The refined Sato-Tate conjecture

Andrew V. Sutherland Massachusetts Institute of Technology June 16, 2014

Mikio Sato

John Tate

Joint work with Fité, Kedlaya, and Rotger.

Andrew V. Sutherland (MIT)

The refined Sato-Tate conjecture

Sato-Tate in dimension 1

Let E/\mathbb{Q} be an elliptic curve, which we can write in the form

$$y^2 = x^3 + ax + b,$$

and let *p* be a prime of good reduction $(4a^3 + 27b^2 \not\equiv 0 \mod p)$.

The number of \mathbb{F}_p -points on the reduction E_p of E modulo p is

$$#E_p(\mathbb{F}_p) = p + 1 - t_p,$$

where the trace of Frobenius t_p is an integer in $[-2\sqrt{p}, 2\sqrt{p}]$.

We are interested in the limiting distribution of $x_p = -t_p/\sqrt{p} \in [-2, 2]$, as *p* varies over primes of good reduction.

Sato-Tate distributions in dimension 1

1. Typical case (no CM)

Elliptic curves E/\mathbb{Q} w/o CM have the semi-circular trace distribution. (This is also known for E/k, where k is a totally real number field).

[Taylor et al.]

2. Exceptional cases (CM)

Elliptic curves E/k with CM have one of two distinct trace distributions, depending on whether k contains the CM field or not.

[classical]

The *Sato-Tate group* of *E* is a closed subgroup *G* of SU(2) = USp(2) derived from the ℓ -adic Galois representation attached to *E*.

The refined Sato-Tate conjecture implies that the normalized trace distribution of E converges to the distribution of traces in G given by Haar measure (the unique translation-invariant measure).

G
$$G/G^0$$
Ek $E[a_1^0], E[a_1^2], E[a_1^1] \dots$ $U(1)$ C_1 $y^2 = x^3 + 1$ $\mathbb{Q}(\sqrt{-3})$ $1, 2, 6, 20, 70, 252, \dots$ $N(U(1))$ C_2 $y^2 = x^3 + 1$ \mathbb{Q} $1, 1, 3, 10, 35, 126, \dots$ $SU(2)$ C_1 $y^2 = x^3 + x + 1$ \mathbb{Q} $1, 1, 2, 5, 14, 42, \dots$

In dimension 1 there are three possible Sato-Tate groups, two of which arise for elliptic curves defined over \mathbb{Q} .

Zeta functions and L-polynomials

For a smooth projective curve C/\mathbb{Q} of genus g and each prime p of good redution for C we have the *zeta function*

$$Z(C_p/\mathbb{F}_p;T) := \exp\left(\sum_{k=1}^{\infty} N_k T^k/k\right),$$

where $N_k = \#C_p(\mathbb{F}_{p^k})$. This is a rational function of the form

$$Z(C_p/\mathbb{F}_p;T) = \frac{L_p(T)}{(1-T)(1-pT)},$$

where $L_p(T)$ is an integer polynomial of degree 2g.

For
$$g = 1$$
 we have $L_p(t) = pT^2 + c_1T + 1$, and for $g = 2$,

$$L_p(T) = p^2 T^4 + c_1 p T^3 + c_2 T^2 + c_1 T + 1.$$

Normalized L-polynomials

The normalized polynomial

$$\bar{L}_p(T) := L_p(T/\sqrt{p}) = \sum_{i=0}^{2g} a_i T^i \in \mathbb{R}[T]$$

is monic, reciprocal ($a_i = a_{2g-i}$), and unitary (roots on the unit circle). The coefficients a_i necessarily satisfy $|a_i| \leq \binom{2g}{i}$.

We now consider the limiting distribution of a_1, a_2, \ldots, a_g over all primes $p \leq N$ of good reduction, as $N \rightarrow \infty$.

In this talk we will focus primarily on the case g = 2.

```
http://math.mit.edu/~drew
```

L-polynomials of Abelian varieties

Let *A* be an abelian variety of dimension $g \ge 1$ over a number field *k*.

Let $\rho_{\ell} \colon G_k \to \operatorname{Aut}_{\mathbb{Q}_{\ell}}(V_{\ell}(A)) \simeq \operatorname{GSp}_{2g}(\mathbb{Q}_{\ell})$ be the Galois representation arising from the action of $G_k = \operatorname{Gal}(\overline{k}/k)$ on the ℓ -adic Tate module

 $V_{\ell}(A) := \lim_{\longleftarrow} A[\ell^n].$

For each prime p of good reduction for A we have the L-polynomial

$$L_{\mathfrak{p}}(T) := \det(1 - \rho_{\ell}(\operatorname{Frob}_{\mathfrak{p}})T),$$

$$\bar{L}_{\mathfrak{p}}(T) := L_{\mathfrak{p}}(T/\sqrt{\|\mathfrak{p}\|}) = \sum a_{i}T^{i}.$$

In the case that *A* is the Jacobian of a genus *g* curve *C*, this agrees with our earlier definition of $L_{\mathfrak{p}}(T)$ as the numerator of the zeta function of *C*.

The Sato-Tate group of an abelian variety

Let $\rho_{\ell} \colon G_k \to \operatorname{Aut}_{\mathbb{Q}_{\ell}}(V_{\ell}(A)) \simeq \operatorname{GSp}_{2g}(\mathbb{Q}_{\ell})$ be as above. Let G_k^1 be the kernel of the cyclotomic character $\chi_{\ell} \colon G_k \to \mathbb{Q}_{\ell}^{\times}$. Let $G_{\ell}^{1,\operatorname{Zar}}$ be the Zariski closure of $\rho_{\ell}(G_k^1)$ in $\operatorname{Sp}_{2g}(\mathbb{Q}_{\ell})$. Choose $\iota \colon \mathbb{Q}_{\ell} \hookrightarrow \mathbb{C}$, and let $G^1 = G_{\ell}^{1,\operatorname{Zar}} \otimes_{\iota} \mathbb{C} \subseteq \operatorname{Sp}_{2g}(\mathbb{C})$.

Definition [Serre]

 $\operatorname{ST}_A \subseteq \operatorname{USp}(2g)$ is a maximal compact subgroup of $G^1 \subseteq \operatorname{Sp}_{2g}(\mathbb{C})$. For each prime \mathfrak{p} of good reduction for A, let $s(\mathfrak{p})$ denote the conjugacy class of $\rho_\ell(\operatorname{Frob}_\mathfrak{p})/\sqrt{\|\mathfrak{p}\|} \in G^1$ in ST_A .

Conjecturally, ST_A does not depend on ℓ or ι ; this is known for $g \leq 3$. In any case, the characteristic polynomial of $s(\mathfrak{p})$ is always $\bar{L}_{\mathfrak{p}}(T)$.

Equidistribution

Let μ_{ST_A} denote the image of the Haar measure on $Conj(ST_A)$ (which does not depend on the choice of ℓ or ι).

The Refined Sato-Tate Conjecture

The conjugacy classes $s(\mathfrak{p})$ are equidistributed with respect to μ_{ST_A} .

In particular, the distribution of $\bar{L}_{p}(T)$ matches the distribution of characteristic polynomials of random matrices in ST_A.

We can test this numerically by comparing statistics of the coefficients a_1, \ldots, a_g of $\bar{L}_{\mathfrak{p}}(T)$ over $\|\mathfrak{p}\| \leq N$ to the predictions given by μ_{ST_A} .

The Sato-Tate axioms for abelian varieties

A subgroup G of USp(2g) satisfies the Sato-Tate axioms¹ if:

- G is closed.
- **2** *G* contains a *Hodge circle* (an embedding θ : U(1) \rightarrow *G*⁰ where $\theta(u)$ has eigenvalue *u* with multiplicity *g*), whose conjugates generate a dense subset of *G*.
- Solution For each component *H* of *G* and every irreducible character χ of GL_{2g}(ℂ) we have E[χ(γ) : γ ∈ H] ∈ ℤ.

For any fixed g, the set of subgroups $G \subseteq USp(2g)$ that satisfy the *Sato-Tate axioms* is **finite** (up to conjugacy).

¹Here we consider only motives of weight 1, see [Serre 2012] for the general case.

The Sato-Tate axioms for abelian varieties

A subgroup G of USp(2g) satisfies the Sato-Tate axioms¹ if:

- G is closed.
- **2** *G* contains a *Hodge circle* (an embedding θ : U(1) \rightarrow *G*⁰ where $\theta(u)$ has eigenvalue *u* with multiplicity *g*), whose conjugates generate a dense subset of *G*.
- Solution For each component *H* of *G* and every irreducible character χ of GL_{2g}(ℂ) we have E[χ(γ) : γ ∈ H] ∈ ℤ.

For any fixed g, the set of subgroups $G \subseteq USp(2g)$ that satisfy the *Sato-Tate axioms* is **finite** (up to conjugacy).

Theorem

For $g \leq 3$, the group ST_A satisfies the Sato-Tate axioms.

This is expected to hold for all g.

¹Here we consider only motives of weight 1, see [Serre 2012] for the general case.

Theorem 1 [FKRS 2012]

Up to conjugacy, 55 subgroups of $\ensuremath{\mathrm{USp}}(4)$ satisfy the Sato-Tate axioms:

U(U(1) SU(2)

Theorem 1 [FKRS 2012]

Up to conjugacy, 55 subgroups of USp(4) satisfy the Sato-Tate axioms:

U(1):	$C_1, C_2, C_3, C_4, C_6, D_2, D_3, D_4, D_6, T, O,$
	$J(C_1), J(C_2), J(C_3), J(C_4), J(C_6),$
	$J(D_2), J(D_3), J(D_4), J(D_6), J(T), J(O),$
	$C_{2,1}, C_{4,1}, C_{6,1}, D_{2,1}, D_{3,2}, D_{4,1}, D_{4,2}, D_{6,1}, D_{6,2}, O_1$
SU(2):	$E_1, E_2, E_3, E_4, E_6, J(E_1), J(E_2), J(E_3), J(E_4), J(E_6)$
$U(1) \times U(1)$:	$F, F_a, F_c, F_{a,b}, F_{ab}, F_{ac}, F_{ab,c}, F_{a,b,c}$
$U(1) \times SU(2)$:	$U(1) \times SU(2), N(U(1) \times SU(2))$
$SU(2) \times SU(2)$:	$SU(2) \times SU(2), N(SU(2) \times SU(2))$
USp(4):	USp(4)

Of these, exactly 52 arise as ST_A for an abelian surface A (34 over \mathbb{Q}).

Theorem 1 [FKRS 2012]

Up to conjugacy, 55 subgroups of USp(4) satisfy the Sato-Tate axioms:

U(1):	$C_1, C_2, C_3, C_4, C_6, D_2, D_3, D_4, D_6, T, O,$
	$J(C_1), J(C_2), J(C_3), J(C_4), J(C_6),$
	$J(D_2), J(D_3), J(D_4), J(D_6), J(T), J(O),$
	$C_{2,1}, C_{4,1}, C_{6,1}, D_{2,1}, D_{3,2}, D_{4,1}, D_{4,2}, D_{6,1}, D_{6,2}, O_1$
SU(2):	$E_1, E_2, E_3, E_4, E_6, J(E_1), J(E_2), J(E_3), J(E_4), J(E_6)$
$U(1) \times U(1)$:	$F, F_a, F_c, F_{a,b}, F_{ab}, F_{ac}, F_{ab,c}, F_{a,b,c}$
$U(1) \times SU(2)$:	$U(1) \times SU(2), N(U(1) \times SU(2))$
$SU(2) \times SU(2)$:	$SU(2) \times SU(2), N(SU(2) \times SU(2))$
USp(4):	USp(4)

Of these, exactly 52 arise as ST_A for an abelian surface A (34 over \mathbb{Q}).

This theorem says nothing about equidistribution, however this is now known in many special cases [FS 2012, Johansson 2013].

Andrew V. Sutherland (MIT)

Sato-Tate groups in dimension 2 with $G^0 = U(1)$.

d	с	G	G/G^0	z_1	z2	$M[a_1^2]$	$M[a_2]$
1	1	C_1	C1	0	0, 0, 0, 0, 0, 0	8, 96, 1280, 17920	4, 18, 88, 454
1	2	C_2	C2	1	0, 0, 0, 0, 0	4, 48, 640, 8960	2, 10, 44, 230
1	3	C_3	C3	0	0, 0, 0, 0, 0	4, 36, 440, 6020	2, 8, 34, 164
1	4	C_4	C_4	1	0, 0, 0, 0, 0	4, 36, 400, 5040	2, 8, 32, 150
1	6	C_6	C ₆	1	0, 0, 0, 0, 0	4, 36, 400, 4900	2, 8, 32, 148
1	4	D_2	D ₂	3	0, 0, 0, 0, 0	2, 24, 320, 4480	1, 6, 22, 118
1	6	D_3	D ₃	3	0, 0, 0, 0, 0, 0	2, 18, 220, 3010	1, 5, 17, 85
1	8	D_4	D_4	5	0, 0, 0, 0, 0	2, 18, 200, 2520	1, 5, 16, 78
1	12	D_6	D ₆	7	0, 0, 0, 0, 0	2, 18, 200, 2450	1, 5, 16, 77
1	2	$J(C_1)$	C2	1	1, 0, 0, 0, 0	4, 48, 640, 8960	1, 11, 40, 235
1	4	$J(C_2)$	D_2	3	1, 0, 0, 0, 1	2, 24, 320, 4480	1, 7, 22, 123
1	6	$J(C_3)$	C ₆	3	1, 0, 0, 2, 0	2, 18, 220, 3010	1, 5, 16, 85
1	8	$J(C_4)$	$C_4 \times C_2$	5	1, 0, 2, 0, 1	2, 18, 200, 2520	1, 5, 16, 79
1	12	$J(C_6)$	$C_6 \times C_2$	7	1, 2, 0, 2, 1	2, 18, 200, 2450	1, 5, 16, 77
1	8	$J(D_2)$	$D_2 \times C_2$	7	1, 0, 0, 0, 3	1, 12, 160, 2240	1, 5, 13, 67
1	12	$J(D_3)$	D ₆	9	1, 0, 0, 2, 3	1, 9, 110, 1505	1, 4, 10, 48
1	16	$J(D_4)$	$D_4 \times C_2$	13	1, 0, 2, 0, 5	1, 9, 100, 1260	1, 4, 10, 45
1	24	$J(D_6)$	$D_6 \times C_2$	19	1, 2, 0, 2, 7	1, 9, 100, 1225	1, 4, 10, 44
1	2	$C_{2,1}$	C ₂	1	0, 0, 0, 0, 1	4, 48, 640, 8960	3, 11, 48, 235
1	4	$C_{4,1}$	C_4	3	0, 0, 2, 0, 0	2, 24, 320, 4480	1, 5, 22, 115
1	6	$C_{6,1}$	C ₆	3	0, 2, 0, 0, 1	2, 18, 220, 3010	1, 5, 18, 85
1	4	$D_{2,1}$	D ₂	3	0, 0, 0, 0, 2	2, 24, 320, 4480	2, 7, 26, 123
1	8	$D_{4,1}$	D_4	7	0, 0, 2, 0, 2	1, 12, 160, 2240	1, 4, 13, 63
1	12	$D_{6,1}$	D ₆	9	0, 2, 0, 0, 4	1, 9, 110, 1505	1, 4, 11, 48
1	6	$D_{3,2}$	D_3	3	0, 0, 0, 0, 3	2, 18, 220, 3010	2, 6, 21, 90
1	8	$D_{4,2}$	D_4	5	0, 0, 0, 0, 4	2, 18, 200, 2520	2, 6, 20, 83
1	12	$D_{6,2}$	D ₆	7	0, 0, 0, 0, 6	2, 18, 200, 2450	2, 6, 20, 82
1	12	T	A ₄	3	0, 0, 0, 0, 0, 0	2, 12, 120, 1540	1, 4, 12, 52
1	24	0	S ₄	9	0, 0, 0, 0, 0, 0	2, 12, 100, 1050	1, 4, 11, 45
1	24	01	S_4	15	0, 0, 6, 0, 6	1, 6, 60, 770	1, 3, 8, 30
1	24	J(T)	$A_4 \times C_2$	15	1, 0, 0, 8, 3	1, 6, 60, 770	1, 3, 7, 29
1	48	J(O)	$S_4 \times C_2$	33	1, 0, 6, 8, 9	1, 6, 50, 525	1, 3, 7, 26

d	С	G	G/G^0	z_1	<i>z</i> ₂	$M[a_1^2]$	$M[a_2]$
3	1	E_1	C1	0	0, 0, 0, 0, 0	4, 32, 320, 3584	3, 10, 37, 150
3	2	E_2	C_2	1	0, 0, 0, 0, 0	2, 16, 160, 1792	1, 6, 17, 78
3	3	E_3	C3	0	0, 0, 0, 0, 0, 0	2, 12, 110, 1204	1, 4, 13, 52
3	4	E_4	C_4	1	0, 0, 0, 0, 0, 0	2, 12, 100, 1008	1, 4, 11, 46
3	6	E_6	C ₆	1	0, 0, 0, 0, 0	2, 12, 100, 980	1, 4, 11, 44
3	2	$J(E_1)$	C_2	1	0, 0, 0, 0, 0, 0	2, 16, 160, 1792	2, 6, 20, 78
3	4	$J(E_2)$	D ₂	3	0, 0, 0, 0, 0	1, 8, 80, 896	1, 4, 10, 42
3	6	$J(E_3)$	D ₃	3	0, 0, 0, 0, 0, 0	1, 6, 55, 602	1, 3, 8, 29
3	8	$J(E_4)$	D_4	5	0, 0, 0, 0, 0, 0	1, 6, 50, 504	1, 3, 7, 26
3	12	$J(E_6)$	D ₆	7	0, 0, 0, 0, 0, 0	1, 6, 50, 490	1, 3, 7, 25
2	1	F	C_1	0	0, 0, 0, 0, 0	4, 36, 400, 4900	2, 8, 32, 148
2	2	F_a	C_2	0	0, 0, 0, 0, 1	3, 21, 210, 2485	2, 6, 20, 82
2	2	F_c	C ₂	1	0, 0, 0, 0, 0, 0	2, 18, 200, 2450	1, 5, 16, 77
2	2	Fab	C_2	1	0, 0, 0, 0, 1	2, 18, 200, 2450	2, 6, 20, 82
2	4	F_{ac}	C_4	3	0, 0, 2, 0, 1	1, 9, 100, 1225	1, 3, 10, 41
2	4	$F_{a,b}$	D_2	1	0, 0, 0, 0, 3	2, 12, 110, 1260	2, 5, 14, 49
2	4	$F_{ab,c}$	D ₂	3	0, 0, 0, 0, 1	1, 9, 100, 1225	1, 4, 10, 44
2	8	$F_{a,b,c}$	D_4	5	0, 0, 2, 0, 3	1, 6, 55, 630	1, 3, 7, 26
4	1	G_4	C1	0	0, 0, 0, 0, 0	3, 20, 175, 1764	2, 6, 20, 76
4	2	$N(G_4)$	C ₂	0	0, 0, 0, 0, 1	2, 11, 90, 889	2, 5, 14, 46
6	1	G_6	C1	0	0, 0, 0, 0, 0	2, 10, 70, 588	2, 5, 14, 44
6	2	$N(G_6)$	C ₂	1	0, 0, 0, 0, 0	1, 5, 35, 294	1, 3, 7, 23
10	1	USp(4)	C1	0	0, 0, 0, 0, 0, 0	1, 3, 14, 84	1, 2, 4, 10

Sato-Tate groups in dimension 2 with $G^0 \neq U(1)$.

Galois types

Let *A* be an abelian surface defined over a number field *k*. Let *K* be the minimal extension of *k* for which $\operatorname{End}(A_K) = \operatorname{End}(A_{\overline{\mathbb{Q}}})$. The group $\operatorname{Gal}(K/k)$ acts on the \mathbb{R} -algebra $\operatorname{End}(A_K)_{\mathbb{R}} = \operatorname{End}(A_K) \otimes_{\mathbb{Z}} \mathbb{R}$.

Definition

The *Galois type* of *A* is the isomorphism class of $[Gal(K/k), End(A_K)_{\mathbb{R}}]$, where $[G, E] \simeq [G', E']$ if there is an isomorphism $G \simeq G'$ and a compaitble isomorphism $E \simeq E'$ of \mathbb{R} -algebras.

(Note: $G \simeq G'$ and $E \simeq E'$ does not necessarily imply $[G, E] \simeq [G', E']$).

Galois types and Sato-Tate groups in dimension 2

Theorem 2 [FKRS 2012]

Up to conjugacy, the Sato-Tate group G of an abelian surface A is uniquely determined by its Galois type, and vice versa.

We also have $G/G^0 \simeq \text{Gal}(K/k)$, and G^0 is uniquely determined by the isomorphism class of $\text{End}(A_K)_{\mathbb{R}}$, and vice versa:

U(1)	$M_2(\mathbb{C})$	$\mathrm{U}(1) imes\mathrm{SU}(2)$	$\mathbb{C} \times$	\mathbb{R}
SU(2)	$M_2(\mathbb{R})$	${ m SU}(2) imes { m SU}(2)$	$\mathbb{R} \times$	\mathbb{R}
$U(1) \times U(1)$	$\mathbb{C} imes \mathbb{C}$	USp(4)	\mathbb{R}	

There are 52 distinct Galois types of abelian surfaces.

The proof uses the *algebraic Sato-Tate group* of Banaszak and Kedlaya, which, for $g \le 3$, uniquely determines ST_A .

Exhibiting Sato-Tate groups of abelian surfaces

Remarkably, the 34 Sato-Tate groups that can arise for an abelian surface over \mathbb{Q} can all be realized via Jacobians of genus 2 curves.

By extending the base field from \mathbb{Q} to a suitable subfield *k* of *K*, we can restrict $G/G^0 \simeq \text{Gal}(K/k)$ to any normal subgroup of Gal(K/k) (this does not change the identity component G^0).

This allows us to realize all 52 Sato-Tate groups using 34 curves. In

fact, these 52 Sato-Tate groups can be realized using just 9 hyperelliptic curves over varying base fields.

Genus 2 curves realizing Sato-Tate groups with ${\it G}^0\,=\,{\rm U}(1)$

Group	Curve $y^2 = f(x)$	k	Κ
C1	$x^6 + 1$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3})$
C_2	$x^{5} - x$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(i, \sqrt{2})$
C_3	$x^{6} + 4$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3},\sqrt[3]{2})$
C_4	$x^6 + x^5 - 5x^4 - 5x^2 - x + 1$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(\sqrt{-2}, a); a^4 + 17a^2 + 68 = 0$
C_6	$x^{6} + 2$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3},\sqrt{2})$
D_2	$x^{5} + 9x$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(i, \sqrt{2}, \sqrt{3})$
D_3	$x^6 + 10x^3 - 2$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(\sqrt{-3},\sqrt[6]{-2})$
D_4	$x^{5} + 3x$	$\mathbb{Q}(\sqrt{-2})$	$Q(i, \sqrt{2}, \sqrt[4]{3})$
D_6	$x^{6} + 3x^{5} + 10x^{3} - 15x^{2} + 15x - 6$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(i, \sqrt{2}, \sqrt{3}, a); a^3 + 3a - 2 = 0$
Т	$x^6 + 6x^5 - 20x^4 + 20x^3 - 20x^2 - 8x + 8$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(\sqrt{-2}, a, b);$
			$a^3 - 7a + 7 = b^4 + 4b^2 + 8b + 8 = 0$
0	$x^{6} - 5x^{4} + 10x^{3} - 5x^{2} + 2x - 1$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(\sqrt{-2},\sqrt{-11},a,b);$
			$a^3 - 4a + 4 = b^4 + 22b + 22 = 0$
$J(C_1)$	$x^3 - x$	$\mathbb{Q}(i)$	$\mathbb{Q}(i, \sqrt{2})$
$J(C_2)$	$x^3 - x$	Q	$\mathbb{Q}(i, \sqrt{2})$
$J(C_3)$	$x^{6} + 10x^{5} - 2$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3},\sqrt[n]{-2})$
$J(C_4)$	$x^{6} + x^{5} - 5x^{4} - 5x^{2} - x + 1$	Q	see entry for C_4
$J(C_6)$	$x^{6} - 15x^{4} - 20x^{3} + 6x + 1$	Q	$\mathbb{Q}(i, \sqrt{3}, a); a^3 + 3a^2 - 1 = 0$
$J(D_2)$	$x^{3} + 9x$	Q	$\mathbb{Q}(i,\sqrt{2},\sqrt{3})$
$J(D_3)$	$x^{0} + 10x^{3} - 2$	Q	$\mathbb{Q}(\sqrt{-3},\sqrt[3]{-2})$
$J(D_4)$	$x^{3} + 3x$	Q	$\mathbb{Q}(i,\sqrt{2},\sqrt{3})$
$J(D_6)$	$x^{0} + 3x^{3} + 10x^{3} - 15x^{2} + 15x - 6$	Q	see entry for D ₆
J(T)	$x^{0} + 6x^{2} - 20x^{4} + 20x^{2} - 20x^{2} - 8x + 8$	Q	see entry for T
J(0)	$x^{5} - 5x^{4} + 10x^{5} - 5x^{4} + 2x - 1$	Q	see entry for O
$C_{2,1}$	x" + 1	Q.	$\mathbb{Q}(\sqrt{-3})$
$C_{4.1}$	$x^2 + 2x$	$\mathbb{Q}(i)$	$\mathbb{Q}(i,\sqrt{2})$
$C_{6,1}$	$x^{*} + 6x^{*} - 30x^{*} + 20x^{*} + 15x^{*} - 12x + 1$	Q	$\mathbb{Q}(\sqrt{-3}, a); a^* - 3a + 1 = 0$
$D_{2,1}$	x' + x	Q	$\mathbb{Q}(i,\sqrt{2})$
$D_{4,1}$	$x^{3} + 2x$	Q	$\mathbb{Q}(i,\sqrt{2})$
$D_{6,1}$	$x^{0} + 6x^{3} - 30x^{4} - 40x^{3} + 60x^{2} + 24x - 8$	Q	$\mathbb{Q}(\sqrt{-2},\sqrt{-3},a);a^3-9a+6=0$
$D_{3,2}$	$x^{6} + 4$	Q	$\mathbb{Q}(\sqrt{-3},\sqrt[3]{2})$
$D_{4,2}$	$x^6 + x^5 + 10x^3 + 5x^2 + x - 2$	Q	$\mathbb{Q}(\sqrt{-2}, a); a^4 - 14a^2 + 28a - 14 = 0$
$D_{6,2}$	$x^{6} + 2$	Q	$\mathbb{Q}(\sqrt{-3},\sqrt[6]{2})$
O_1	$x^{6} + 7x^{5} + 10x^{4} + 10x^{3} + 15x^{2} + 17x + 4$	Q	$\mathbb{Q}(\sqrt{-2}, a, b);$
			$a^{3} + 5a + 10 = b^{4} + 4b^{2} + 8b + 2 = 0$

Group	Curve $y^2 = f(x)$	k	Κ
F	$x^6 + 3x^4 + x^2 - 1$	$\mathbb{Q}(i,\sqrt{2})$	$\mathbb{Q}(i,\sqrt{2})$
F_a	$x^6 + 3x^4 + x^2 - 1$	$\mathbb{Q}(i)$	$\mathbb{Q}(i,\sqrt{2})$
Fab	$x^6 + 3x^4 + x^2 - 1$	$\mathbb{Q}(\sqrt{2})$	$\mathbb{Q}(i,\sqrt{2})$
F_{ac}	$x^5 + 1$	Q	$\mathbb{Q}(a); a^4 + 5a^2 + 5 = 0$
$F_{a,b}$	$x^6 + 3x^4 + x^2 - 1$	Q	$\mathbb{Q}(i,\sqrt{2})$
E_1	$x^{6} + x^{4} + x^{2} + 1$	Q	Q
E_2	$x^6 + x^5 + 3x^4 + 3x^2 - x + 1$	Q	$\mathbb{Q}(\sqrt{2})$
E_3	$x^5 + x^4 - 3x^3 - 4x^2 - x$	Q	$\mathbb{Q}(a); a^3 - 3a + 1 = 0$
E_4	$x^5 + x^4 + x^2 - x$	Q	$\mathbb{Q}(a); a^4 - 5a^2 + 5 = 0$
E_6	$x^5 + 2x^4 - x^3 - 3x^2 - x$	Q	$\mathbb{Q}(\sqrt{7}, a); a^3 - 7a - 7 = 0$
$J(E_1)$	$x^5 + x^3 + x$	Q	$\mathbb{Q}(i)$
$J(E_2)$	$x^{5} + x^{3} - x$	Q	$\mathbb{Q}(i,\sqrt{2})$
$J(E_3)$	$x^6 + x^3 + 4$	Q	$\mathbb{Q}(\sqrt{-3}, \sqrt[3]{2})$
$J(E_4)$	$x^5 + x^3 + 2x$	Q	$\mathbb{Q}(i, \sqrt[4]{2})$
$J(E_6)$	$x^6 + x^3 - 2$	Q	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{-2})$
$G_{1,3}$	$x^6 + 3x^4 - 2$	$\mathbb{Q}(i)$	$\mathbb{Q}(i)$
$N(G_{1,3})$	$x^6 + 3x^4 - 2$	Q	$\mathbb{Q}(i)$
G _{3,3}	$x^{6} + x^{2} + 1$	Q	Q
$N(G_{3,3})$	$x^{6} + x^{5} + x - 1$	Q	$\mathbb{Q}(i)$
USp(4)	$x^5 - x + 1$	Q	Q

Genus 2 curves realizing Sato-Tate groups with ${\it G}^0 \neq {\rm U}(1)$

Searching for curves

We surveyed the \bar{L} -polynomial distributions of genus 2 curves

$$y^{2} = x^{5} + c_{4}x^{4} + c_{3}x^{3} + c_{2}x^{2} + c_{1}x + c_{0},$$

$$y^{2} = x^{6} + c_{5}x^{5} + c_{4}x^{4} + c_{3}x^{3} + c_{2}x^{2} + c_{1}x + c_{0},$$

with integer coefficients $|c_i| \leq 128$, over 2^{48} curves.

Searching for curves

We surveyed the \bar{L} -polynomial distributions of genus 2 curves

$$y^2 = x^5 + c_4 x^4 + c_3 x^3 + c_2 x^2 + c_1 x + c_0,$$

$$y^{2} = x^{6} + c_{5}x^{5} + c_{4}x^{4} + c_{3}x^{3} + c_{2}x^{2} + c_{1}x + c_{0},$$

with integer coefficients $|c_i| \leq 128$, over 2^{48} curves.

We found over 10 million non-isogenous curves with exceptional distributions, including at least 3 apparent matches for all of our target Sato-Tate groups.

Representative examples were computed to high precision $N = 2^{30}$.

For each example, the field *K* was then determined, allowing the Galois type, and hence the Sato-Tate group, to be **provably** identified.

Computing zeta functions

Algorithms to compute $L_p(T)$ for low genus hyperelliptic curves:

	complexity				
	lightin				
algorithm	g = 1	g = 2	g = 3		
point enumeration	$p \log p$	$p^2 \log p$	$p^3 \log p$		
group computation	$p^{1/4}\log p$	$p^{3/4}\log p$	$p^{5/4}\log p$		
p-adic cohomology	$p^{1/2}\log^2 p$	$p^{1/2}\log^2 p$	$p^{1/2}\log^2 p$		
CRT (Schoof-Pila)	$\log^5 p$	$\log^8 p$	$\log^{12?} p$		

Computing zeta functions

Algorithms to compute $L_p(T)$ for low genus hyperelliptic curves:

	complexity			
	(ignoring factors of $O(\log \log p)$)			
algorithm	g = 1	g = 2	<i>g</i> = 3	
point enumeration group computation <i>p</i> -adic cohomology CRT (Schoof-Pila) Average polytime	$p \log p$ $p^{1/4} \log p$ $p^{1/2} \log^2 p$ $\log^5 p$ $\log^4 p$	$p^{2} \log p$ $p^{3/4} \log p$ $p^{1/2} \log^{2} p$ $\log^{8} p$ $\log^{4} p$	$\begin{array}{c} p^{3} \log p \\ p^{5/4} \log p \\ p^{1/2} \log^{2} p \\ \log^{12?} p \\ \log^{4} p \end{array}$	

For g = 2, 3 the new algorithm is over 100x faster for $N \ge 2^{30}$.