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Definitions

Let E/K be an elliptic curve, and let ` 6= char(K ) be prime.

Let L = K (E [`]) be the Galois extension of K obtained by
adjoining the coordinates of the `-torsion points of E(K̄ ) to K .

The Galois group Gal(L/K ) acts linearly on the `-torsion points

E [`] ' Z/`Z⊕ Z/`Z,

yielding a group representation

ρ̄E ,` : Gal(L/K ) −→ Aut(E [`]) ' GL2(Z/`Z).

This is the mod-` Galois representation attached to E .
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Definitions

More generally, the Galois group Gal(K̄/K ) acts on the
`-adic Tate module

T`(E) = lim←−
n

E [`n],

yielding a group representation

ρE ,` : Gal(K̄/K ) −→ Aut
(
T`(E)

)
' GL2(Z`).

This is the `-adic Galois representation attached to E .

We may view ρ̄E ,` as the reduction of ρE ,` modulo `.
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Surjectivity of ρE ,`

For E without complex multiplication, ρE ,` is usually surjective.

Theorem (Serre)
Let K be a number field and assume E/K does not have CM.

1. The image of ρE ,` has finite index in GL2(Z`) for all `.
2. im ρE ,` = GL2(Z`) for all sufficiently large `, say ` > `max.

Conjecturally, there is an `max that depends only on K .
For K = Q, it is believed that `max = 37.

For this talk, K = Q.
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Reduction modulo `

We shall restrict our attention primarily to ρ̄E ,` = ρE ,` mod `.

Theorem (Serre)
For K = Q and ` > 3, the map ρE ,` is surjective iff ρ̄E ,` is.

The theorem fails for ` = 2 and ` = 3, but in these cases it
suffices to consider ρE ,` mod 23 and ρE ,` mod 32.
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When is ρ̄E ,` non-surjective?

If E [`](Q) is non-trivial, then ρ̄E ,` is not surjective.
This occurs for ` ≤ 7 (Mazur).

If E/Q admits a rational `-isogeny, then ρ̄E ,` is not surjective.
For E without CM, this occurs for ` ≤ 17 and ` = 37 (Mazur).

However, ρ̄E ,` may be non-surjective even when E/Q admits no
rational `-isogenies, and im ρ̄E ,` may vary in any case.

Classifying the possible subgroups im ρ̄E ,` ⊆ GL2(Z/`Z) may
be viewed as a generalization of Mazur’s theorems.

As a first step, we wish to determine which groups do occur.
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Main results

A very fast algorithm to compute im ρ̄E ,` up to isomorphism,
(and essentially up to conjugacy), for small primes `.

If ρ̄E ,` is surjective, the algorithm proves this unconditionally.
If not, its output is heuristically correct with very high probability.
(in principle, this can also be made unconditional).

We have tested every elliptic curve in the tables of Cremona
and Stein-Watkins (about 137 million curves) for all ` < 60, as
well as some 1010 curves in various families.

This has yielded what we believe to be a complete
classification of im ρ̄E ,` for elliptic curves over Q without CM,
at least up to isomorphism (but work is still in progress).
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Prior work

Reverter-Vila (2001) determined ρ̄E ,` for all elliptic curves E/Q
with conductor less than 200 (a total of 739 curves).

Stein (2005) obtained partial results for elliptic curves E/Q with
conductors up to 30000 ( a total of 66561 curves).

Zywina (2011) developed an efficient algorithm to determine,
given E/Q, the set of primes ` for which ρ̄E ,` is not surjective.

There is a large body of related work (for example, see
David-Kisilevsky-Pappalardi, Lang-Trotter, Koblitz-Zywina, . . . ).
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A probabilistic approach

The action of the Frobenius endomorphism on E [`](Fp)
corresponds to a conjugacy class Ap in im ρ̄E ,` ⊆ GL2(Z/`Z).

We have tr Ap = ap mod ` and det Ap = p mod `, hence we
know the characteristic polynomial of Ap.

By varying p, we can “randomly” sample im ρ̄E ,`.
The Čebotarev density theorem implies equidistribution.

Unfortunately, this does not give us enough information.
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Example: ` = 2

GL2(Z/2Z) ' S3 has 6 subgroups in 4 conjugacy classes.
For H ⊆ GL2(Z/2Z), let ti(H) = #{A ∈ H : tr A = i}.
We consider the trace frequencies t(H) = (t0(H), t1(H)).

1. For H ' S3 we have t(H) = (4,2).
2. The subgroup H ' C3 has t(H) = (1,2).
3. Three conjugate H ' C2 have t(H) = (2,0)

4. The trivial subgroup H has t(H) = (1,0).

1,2 are distinguished from 3,4 by a trace 1 element (easy).
We can distinguish 1 from 2 by comparing frequencies (harder).
We cannot distinguish 3 from 4 at all (impossible).

Unipotent elements are indistinguishable from the identity!
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Using the fixed space of Ap

The `-torsion points fixed by the Frobenius endomorphism form
the Fp-rational subgroup E [`](Fp) of E [`]. Thus

ker(Ap − I) ' E [`](Fp) = E(Fp)[`].

For small p it is easy to compute E(Fp)[`], and this gives
information about Ap that cannot be derived from ap.

We can now easily distinguish all 4 subgroups of GL2(Z/`Z).

This generalizes nicely.
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Subgroup signatures

For each subgroup H of GL2(Z/`Z) we define the extended
signature of H as the multiset

SH = {
(
det A, tr A, rk(Ap − I)

)
: A ∈ H}.

The signature sH is simply the set SH , ignoring multiplicities.
Note that sH and SH are invariant under conjugation.

Lemma
Let ` < 60 be prime, and let G and H be subgroups of
GL2(Z/`Z) for which the determinant map is surjective.

1. sG = sH ⇔ SG = SH .

2. SG = SH ⇒ G ' H.
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The subgroup lattice of GL2(Z/`Z)

Our strategy is to determine im ρ̄E ,` by identifying its location in
the lattice of subgroups of GL2(Z/`Z).

We do not distinguish conjugate subgroups, and we restrict our
attention to the upwardly closed set of subgroups C` for which
the determinant map is surjective.

For any H ∈ C`, we say that a set of signatures s is minimally
covered by sH if s ⊂ sH and s ⊂ sG =⇒ sH ⊂ sG for all G ∈ C`.

If s is minimally covered by both sG and sH , then G ' H,
by the lemma.
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The algorithm

Given an elliptic curve E/Q, a prime `, and ε > 0,
set s ← {}, k ← 0, and for each prime of good reduction p 6= `:

1. Compute E(Fp) to obtain a = p + 1−#E(Fp) and
r = rk(E(Fp)[`]).

2. Set s ← s ∪ (p mod `,a mod `, r) and increment k .

3. If s is minimally covered by sH for some H ∈ C` and δk
H < ε,

output H and terminate.

Here δH is the maximum over G ) H of the probability that the
signature of a random A ∈ G lies in sH (zero if H = GL2(Z/`Z)).

The values of sH and δH for all H ∈ C` are precomputed.

Andrew V. Sutherland (MIT) Computing the image of Galois 13 of 19



Efficient implementation

If ρ̄E ,` is surjective, we expect the algorithm to terminate in
O(log `) iterations, typically less than 10 for ` < 60.

Otherwise, if ε = 2−n we expect to need O(log `+ n) iterations,
typically less than 2n (we use n = 100).

By precomputing tables of E(Fp) for all elliptic curve E/Fp for
small values of p (up to 216, say), the algorithm is essentially
just a sequence of table lookups, which makes it very fast.

Precomputing the sH and δH is non-trivial, but this only needs to
be done once for each prime `.
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Computational results

With ε = 2−100 it takes less than a minute to analyze all the
curves in Cremona’s tables for ` < 60. This includes all curves
E/Q with conductor up to 240,000 (≈1.5 million curves). For
curves without CM, this yields 45 distinct signatures of
non-surjective Galois images (40 isomorphism classes).

Performing the same analysis on the Stein-Watkins database
(≈ 137 million curves with conductors up to 10 million) takes
about an hour and yields the same set of signatures.

So far we have analyzed a total of some 1010 curves in various
families (e.g., bounded coefficients, bounded j-invariants,
parametrizations of modular curves). This work is still in
progress, but has so far not yielded any new signatures.

Andrew V. Sutherland (MIT) Computing the image of Galois 15 of 19



Summary of results
Non-surjective images of ρ̄E ,` for elliptic curves E/Q without
complex multiplication and primes ` < 60.

` isomorphism signature conjugacy1

2 3 3 3
3 6 6 7
5 10 12 15
7 10 11 16

11 3 4 7
13 6 7 11
17 1 1 2
37 1 1 2

40 45 63

1There can be up to two conjugacy classes with the same signature, but
these must then have equal image in PGL2(Z/`Z).
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` GAP ind δH � ap � Np isog type count
2 1.1 6 0.500 no no (Z/2Z)2 Z 133452

2.1 3 0.500 no no Z/2Z B 5281954
3.1 2 0.333 yes yes no Cns 7412

3 2.1 24 0.250 no no Z/3Z Z 2189
4.2 12 0.167 yes no yes Cs 1570

* 6.1 8 0.250 no no Z/3Z ⊂ B 217794
8.3 6 0.250 yes yes no N(Cs) 205
12.4 4 0.375 yes no yes B 186668
16.8 3 0.167 yes yes no N(Cns) 816

5 4.1 120 0.200 no no Z/5Z ⊂ Cs 4
4.1 120 0.200 no no yes ⊂ Cs 4
8.2 60 0.100 yes no yes ⊂ Cs 4
16.2 30 0.050 yes yes yes C2 12
16.6 30 0.250 yes yes no < N(Cns) 3

* 20.3 24 0.375 no no Z/5Z ⊂ B 504
* 20.3 24 0.375 no no yes ⊂ B 520

32.11 15 0.333 yes yes no N(Cs) 15
* 40.12 12 0.250 yes no yes ⊂ B 536

48.5 10 0.333 yes yes no N(Cns) 29
80.30 6 0.417 yes yes yes B 950
96.67 5 0.217 yes yes no � S4 284

(counts of Q̄-isomorphism classes in the Stein-Watkins database may overlap — im ρ̄E,` is not twist invariant)
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` GAP ind δH � ap � #E(Fp) isog type count
7 18.3 112 0.250 yes no no ⊂ N(Cs) 1

36.12 56 0.333 yes no no ⊂ N(Cs) 1
* 42.4 48 0.250 no no yes ⊂ B 6
* 42.1 48 0.417 no no Z/7Z ⊂ B 24
* 42.1 48 0.417 no no yes ⊂ B 24

72.30 28 0.399 yes yes no N(Cs) 1
84.12 24 0.667 yes no yes ⊂ B 6

* 84.7 24 0.444 yes no yes ⊂ B 24
96.62 21 0.357 yes yes no N(Cns) 2

* 126.7 16 0.250 yes yes yes ⊂ B 682
252.28 8 0.438 yes yes yes B 682

*11 110.1 120 0.450 no no yes ⊂ B 2
* 110.1 120 0.450 no no yes ⊂ B 2
* 220.7 60 0.640 no no yes ⊂ B 2

240.51 55 0.409 yes yes no N(Cns) 0
13 288.400 91 0.250 yes yes no � S4 1

* 468.29 56 0.375 yes yes yes ⊂ B 14
* 468.29 56 0.375 yes yes yes ⊂ B 12

624.155 42 0.667 yes no yes ⊂ B 4
* 624.119 42 0.444 yes yes yes ⊂ B 2
* 936.171 28 0.250 yes yes yes ⊂ B 14

1872.576 14 0.464 yes yes yes B 42
*17 1088.1674 72 0.375 yes yes yes ⊂ B 2
*37 15984 114 0.444 yes yes yes ⊂ B 2
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Generalizations and future work

Working modulo `e = 4,8,9 finds 5,2,1 cases of non-surjective
Galois images where the mod `e−1 image is surjective.

Working modulo composite integers m is also interesting.
(NB: for E/Q the image in GL2(Ẑ) is never surjective – Serre).

The algorithm works equally well over number fields (we can
restrict to degree-1 primes).

In principle we can handle abelian varieties of dimension g > 1;
e.g., for the Jacobian of a genus 2 curve we can compute the
image of Galois in GSp4(Z/`Z) for (very) small `.
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