Beating the Birthday Paradox: Order Computations in Generic Groups

Andrew V. Sutherland

Massachusetts Institute of Technology
April 20, 2007

Outline

(1) Introduction
(2) Algorithms

- Primorial Steps
- Multi-Stage Seive
(3) Results

Outline

(2) Algorithms

- Primorial Steps
- Multi-Stage Seive

3 Results

Hard Problems vs Easy Problems

Hard Problems

- Factoring Integers: $N=p q$
- Discrete Logarithm: $\operatorname{DL}(\alpha, \beta)$
- Order Computation: $|\alpha|$

Easy Problems

- Multiplying: $p q=N$
- Exponentiating: $\alpha^{k}=\beta$
- Fast Order Computation: $|\alpha|$ given $\alpha^{E}=1_{G}$

Generic Groups and Black Boxes

Generic Groups

- Isomorphic groups are equivalent.
- Algorithms work in any finite group.
- Complexity measured by group operations.

Black Boxes

- Opaque representation.
- Unique identifiers.
- Good software engineering.

Order Computations

Applications

- Black-box group recognition.
- Abelian group structure.
- Factoring.

Order Computations

Applications

- Black-box group recognition.
- Abelian group structure.
- Factoring.

Order Computation Theorem

The total cost of all order computations is at most

$$
(1+o(1)) T(\lambda(G)),
$$

where $T(N)$ is the cost of computing $|\alpha|=N$.

Order Computations

Problem

- Find the least positive N such that $\alpha^{N}=1_{G}$.
- No upper bound on N.
- $\alpha^{k}=\alpha^{j} \quad \Longleftrightarrow \quad k \equiv j \bmod N$.

Order Computations

Problem

- Find the least positive N such that $\alpha^{N}=1_{G}$.
- No upper bound on N.
- $\alpha^{k}=\alpha^{j} \Longleftrightarrow k \equiv j \bmod N$.

Solutions

- Birthday paradox.
- Shanks baby-steps giant-steps $\approx 2 \sqrt{2 N}$.
- Pollard rho method $\approx \sqrt{2 \pi N}$.

Lower Bounds?

Babai

Exponential lower bound in black-box groups.

Shoup

$\Omega(\sqrt{N})$ lower bound for discrete logarithm in generic groups.
Terr
$\sqrt{2 N}$ lower bound on addition chains.

Birthday Paradox

$\sqrt{(2 \log 2) N}$ lower bound for a random algorithm (?)

Outline

(1) Introduction

(2) Algorithms

- Primorial Steps
- Multi-Stage Seive
(3) Results

Primorial Steps

The Basic Idea

What if we knew $|\alpha|$ were odd?

What if we knew

What if we knew

Primorial Steps

The Basic Idea

What if we knew $|\alpha|$ were odd?

What if we knew $|\alpha| \perp 6$?

Primorial Steps

The Basic Idea

What if we knew $|\alpha|$ were odd?

What if we knew $|\alpha| \perp 6$?

What if we knew $|\alpha| \perp \prod_{p \leq L} p$?

Primorial Steps

Key Fact \#1

Orders Can Be Factored

For any $\beta=\alpha^{k}$:

$$
|\beta|=N_{1} \quad \text { and } \quad\left|\alpha^{N_{1}}\right|=N_{2} \quad \Longrightarrow \quad|\alpha|=N_{1} N_{2} .
$$

Primorial Steps Algorithm

(1) Let $E=\prod p^{h}$ for $p \leq L, p^{h} \leq M<p^{h+1}$, and let $P=\prod p$.
(2) Compute $\beta=\alpha^{E}$.
(3) Use baby-steps $\perp P$ and giant-step multiples of P to find $N_{1}=|\beta|$.
(4) Use a fast order algorithm to find $N_{2}=\left|\alpha^{N_{1}}\right|$ given E.
(5) Return $N_{1} N_{2}$.

Primorial Steps

Primorials

w	p_{w}	P_{w}	$\phi\left(P_{w}\right)$	$\phi\left(P_{w}\right) / P_{w}$	$P_{w} / \phi\left(P_{w}\right)$
1	2	2	1	0.5000	2.0000
2	3	6	2	0.3333	3.0000
3	5	30	8	0.2667	3.7500
4	7	210	48	0.2286	4.3450
5	11	2310	480	0.2078	4.8125
6	13	30030	5760	0.1918	5.2135
7	17	510510	92160	0.1805	5.5394
8	19	9699690	1658880	0.1710	5.8471
9	23	223092870	36495360	0.1636	6.1129
10	29	6469693230	1021870080	0.1579	6.3312

Table: The First Ten Primorials

Primorial Steps

Complexity

Worst Case

$$
O\left(\sqrt{\frac{N}{\log \log N}}\right)
$$

Primorial Steps

Complexity

Worst Case

$$
O\left(\sqrt{\frac{N}{\log \log N}}\right)
$$

Best Case

$O(L)$

Primorial Steps

Complexity

Worst Case

$$
O\left(\sqrt{\frac{N}{\log \log N}}\right)
$$

Best Case

$$
O(L)
$$

Average Case

Key Fact \#2

Numbers Have Smooth Parts and Coarse Parts

Let $\sigma_{y}(x)$ be the largest y-smooth divisor of x.
Define $\kappa_{y}(x)=x / \sigma(x)$ to be the y-coarse part of x,

$$
x=\sigma_{y}(x) \kappa_{y}(x)
$$

Typically $y=x^{1 / u}$.

How Big is the Coarse Part?

Few numbers are y-smooth, but for most numbers, $\kappa_{y}(x) \ll x$.

The Multi-Stage Sieve

Factoring in the Dark

Problem: We don't know any factors until we find them all.

The Multi-Stage Sieve

Factoring in the Dark

Problem: We don't know any factors until we find them all.

Play the Odds

Solution: Alternate sieving and searching until we do.

How Numbers Are Made

Random Bisection Model

How to generating random integers with known factorizations (Bach).

Distribution of Smooth Numbers

$$
\Psi\left(x, x^{1 / u}\right) \sim \rho(u) x
$$

Distribution of Semismooth Numbers

Semismooth probability function: $G(r, s)$.

Complexity

Median Complexity

$O\left(N^{0.344}\right)$, assuming uniform distribution of $N=|\alpha|$. Typically better.

More generally...

$$
\operatorname{Pr}\left[T(N) \leq c N^{1 / u}\right] \geq G(1 / u, 2 / u)
$$

Semismooth and Smooth Probabilities

u	$G(1 / u, 2 / u)$	$\rho(u)$
2.2	0.8958	0.2203
2.5	0.7302	0.1303
2.9	0.5038	0.0598
3.0	0.4473	0.0486
4.0	0.0963	0.0049
6.0	$1.092 \mathrm{e}-03$	$1.964 \mathrm{e}-05$
8.0	$3.662 \mathrm{e}-06$	$3.232 \mathrm{e}-08$
10.0	$5.382 \mathrm{e}-09$	$2.770 \mathrm{e}-11$

Outline

(1) Introduction

(2) Algorithms

- Primorial Steps
- Multi-Stage Seive
(3) Results

What does it all mean?

Reference Problem for Generic Algorithms - Ideal Class Groups

Compute the ideal class group of $\mathbb{Q}[\sqrt{D}]$ for negative D. Interesting problem for number theorists, and cryptographers.

What does it all mean?

Reference Problem for Generic Algorithms - Ideal Class Groups

Compute the ideal class group of $\mathbb{Q}[\sqrt{D}]$ for negative D. Interesting problem for number theorists, and cryptographers.

Comparison to Generic Algorithms: $D=-4\left(10^{30}+1\right)$
Rho algorithm: 200 million gops, 15 days (Teske 1998). Multi-stage sieve: 200,000 gops, 6 seconds.

What does it all mean?

Reference Problem for Generic Algorithms - Ideal Class Groups

Compute the ideal class group of $\mathbb{Q}[\sqrt{D}]$ for negative D. Interesting problem for number theorists, and cryptographers.

Comparison to Generic Algorithms: $D=-4\left(10^{30}+1\right)$
Rho algorithm: 200 million gops, 15 days (Teske 1998). Multi-stage sieve: 200,000 gops, 6 seconds.

Comparison to Non-Generic Algorithms: $D=-4\left(10^{54}+1\right)$
Subexponential MPQS algorithm: 9 hours (Buchmann 1999). Multi-stage sieve: 800,000 gops, 25 seconds.

Recipe for Subexponential Algorithms

Lottery Problem

Given a random sequence of problems, how long does it take to solve one? You only have to win once.

Subexponential Approach

Choose u so that $c N^{1 / u} G(1 / u, 2 / u) \approx 1$.
Running time is "aysmptotically" $L(1 / 2, \sqrt{2})$ or $L(1 / 2,1)$.

Generic Solution

Works for any problem that can be reduced to random order computations.

Subexponential Result

Example: $D=-\left(10^{80}+1387\right)$
Computed using 2×10^{9} gops ($u=6.7$). $L(1 / 2,1)$ bound would predict 10^{13} gops.

Points to Ponder...

What is the right bound for order computation?

Known: $\Omega\left(N^{1 / 3}\right) \quad O(\sqrt{N / \log \log N})$
Unknown: $\Omega\left(N^{1 / 2} / \log N\right)$? $\quad O(\sqrt{N / \log N})$?

Space efficient worst case?

$o(\sqrt{N})$ algorithm using polylogarithmic space?

Subexponential Applications

Which problems can be reduced to random order computations in finite groups?

