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Hard Problems vs Easy Problems

Hard Problems
Factoring Integers: N = pq
Discrete Logarithm: DL(α, β)

Order Computation: |α|

Easy Problems
Multiplying: pq = N
Exponentiating: αk = β

Fast Order Computation: |α| given αE = 1G
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Generic Groups and Black Boxes

Generic Groups
Isomorphic groups are equivalent.
Algorithms work in any finite group.
Complexity measured by group operations.

Black Boxes
Opaque representation.
Unique identifiers.
Good software engineering.
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Order Computations

Applications
Black-box group recognition.
Abelian group structure.
Factoring.

Order Computation Theorem
The total cost of all order computations is at most(

1 + o(1)
)
T
(
λ(G)

)
,

where T (N) is the cost of computing |α| = N.
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Order Computations

Problem

Find the least positive N such that αN = 1G.
No upper bound on N.
αk = αj ⇐⇒ k ≡ j mod N.

Solutions
Birthday paradox.
Shanks baby-steps giant-steps ≈ 2

√
2N.

Pollard rho method ≈
√

2πN.
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Lower Bounds?

Babai
Exponential lower bound in black-box groups.

Shoup

Ω(
√

N) lower bound for discrete logarithm in generic groups.

Terr
√

2N lower bound on addition chains.

Birthday Paradox√
(2 log 2)N lower bound for a random algorithm (?)
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Primorial Steps

The Basic Idea

What if we knew |α| were odd?

What if we knew |α| ⊥ 6?

What if we knew |α| ⊥
∏

p≤L p ?



Introduction Algorithms Results

Primorial Steps

The Basic Idea

What if we knew |α| were odd?

What if we knew |α| ⊥ 6?

What if we knew |α| ⊥
∏

p≤L p ?



Introduction Algorithms Results

Primorial Steps

The Basic Idea

What if we knew |α| were odd?

What if we knew |α| ⊥ 6?

What if we knew |α| ⊥
∏

p≤L p ?



Introduction Algorithms Results

Primorial Steps

Key Fact #1

Orders Can Be Factored

For any β = αk :

|β| = N1 and |αN1 | = N2 =⇒ |α| = N1N2.



Introduction Algorithms Results

Primorial Steps

Primorial Steps Algorithm

1 Let E =
∏

ph for p ≤ L, ph ≤ M < ph+1, and let P =
∏

p.

2 Compute β = αE .

3 Use baby-steps ⊥ P and giant-step multiples of P to find
N1 = |β|.

4 Use a fast order algorithm to find N2 = |αN1 | given E .

5 Return N1N2.
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Primorial Steps

Primorials

w pw Pw φ(Pw ) φ(Pw )/Pw Pw/φ(Pw )

1 2 2 1 0.5000 2.0000
2 3 6 2 0.3333 3.0000
3 5 30 8 0.2667 3.7500
4 7 210 48 0.2286 4.3450
5 11 2310 480 0.2078 4.8125
6 13 30030 5760 0.1918 5.2135
7 17 510510 92160 0.1805 5.5394
8 19 9699690 1658880 0.1710 5.8471
9 23 223092870 36495360 0.1636 6.1129
10 29 6469693230 1021870080 0.1579 6.3312

Table: The First Ten Primorials
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Primorial Steps

Complexity

Worst Case

O

(√
N

log log N

)

Best Case

O(L)

Average Case

???
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Primorial Steps

Key Fact #2

Numbers Have Smooth Parts and Coarse Parts
Let σy (x) be the largest y -smooth divisor of x .
Define κy (x) = x/σ(x) to be the y -coarse part of x ,

x = σy (x)κy (x).

Typically y = x1/u.

How Big is the Coarse Part?
Few numbers are y -smooth, but for most numbers, κy (x)� x .
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Multi-Stage Seive

The Multi-Stage Sieve

Factoring in the Dark
Problem: We don’t know any factors until we find them all.

Play the Odds
Solution: Alternate sieving and searching until we do.
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Multi-Stage Seive

How Numbers Are Made

Random Bisection Model
How to generating random integers with known factorizations
(Bach).

Distribution of Smooth Numbers

Ψ(x , x1/u) ∼ ρ(u)x .

Distribution of Semismooth Numbers
Semismooth probability function: G(r , s).
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Multi-Stage Seive

Complexity

Median Complexity

O(N0.344), assuming uniform distribution of N = |α|.
Typically better.

More generally...

Pr
[
T (N) ≤ cN1/u

]
≥ G(1/u, 2/u)
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Multi-Stage Seive

Semismooth and Smooth Probabilities

u G(1/u, 2/u) ρ(u)

2.2 0.8958 0.2203
2.5 0.7302 0.1303
2.9 0.5038 0.0598
3.0 0.4473 0.0486
4.0 0.0963 0.0049
6.0 1.092e-03 1.964e-05
8.0 3.662e-06 3.232e-08

10.0 5.382e-09 2.770e-11
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What does it all mean?

Reference Problem for Generic Algorithms - Ideal Class
Groups

Compute the ideal class group of Q[
√

D] for negative D.
Interesting problem for number theorists, and cryptographers.

Comparison to Generic Algorithms: D = −4(1030 + 1)

Rho algorithm: 200 million gops, 15 days (Teske 1998).
Multi-stage sieve: 200,000 gops, 6 seconds.

Comparison to Non-Generic Algorithms: D = −4(1054 + 1)

Subexponential MPQS algorithm: 9 hours (Buchmann 1999).
Multi-stage sieve: 800,000 gops, 25 seconds.
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Recipe for Subexponential Algorithms

Lottery Problem
Given a random sequence of problems, how long does it take
to solve one? You only have to win once.

Subexponential Approach

Choose u so that cN1/uG(1/u, 2/u) ≈ 1.
Running time is ”aysmptotically” L(1/2,

√
2) or L(1/2, 1).

Generic Solution
Works for any problem that can be reduced to random order
computations.
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Subexponential Result

Example: D = −(1080 + 1387)

Computed using 2× 109 gops (u = 6.7).
L(1/2, 1) bound would predict 1013 gops.
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Points to Ponder...

What is the right bound for order computation?

Known: Ω
(
N1/3) O

(√
N/ log log N

)
Unknown: Ω

(
N1/2/ log N

)
? O

(√
N/logN

)
?

Space efficient worst case?

o
(√

N
)

algorithm using polylogarithmic space?

Subexponential Applications
Which problems can be reduced to random order computations
in finite groups?
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