Computing the endomorphism ring of an ordinary elliptic curve

Andrew V. Sutherland

Massachusetts Institute of Technology
April 3, 2009
joint work with Gaetan Bisson
http://arxiv.org/abs/0902.4670

Elliptic curves

An elliptic curve E / F is a smooth projective curve of genus 1 with a distinguished rational point 0.

The set $E(F)$ of rational points on E form an abelian group.
For char $(F) \neq 2$, 3 we define E with an affine equation

$$
y^{2}=x^{3}+A x+B
$$

where $4 A^{3}+27 B^{2} \neq 0$. The j-invariant of E is

$$
j(E)=12^{3} \frac{4 A^{3}}{4 A^{3}+27 B^{2}}
$$

If $F=\bar{F}$ then $j(E)$ uniquely identifies E (but not in \mathbb{F}_{q}).

Elliptic curves over finite fields

Consider $F=\mathbb{F}_{q}$. The size of the group $E\left(\mathbb{F}_{q}\right)$ is

$$
\# E\left(\mathbb{F}_{q}\right)=q+1-t
$$

for some integer t with $|t| \leq 2 \sqrt{q}$. The SEA algorithm computes t in polynomial time (very fast in practice).

Typically t is nonzero in \mathbb{F}_{q}, in which case E is called ordinary.
Some useful facts about $t=t(E)$:

1. $t\left(E_{1}\right)=t\left(E_{2}\right) \Longleftrightarrow E_{1}$ and E_{2} are isogenous.
2. $j\left(E_{1}\right)=j\left(E_{2}\right)$ and $t\left(E_{1}\right)=t\left(E_{2}\right) \Longleftrightarrow E_{2} \cong E_{2}$.
3. $j\left(E_{1}\right)=j\left(E_{2}\right) \Longrightarrow\left|t\left(E_{1}\right)\right|=\left|t\left(E_{2}\right)\right| \quad$ for $j\left(E_{1}\right) \notin\left\{0,12^{3}\right\}$.

Maps between elliptic curves

An isogeny $\phi: E_{1} \rightarrow E_{2}$ is a rational map (defined over \bar{F}) with $\phi(0)=0$. It induces a homomorphism from $E_{1}(F)$ to $E_{2}(F)$.

The endomorphism ring $\operatorname{End}(E)$ contains all $\phi: E \rightarrow E$. We have $\mathbb{Z} \subseteq$ End E, but for $F=\mathbb{F}_{q}$, equality never holds.

If E / \mathbb{F}_{q} is ordinary, then $\operatorname{End}(E) \cong \mathcal{O}(D)$ where

$$
\mathcal{O}(D)=\mathbb{Z}+\frac{D+\sqrt{D}}{2} \mathbb{Z}
$$

is the imaginary quadratic order of some discriminant D.

We want to compute D.

The Frobenius endomorphism

The endomorphism $\pi:(x, y) \rightsquigarrow\left(x^{q}, y^{q}\right)$ on $E\left(\overline{\mathbb{F}}_{q}\right)$ satisfies

$$
\pi^{2}-t \pi+q=0
$$

If we set $D_{\pi}=t^{2}-4 q$ and fix an isomorphism End $E \cong \mathcal{O}(D)$ we may regard $\pi=\frac{t+\sqrt{D_{\pi}}}{2}$ as an element of $\mathcal{O}(D)$.

Thus $\mathcal{O}\left(D_{\pi}\right) \subseteq \mathcal{O}(D)$, which implies $D \mid D_{\pi}$ and that D and D_{π} have the same fundamental discriminant D_{K}.
By factoring $D_{\pi}=v^{2} D_{K}$ we may determine D_{K} and v. We then have $D=u^{2} D_{K}$ for some $u \mid v$.

We want to compute u.
This is easy if v is small (or smooth), but may be hard if not.

Computing isogenies

We call a (separable) isogeny ϕ an ℓ-isogeny if $\# \operatorname{ker} \phi=\ell$. We restrict to prime ℓ, in which case ker ϕ is cyclic.

The classical modular polynomial $\Phi_{\ell} \in \mathbb{Z}[X, Y]$ has the property

$$
\Phi_{\ell}\left(j\left(E_{1}\right), j\left(E_{2}\right)\right)=0 \quad \Longleftrightarrow \quad E_{1} \text { and } E_{2} \text { are } \ell \text {-isogenous. }
$$

The ℓ-isogeny graph $G_{\ell}\left(\mathbb{F}_{q}\right)$ has vertex set

$$
\mathcal{E}\left(\mathbb{F}_{q}\right)=\left\{j\left(E / \mathbb{F}_{q}\right)\right\}=\mathbb{F}_{q},
$$

and edges $\left(j_{1}, j_{2}\right)$ for $\Phi_{\ell}\left(j_{1}, j_{2}\right)=0$ (note Φ_{ℓ} is symmetric).

$$
\Phi_{\ell} \text { is big: } O\left(\ell^{3+\epsilon}\right) \text { bits. }
$$

The structure of the ℓ-isogeny graph [Kohel]

The connected components of $G_{\ell}\left(\mathbb{F}_{q}\right)$ are ℓ-volcanoes. An ℓ-volcano of height h has vertices in level V_{0}, \ldots, V_{h}.

Vertices in V_{0} have endomorphism ring $\mathcal{O}\left(D_{0}\right)$ with $\ell \nmid u_{0}$. Vertices in V_{k} have endomorphism ring $\mathcal{O}\left(\ell^{2 k} D_{0}\right)$.

1. The subgraph on V_{0} is a cycle (the surface). All other edges lie between V_{k} and V_{k+1} for some k.
2. For $k>0$ each vertex in V_{k} has one neighbor in V_{k-1}.
3. For $k<h$ every vertex in V_{k} has degree $\ell+1$.

See [Kohel 1996], [Fouquet-Morain 2002], or [S 2009] for more details.

A 3-volcano of height 2 with a 4-cycle

Algorithms to compute u

- Isogeny climbing: computes ℓ-isogenies for prime $\ell \mid v$ to determine the power of ℓ dividing u in. Probabilistic complexity $O\left(q^{3 / 2+\epsilon}\right)$.
- Kohel's algorithm: computes the kernel of n-isogenies, where $n=O\left(q^{1 / 6}\right)$ need not be a divisor of v. Deterministic complexity $O\left(q^{1 / 3+\epsilon}\right)$ (GRH).
- New algorithm: computes the cardinality of smooth relations using isogenies of subexponential degree. Probabilistic complexity $L[1 / 2, \sqrt{3} / 2](q)(G R H+)$.

$$
L[\alpha, c](x)=\exp \left((c+o(1))(\log x)^{\alpha}(\log \log x)^{1-\alpha}\right)
$$

All algorithms have unconditionally correct output.

The action of the class group [CM theory]

For an invertible ideal $\mathfrak{a} \subset \mathcal{O}_{D} \cong \operatorname{End}(E)$, let $E[\mathfrak{a}]$ be the subgroup of points annihilated by all $a \in \mathfrak{a}$. The map

$$
j(E) \rightarrow j(E / E[\mathfrak{a}])
$$

corresponds to an isogeny of degree $N(\mathfrak{a})$.
This defines a group action by the ideal group on the set

$$
\left\{j\left(E / \mathbb{F}_{q}\right): \operatorname{End}(E) \cong \mathcal{O}(D)\right\}
$$

This action factors through the class group $\mathrm{cl}(\mathcal{O}(D))=\operatorname{cl}(D)$. The action is faithful and transitive.

See the books of [Cox], [Lang], or [Silverman] for more on CM theory.

Walking isogeny cycles

If $\ell \nmid v$ and $\left(\frac{D}{\ell}\right)=1$, the ℓ-volcano containing $j(E)$ is a cycle of length $|\alpha|$, where $\alpha \in \mathrm{cl}(D)$ contains an ideal of norm ℓ.

We can compute $|\alpha|$ (without knowing D) by walking a path j_{0}, j_{1}, \ldots in $G_{\ell}\left(\mathbb{F}_{q}\right)$ starting from $j_{0}=j(E)$:

1. Let j_{1} be one of the two roots of $\Phi_{\ell}\left(X, j_{0}\right)$ in \mathbb{F}_{q}.
2. Let j_{k+1} be the unique root of $\Phi_{\ell}\left(X, j_{k}\right) /\left(X-j_{k-1}\right)$ in \mathbb{F}_{q}.

The choice of j_{1} is arbitrary (we cannot distinguish α and α^{-1}). In either case, $|\alpha|$ (and $\left|\alpha^{-1}\right|$) is the least n for which $j_{n}=j_{0}$.

Step 2 finds the unique root of a degree ℓ polynomial $f(X)$ over \mathbb{F}_{q}. Complexity is $T(\ell)=O\left(\ell^{2}+\mathrm{M}(\ell) \log q\right)$ operations in \mathbb{F}_{q}.

Computing End (E) with class groups (naïvely)

Given E / \mathbb{F}_{q}, let $\# E=q+1-t$ and $4 q=t^{2}-v^{2} D_{K}$, so that $\operatorname{End}(E) \cong \mathcal{O}(D)$ where $D=u^{2} D_{K}$ for some $u \mid v$.
If u_{1}, \ldots, u_{m} are the divisors of v, then $u=u_{i}$ for some i.
Pick any $\ell \nmid v$ satisfying $\left(\frac{D_{K}}{\ell}\right)=1$.
For each $D_{i}=u_{i}^{2} D_{K}$ there is an element $\alpha_{i} \in \operatorname{cl}\left(D_{i}\right)$ containing an ideal of norm ℓ, but $\left|\alpha_{i}\right|$ typically varies with i.

We can compare $\left|\alpha_{i}\right|$ to the length of the ℓ-isogeny cycle containing $j(E)$. These must be equal if $u=u_{i}$.

This is too slow, but we can exploit this idea.

Relations

A relation R is a pair of vectors $\left(\ell_{1}, \ldots, \ell_{k}\right)$ and $\left(e_{1}, \ldots, e_{k}\right)$.
We say R holds in $\mathrm{cl}(D)$ if for each i there is an $\alpha_{i} \in \operatorname{cl}(D)$ containing an ideal of norm ℓ_{i} such that

$$
\alpha_{1}^{e_{1}} \cdots \alpha_{k}^{e_{k}}=1 .
$$

More generally, we define the cardinality of R in $\mathrm{cl}(D)$ by

$$
\# R / D=\#\left\{\tau \in\{ \pm 1\}^{k}: \prod \alpha_{i}^{\tau_{i} e_{i}}=1 \text { in cl(D) }\right\} .
$$

$\# R / D$ does not depend on the choice of α_{i}.

Counting relations

Given a relation R with $\left(\ell_{1}, \ldots, \ell_{k}\right)$ and $\left(e_{1}, \ldots, e_{k}\right)$:

1. Set J_{0} be a list containing the single element $j(E)$.
2. For each element in J_{i} walk e_{i} steps in both directions of the ℓ_{i} cycle and append the two end points to the list J_{i+1}.
3. $\# R / E$ is the number of times $j(E)$ appears in the list J_{k}.

The complexity is $\sum_{i=1}^{k} 2^{i} e_{i} T\left(\ell_{i}\right)$ operations in \mathbb{F}_{q}.

The key lemma

Lemma: If $\mathcal{O}\left(D_{1}\right) \subseteq \mathcal{O}\left(D_{2}\right)$ then $\# R / D_{1} \leq \# R / D_{2}$.
Proof: There is a norm-preserving map from $\mathcal{O}\left(D_{1}\right)$ to $\mathcal{O}\left(D_{2}\right)$ that induces a group homomorphism from $\mathrm{cl}\left(D_{1}\right)$ to $\mathrm{cl}\left(D_{2}\right)$.

Corollary: Let $p \| v$ and set $D_{1}=(v / p)^{2} D_{K}$ and $D_{2}=p^{2} D_{K}$. Let R be a relation with $\# R / D_{1}>\# R / D_{2}$.
If u is the conductor of $\mathcal{O}(D) \cong \operatorname{End}(E)$ then

$$
p \mid u \quad \Longleftrightarrow \quad \# R / E<\# R / D_{1} .
$$

Theorem: Such an R exists.
Conjecture: Almost all R that hold in $\mathrm{cl}\left(D_{1}\right)$ don't hold in $\operatorname{cl}\left(D_{2}\right)$.

Algorithm to compute End(E)

Given E / \mathbb{F}_{q}, the following algorithm computes $D=u^{2} D_{K}$, the discriminant of the order isomorphic to $\operatorname{End}(E)$.

1. Compute $t=q+1-\# E, v$, and D_{k}, with $4 q=t^{2}-v^{2} D_{K}$.
2. For primes $p \mid v$, find a relation R satisfying the corollary. Count $\# R / E$ in the isogeny graph to test whether $p \mid u$.
3. Output $u^{2} D_{K}$.

The algorithm above assumes v is square-free.

Finding smooth relations

The following algorithm is adapted from Hafner/McCurley.
We seek a smooth relation in $\operatorname{cl}\left(D_{1}\right)$.
Pick a smoothness bound B and a small constant k_{0} (say 3).

1. Let $\ell_{1}, \ldots, \ell_{n}$ be the primes up to B with $\left(\frac{D_{1}}{\ell_{i}}\right)=1$, and let $\alpha_{i} \in \mathrm{Cl}\left(D_{1}\right)$ contain an ideal of norm ℓ_{i}.
2. Generate $\beta=\prod \alpha_{i}^{x_{i}}$ where all but k_{0} of the x_{i} are zero and the other x_{i} are suitably bounded.
3. For each β, test whether $N(b)$ is B-smooth, where b is a the reduced representative of β.
4. If so write $\prod \alpha_{i}^{x_{i}}=\prod \alpha_{i}^{y_{i}}$ and compute R. Verify that $\# R / D_{1}>\# R / D_{2}$ (almost always true).

For suitable B, the complexity is $L[1 / 2, \sqrt{3} / 2](|D|)$

An example of cryptographic size (200 bits)

We have $4 q=t^{2}-v^{2} D_{K}$ where $t=212, D_{K}=-7$ and

$$
v=2 \cdot 127 \cdot \underbrace{524287}_{p_{1}} \cdot \underbrace{7195777666870732918103}_{p_{2}} .
$$

After finding $2 \nmid u$ and $127 \nmid u$ we test $p_{1} \mid u$ by computing

$$
R_{1}=\left(2^{2533}, 11^{752}, 29^{2}, 37^{47}, 79^{1}, 113^{1}, 149^{1}, 151^{2}, 347^{1}, 431^{1}\right),
$$

which holds in $\mathrm{cl}\left(p_{2}^{2} D_{K}\right)$ but not $\mathrm{cl}\left(p_{1}^{2} D_{K}\right)$. We test $p_{2} \mid u$ using

$$
R_{2}=\left(2^{23}, 11^{5}, 43^{1}, 71^{2}\right),
$$

which holds in $\mathrm{cl}\left(p_{1}^{2} D_{K}\right)$ but not in $\mathrm{cl}\left(p_{2}^{2} D_{K}\right)$.

Total time to compute $\operatorname{End}(E)$ is under 30 minutes

Certifying the endomorphism ring

To verify a claimed value of u, it suffices to have a relation R_{p} for each prime divisor of v such that:

1. For each prime $p \mid(v / u)$, we have $\# R_{p} / E>\# R_{p} / p^{2} D_{K}$.
2. For each prime $p \mid u$, we have $\# R_{p} /(u / p)^{2} D_{K}>\# R_{p} / E$.

Certificate size is $O\left(\log ^{2+\epsilon} q\right)$.
Note that either $D_{1} u^{2} D_{K}$ or $D_{1}=(u / p)^{2} D_{K}$. We always have $D_{1} \leq D$. Very useful when $D \ll D_{\pi}$.

This yields an algorithm to compute u with complexity

$$
L[1 / 2+o(1), 1](|D|)+L[1 / 3, c](q)
$$

which depends primarily on D, not q.

