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Introduction

Hard Problems vs Easy Problems

Hard Problems

@ Factoring Integers: N = pq
@ Discrete Logarithm: DL(«, 3)
@ Order Computation: |«

V.

Easy Problems
@ Multiplying: pg = N
@ Exponentiating: of = 3

@ Fast Order Computation: |a| given of = 14

A\




Introduction

Generic Groups and Black Boxes

Generic Groups

@ Isomorphic groups are equivalent.
@ Algorithms work in any finite group.
@ Complexity measured by group operations.

v

Black Boxes

@ Opaque representation.
@ Unique identifiers.
@ Good software engineering.
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@ Black-box group recognition.
@ Abelian group structure.
@ Factoring.
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Order Computation Theorem
The total cost of all order computations is at most

(14 0(1))T(NG)),

where T(N) is the cost of computing |o| = N.
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Order Computations

Problem
@ Find the least positive N such that oV = 1.

@ No upper bound on N.
@ of=d < k=j modN.
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Order Computations

@ Find the least positive N such that oV = 1.

@ No upper bound on N.
@ of=d < k=j modN.
@ Birthday paradox.

@ Shanks baby-steps giant-steps ~ 2v2N.
@ Pollard rho method ~ v27N.
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Lower Bounds?

Babai
Exponential lower bound in black-box groups.

Q(v/N) lower bound for discrete logarithm in generic groups.

v2N lower bound on addition chains.

Birthday Paradox
v/(2log2)N lower bound for a random algorithm (7?)
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The Basic Idea

What if we knew |«| were odd?




Algorithms
@00000

Primorial Steps

The Basic Idea

What if we knew |«| were odd?

What if we knew |a| L 67




Algorithms
@00000

Primorial Steps

The Basic Idea

What if we knew |«| were odd?
What if we knew |a| L 67

What if we knew |a| L [T, p ?
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Primorial Steps

Key Fact #1

Orders Can Be Factored

For any 8 = ak:

18] =N; and || = Np — la| = Ny Np.
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Primorial Steps

Primorial Steps Algorithm

Q LetE=][p'forp<L,p' <M< p'' andlet P =T]p.
© Compute g = of.

© Use baby-steps L P and giant-step multiples of P to find
Ny = |3].

© Use a fast order algorithm to find Ny = |o | given E.

0 Return Ny Nb.
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Primorials

W Pw Py ¢(Pw) ¢(Pw)/Pw  Pw/¢(Pw)
1 2 2 1 0.5000 2.0000
2 3 6 2 0.3333 3.0000
3 5 30 8 0.2667 3.7500
4 7 210 48 0.2286 4.3450
5 11 2310 480 0.2078 4.8125
6 13 30030 5760 0.1918 5.2135
7 17 510510 92160 0.1805 5.5394
8 19 9699690 1658880 0.1710 5.8471
9 23 223092870 36495360 0.1636 6.1129
10 29 6469693230 1021870080 0.1579 6.3312

Table: The First Ten Primorials
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Primorial Steps

Complexity

Best Case

Average Case
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Primorial Steps

Key Fact #2

Numbers Have Smooth Parts and Coarse Parts

Let o, (x) be the largest y-smooth divisor of x.
Define xy(x) = x/o(x) to be the y-coarse part of x,

X = oy(X)ry(X).

Typically y = x'/u.

How Big is the Coarse Part?

Few numbers are y-smooth, but for most numbers, x,(x) < x.




Algorithms
@000

Multi-Stage Seive

The Multi-Stage Sieve

Factoring in the Dark
Problem: We don’t know any factors until we find them all.
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The Multi-Stage Sieve

Factoring in the Dark
Problem: We don’t know any factors until we find them all.

Play the Odds
Solution: Alternate sieving and searching until we do.
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Multi-Stage Seive

How Numbers Are Made

Random Bisection Model

How to generating random integers with known factorizations
(Bach).

Distribution of Smooth Numbers

W(x, x"Y) ~ p(u)x.

Distribution of Semismooth Numbers

Semismooth probability function: G(r, s).
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Complexity

Median Complexity

O(NO-34%), assuming uniform distribution of N = |a/|.
Typically better.

More generally...

Pr[T(N) < oN'¥) > G(1/u,2/u)

A
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Semismooth and Smooth Probabilities

u G(1/u,2/u) p(u)
2.2 0.8958 0.2203
25 0.7302 0.1303
29 0.5038 0.0598
3.0 0.4473 0.0486
4.0 0.0963 0.0049

6.0 1.092e-03 1.964e-05
8.0 3.662e-06 3.232e-08
10.0 5.382e-09 2.770e-11




Results

Outline

e Results



Results

What does it all mean?

Reference Problem for Generic Algorithms - Ideal Class
Groups

Compute the ideal class group of Q[v/D] for negative D.
Interesting problem for number theorists, and cryptographers.
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Results

What does it all mean?

Reference Problem for Generic Algorithms - Ideal Class
Groups

Compute the ideal class group of Q[v/D] for negative D.
Interesting problem for number theorists, and cryptographers.

Comparison to Generic Algorithms: D = —4(10% + 1)

Rho algorithm: 200 million gops, 15 days (Teske 1998).
Multi-stage sieve: 200,000 gops, 6 seconds.

Comparison to Non-Generic Algorithms: D = —4(10% + 1)

Subexponential MPQS algorithm: 9 hours (Buchmann 1999).
Multi-stage sieve: 800,000 gops, 25 seconds.
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Recipe for Subexponential Algorithms

Lottery Problem

Given a random sequence of problems, how long does it take
to solve one? You only have to win once.

Subexponential Approach

Choose u so that cN'/YG(1/u,2/u) ~ 1.
Running time is "aysmptotically” L(1/2,v/2) or L(1/2,1).

Generic Solution

Works for any problem that can be reduced to random order
computations.
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Subexponential Result

Example: D = —(10%° + 1387)

Computed using 2 x 10° gops (u = 6.7).
L(1/2,1) bound would predict 10'® gops.
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Points to Ponder...

What is the right bound for order computation?

Known: Q (N'/3) O(\/N/ log log N)
Unknown: @ (N'/2/1ogN)? O (/N/logN)?

Space efficient worst case?

0 (W) algorithm using polylogarithmic space?

Subexponential Applications

Which problems can be reduced to random order computations
in finite groups?
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