^{4}-5 x^{2}-x+1$	Q	see entry for C_{4}
$J\left(C_{6}\right)$	$x^{6}-15 x^{4}-20 x^{3}+6 x+1$	Q	$\mathbb{Q}(i, \sqrt{3}, a) ; a^{3}+3 a^{2}-1=0$
$J\left(D_{2}\right)$	$x^{5}+9 x$	Q	$\mathbb{Q}(i, \sqrt{2}, \sqrt{3})$
$J\left(D_{3}\right)$	$x^{6}+10 x^{3}-2$	\mathbb{Q}	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{-2})$
$J\left(D_{4}\right)$	$x^{5}+3 x$	Q	$\mathbb{Q}(i, \sqrt{2}, \sqrt[4]{3})$
$J\left(D_{6}\right)$	$x^{6}+3 x^{5}+10 x^{3}-15 x^{2}+15 x-6$	\mathbb{Q}	see entry for D_{6}
$J(T)$	$x^{6}+6 x^{5}-20 x^{4}+20 x^{3}-20 x^{2}-8 x+8$	Q	see entry for T
$J(O)$	$x^{6}-5 x^{4}+10 x^{3}-5 x^{2}+2 x-1$	Q	see entry for O
$C_{2,1}$	$x^{6}+1$	Q	Q ($\sqrt{-3}$)
$C_{4.1}$	$x^{5}+2 x$	$\mathbb{Q}(i)$	$\mathbb{Q}(i, \sqrt[4]{2})$
$C_{6,1}$	$x^{6}+6 x^{5}-30 x^{4}+20 x^{3}+15 x^{2}-12 x+1$	Q	$\mathbb{Q}(\sqrt{-3}, a) ; a^{3}-3 a+1=0$
$D_{2,1}$	$x^{5}+x$	Q	$\mathbb{Q}(i, \sqrt{2})$
$D_{4,1}$	$x^{5}+2 x$	Q	$\mathbb{Q}(i, \sqrt[4]{2})$
$D_{6,1}$	$x^{6}+6 x^{5}-30 x^{4}-40 x^{3}+60 x^{2}+24 x-8$	\mathbb{Q}	$\mathbb{Q}(\sqrt{-2}, \sqrt{-3}, a) ; a^{3}-9 a+6=0$
$D_{3,2}$	$x^{6}+4$	Q	$\mathbb{Q}(\sqrt{-3}, \sqrt[3]{2})$
$D_{4,2}$	$x^{6}+x^{5}+10 x^{3}+5 x^{2}+x-2$	Q	$\mathbb{Q}(\sqrt{-2}, a) ; a^{4}-14 a^{2}+28 a-14=0$
$D_{6,2}$	$x^{6}+2$	Q	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{2})$
O_{1}	$x^{6}+7 x^{5}+10 x^{4}+10 x^{3}+15 x^{2}+17 x+4$	\mathbb{Q}	$\begin{aligned} & \mathbb{Q}(\sqrt{-2}, a, b) ; \\ & \quad a^{3}+5 a+10=b^{4}+4 b^{2}+8 b+2=0 \end{aligned}$

Genus 2 curves realizing Sato-Tate groups with $G^{0} \neq \mathrm{U}(1)$

Group	Curve $y^{2}=f(x)$	k	K
F	$x^{6}+3 x^{4}+x^{2}-1$	$\mathbb{Q}(i, \sqrt{2})$	$\mathbb{Q}(i, \sqrt{2})$
F_{a}	$x^{6}+3 x^{4}+x^{2}-1$	$\mathbb{Q}(i)$	$\mathbb{Q}(i, \sqrt{2})$
$F_{a b}$	$x^{6}+3 x^{4}+x^{2}-1$	$\mathbb{Q}(\sqrt{2})$	$\mathbb{Q}(i, \sqrt{2})$
$F_{a c}$	$x^{5}+1$	\mathbb{Q}	$\mathbb{Q}(a) ; a^{4}+5 a^{2}+5=0$
$F_{a, b}$	$x^{6}+3 x^{4}+x^{2}-1$	\mathbb{Q}	$\mathbb{Q}(i, \sqrt{2})$
E_{1}	$x^{6}+x^{4}+x^{2}+1$	\mathbb{Q}	\mathbb{Q}
E_{2}	$x^{6}+x^{5}+3 x^{4}+3 x^{2}-x+1$	\mathbb{Q}	$\mathbb{Q}(\sqrt{2})$
E_{3}	$x^{5}+x^{4}-3 x^{3}-4 x^{2}-x$	\mathbb{Q}	$\mathbb{Q}(a) ; a^{3}-3 a+1=0$
E_{4}	$x^{5}+x^{4}+x^{2}-x$	\mathbb{Q}	$\mathbb{Q}(a) ; a^{4}-5 a^{2}+5=0$
E_{6}	$x^{5}+2 x^{4}-x^{3}-3 x^{2}-x$	\mathbb{Q}	$\mathbb{Q}(\sqrt{7}, a) ; a^{3}-7 a-7=0$
$J\left(E_{1}\right)$	$x^{5}+x^{3}+x$	\mathbb{Q}	$\mathbb{Q}(i)$
$J\left(E_{2}\right)$	$x^{5}+x^{3}-x$	\mathbb{Q}	$\mathbb{Q}(i, \sqrt{2})$
$J\left(E_{3}\right)$	$x^{6}+x^{3}+4$	\mathbb{Q}	$\mathbb{Q}(\sqrt{-3}, \sqrt[3]{2})$
$J\left(E_{4}\right)$	$x^{5}+x^{3}+2 x$	\mathbb{Q}	$\mathbb{Q}(i, \sqrt[4]{2})$
$J\left(E_{6}\right)$	$x^{6}+x^{3}-2$	\mathbb{Q}	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{-2})$
$G_{1,3}$	$x^{6}+3 x^{4}-2$	$\mathbb{Q}(i)$	$\mathbb{Q}(i)$
$N\left(G_{1,3}\right)$	$x^{6}+3 x^{4}-2$	\mathbb{Q}	$\mathbb{Q}(i)$
$G_{3,3}$	$x^{6}+x^{2}+1$	\mathbb{Q}	\mathbb{Q}
$N\left(G_{3,3}\right)$	$x^{6}+x^{5}+x-1$	\mathbb{Q}	$\mathbb{Q}(i)$
$\operatorname{USp}(4)$	$x^{5}-x+1$	\mathbb{Q}	\mathbb{Q}

Searching for curves

We surveyed the \bar{L}-polynomial distributions of genus 2 curves

$$
\begin{gathered}
y^{2}=x^{5}+c_{4} x^{4}+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0} \\
y^{2}=x^{6}+c_{5} x^{5}+c_{4} x^{4}+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0}
\end{gathered}
$$

with integer coefficients $\left|c_{i}\right| \leq 128$, over 2^{48} curves.

Searching for curves

We surveyed the \bar{L}-polynomial distributions of genus 2 curves

$$
\begin{gathered}
y^{2}=x^{5}+c_{4} x^{4}+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0}, \\
y^{2}=x^{6}+c_{5} x^{5}+c_{4} x^{4}+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0}
\end{gathered}
$$

with integer coefficients $\left|c_{i}\right| \leq 128$, over 2^{48} curves.
We found over 10 million non-isogenous curves with exceptional distributions, including at least 3 apparent matches for all of our target Sato-Tate groups.
Representative examples were computed to high precision $N=2^{30}$.
For each example, the field K was then determined, allowing the Galois type, and hence the Sato-Tate group, to be provably identified.

Computing zeta functions

Algorithms to compute $L_{p}(T)$ for low genus hyperelliptic curves:

	complexity (ignoring factors of $O(\log \log p))$		
algorithm	$g=1$	$g=2$	$g=3$
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3} \log p$
group computation	$p^{1 / 4} \log p$	$p^{3 / 4} \log p$	$p^{5 / 4} \log p$
p-adic cohomology	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$
CRT (Schoof-Pila)	$\log ^{5} p$	$\log ^{8} p$	$\log ^{12 ?} p$

Computing zeta functions

Algorithms to compute $L_{p}(T)$ for low genus hyperelliptic curves:

	complexity (ignoring factors of $O(\log \log p))$			
algorithm	$g=1$	$g=2$	$g=3$	
point enumeration	$p \log p$	$p^{2} \log p$	$p^{3} \log p$	
group computation	$p^{1 / 4} \log p$	$p^{3 / 4} \log p$	$p^{5 / 4} \log p$	
p-adic cohomology	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$	$p^{1 / 2} \log ^{2} p$	
CRT (Schoof-Pila)	$\log ^{5} p$	$\log ^{8} p$	$\log ^{12 ?} p$	
Average polytime	$\log ^{4} p$	$\log ^{4} p$	$\log ^{4} p$	

For $g=2,3$ the new algorithm is over 100 x faster for $N \geq 2^{30}$.

[^0]: ${ }^{1}$ Here we consider only motives of weight 1 , see [Serre 2012] for the general case.

