Beating the Birthday Paradox: Order Computations in Generic Groups

Andrew V. Sutherland

Massachusetts Institute of Technology

April 20, 2007

(日) (日) (日) (日) (日) (日) (日)

Outline

2 Algorithms

- Primorial Steps
- Multi-Stage Seive

Outline

Algorithms

- Primorial Steps
- Multi-Stage Seive

3 Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Hard Problems vs Easy Problems

Hard Problems

- Factoring Integers: *N* = *pq*
- Discrete Logarithm: $DL(\alpha, \beta)$
- Order Computation: $|\alpha|$

Easy Problems

- Multiplying: pq = N
- Exponentiating: $\alpha^{k} = \beta$
- Fast Order Computation: $|\alpha|$ given $\alpha^E = \mathbf{1}_G$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Generic Groups and Black Boxes

Generic Groups

- Isomorphic groups are equivalent.
- Algorithms work in any finite group.
- Complexity measured by group operations.

Black Boxes

- Opaque representation.
- Unique identifiers.
- Good software engineering.

Order Computations

Applications

- Black-box group recognition.
- Abelian group structure.
- Factoring.

Order Computation Theorem

The total cost of all order computations is at most

 $(1+o(1))T(\lambda(G)),$

where T(N) is the cost of computing $|\alpha| = N$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Order Computations

Applications

- Black-box group recognition.
- Abelian group structure.
- Factoring.

Order Computation Theorem

The total cost of all order computations is at most

 $(1 + o(1))T(\lambda(G)),$

where T(N) is the cost of computing $|\alpha| = N$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Order Computations

Problem

• Find the least positive N such that $\alpha^N = \mathbf{1}_G$.

• No upper bound on N.

•
$$\alpha^k = \alpha^j \iff k \equiv j \mod N.$$

Solutions

- Birthday paradox.
- Shanks baby-steps giant-steps $pprox 2\sqrt{2N}$.
- Pollard rho method $\approx \sqrt{2\pi N}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Order Computations

Problem

• Find the least positive *N* such that $\alpha^N = \mathbf{1}_G$.

• No upper bound on N.

•
$$\alpha^k = \alpha^j \iff k \equiv j \mod N.$$

Solutions

- Birthday paradox.
- Shanks baby-steps giant-steps $\approx 2\sqrt{2N}$.
- Pollard rho method $\approx \sqrt{2\pi N}$.

Lower Bounds?

Babai

Exponential lower bound in black-box groups.

Shoup

 $\Omega(\sqrt{N})$ lower bound for discrete logarithm in generic groups.

Terr

 $\sqrt{2N}$ lower bound on addition chains.

Birthday Paradox

 $\sqrt{(2 \log 2)N}$ lower bound for a random algorithm (?)

Outline

Algorithms

- Primorial Steps
- Multi-Stage Seive

Primorial Steps

The Basic Idea

What if we knew $|\alpha|$ were odd?

What if we knew $|\alpha| \perp 6$?

What if we knew $|\alpha| \perp \prod_{p \leq L} p$?

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Primorial Steps

The Basic Idea

What if we knew $|\alpha|$ were odd?

What if we knew $|\alpha| \perp 6$?

What if we knew $|\alpha| \perp \prod_{p \leq L} p$?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Primorial Steps

The Basic Idea

What if we knew $|\alpha|$ were odd?

What if we knew $|\alpha| \perp 6$?

What if we knew $|\alpha| \perp \prod_{p \leq L} p$?

Primorial Steps

Key Fact #1

Orders Can Be Factored

For any $\beta = \alpha^k$: $|\beta| = N_1$ and $|\alpha^{N_1}| = N_2 \implies |\alpha| = N_1 N_2.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

▲□▶▲□▶▲□▶▲□▶ □ のQで

Primorial Steps

Primorial Steps Algorithm

• Let $E = \prod p^h$ for $p \le L$, $p^h \le M < p^{h+1}$, and let $P = \prod p$.

2 Compute
$$\beta = \alpha^{E}$$
.

- Use a fast order algorithm to find $N_2 = |\alpha^{N_1}|$ given *E*.

Return N₁N₂.

Primorial Steps

Primorials

W	p_w	Pw	$\phi(P_w)$	$\phi(P_w)/P_w$	$P_w/\phi(P_w)$
1	2	2	1	0.5000	2.0000
2	3	6	2	0.3333	3.0000
3	5	30	8	0.2667	3.7500
4	7	210	48	0.2286	4.3450
5	11	2310	480	0.2078	4.8125
6	13	30030	5760	0.1918	5.2135
7	17	510510	92160	0.1805	5.5394
8	19	9699690	1658880	0.1710	5.8471
9	23	223092870	36495360	0.1636	6.1129
10	29	6469693230	1021870080	0.1579	6.3312

Table: The First Ten Primorials

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Primorial Steps

Complexity

Worst Case $O\left(\sqrt{\frac{N}{\log \log N}}\right)$ Best Case

O(L)

Average Case

???

Primorial Steps

Complexity

Worst Case

$$O\left(\sqrt{\frac{N}{\log\log N}}\right)$$

Best Case		
	O(L)	

Average Case

???

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲≣ めるの

Primorial Steps

Worst Case

$$O\left(\sqrt{\frac{N}{\log\log N}}\right)$$

Best Case O(L)

Average Case

???

Primorial Steps

Numbers Have Smooth Parts and Coarse Parts

Let $\sigma_y(x)$ be the largest *y*-smooth divisor of *x*. Define $\kappa_y(x) = x/\sigma(x)$ to be the *y*-coarse part of *x*,

$$\mathbf{X} = \sigma_{\mathbf{y}}(\mathbf{X})\kappa_{\mathbf{y}}(\mathbf{X}).$$

Typically $y = x^{1/u}$.

How Big is the Coarse Part?

Few numbers are *y*-smooth, but for most numbers, $\kappa_y(x) \ll x$.

Multi-Stage Seive

The Multi-Stage Sieve

Factoring in the Dark

Problem: We don't know any factors until we find them all.

Play the Odds

Solution: Alternate sieving and searching until we do.

・ロト・四ト・モー・ 中・ シック

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Multi-Stage Seive

The Multi-Stage Sieve

Factoring in the Dark

Problem: We don't know any factors until we find them all.

Play the Odds

Solution: Alternate sieving and searching until we do.

Multi-Stage Seive

How Numbers Are Made

Random Bisection Model

How to generating random integers with known factorizations (Bach).

Distribution of Smooth Numbers

$$\Psi(x,x^{1/u})\sim \rho(u)x.$$

Distribution of Semismooth Numbers

Semismooth probability function: G(r, s).

Multi-Stage Seive

Complexity

Median Complexity

 $O(N^{0.344})$, assuming uniform distribution of $N = |\alpha|$. Typically better.

More generally...

$$Pr\left[T(N) \leq cN^{1/u}\right] \geq G(1/u, 2/u)$$

Multi-Stage Seive

Semismooth and Smooth Probabilities

u	G(1/u, 2/u)	ho(u)
2.2	0.8958	0.2203
2.5	0.7302	0.1303
2.9	0.5038	0.0598
3.0	0.4473	0.0486
4.0	0.0963	0.0049
6.0	1.092e-03	1.964e-05
8.0	3.662e-06	3.232e-08
10.0	5.382e-09	2.770e-11

◆□ > ◆□ > ◆豆 > ◆豆 > ~豆 > ◆○ ◆

Outline

Algorithms

- Primorial Steps
- Multi-Stage Seive

What does it all mean?

Reference Problem for Generic Algorithms - Ideal Class Groups

Compute the ideal class group of $\mathbb{Q}[\sqrt{D}]$ for negative *D*. Interesting problem for number theorists, and cryptographers.

Comparison to Generic Algorithms: $D = -4(10^{30} + 1)$

Rho algorithm: 200 million gops, 15 days (Teske 1998). Multi-stage sieve: 200,000 gops, 6 seconds.

Comparison to Non-Generic Algorithms: $D = -4(10^{54} + 1)$

Subexponential MPQS algorithm: 9 hours (Buchmann 1999). Multi-stage sieve: 800,000 gops, 25 seconds.

What does it all mean?

Reference Problem for Generic Algorithms - Ideal Class Groups

Compute the ideal class group of $\mathbb{Q}[\sqrt{D}]$ for negative *D*. Interesting problem for number theorists, and cryptographers.

Comparison to Generic Algorithms: $D = -4(10^{30} + 1)$

Rho algorithm: 200 million gops, 15 days (Teske 1998). Multi-stage sieve: 200,000 gops, 6 seconds.

Comparison to Non-Generic Algorithms: $D = -4(10^{54} + 1)$ Subexponential MPQS algorithm: 9 hours (Buchmann 1999). Multi-stage sieve: 800,000 gops, 25 seconds.

What does it all mean?

Reference Problem for Generic Algorithms - Ideal Class Groups

Compute the ideal class group of $\mathbb{Q}[\sqrt{D}]$ for negative *D*. Interesting problem for number theorists, and cryptographers.

Comparison to Generic Algorithms: $D = -4(10^{30} + 1)$

Rho algorithm: 200 million gops, 15 days (Teske 1998). Multi-stage sieve: 200,000 gops, 6 seconds.

Comparison to Non-Generic Algorithms: $D = -4(10^{54} + 1)$

Subexponential MPQS algorithm: 9 hours (Buchmann 1999). Multi-stage sieve: 800,000 gops, 25 seconds.

Recipe for Subexponential Algorithms

Lottery Problem

Given a random sequence of problems, how long does it take to solve one? You only have to win once.

Subexponential Approach

Choose *u* so that $cN^{1/u}G(1/u, 2/u) \approx 1$. Running time is "aysmptotically" $L(1/2, \sqrt{2})$ or L(1/2, 1).

Generic Solution

Works for any problem that can be reduced to random order computations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Subexponential Result

Example: $D = -(10^{80} + 1387)$

Computed using 2×10^9 gops (u = 6.7). L(1/2, 1) bound would predict 10^{13} gops.

Points to Ponder...

What is the right bound for order computation?

Known: $\Omega(N^{1/3}) = O\left(\sqrt{N/\log\log N}\right)$ Unknown: $\Omega(N^{1/2}/\log N)? = O\left(\sqrt{N/\log N}\right)?$

Space efficient worst case?

 $o\left(\sqrt{N}\right)$ algorithm using polylogarithmic space?

Subexponential Applications

Which problems can be reduced to random order computations in finite groups?