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Elliptic curves

An elliptic curve E/F is a smooth projective curve of genus 1
with a distinguished rational point 0.

The set E(F ) of rational points on E form an abelian group.

For char(F ) 6= 2,3 we define E with an affine equation

y2 = x3 + Ax + B,

where 4A3 + 27B2 6= 0. The j-invariant of E is

j(E) = 123 4A3

4A3 + 27B2 .

If F = F then j(E) uniquely identifies E (but not in Fq).
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Elliptic curves over finite fields

Consider F = Fq. The size of the group E(Fq) is

#E(Fq) = q + 1− t ,

for some integer t with |t | ≤ 2
√

q. The SEA algorithm computes
t in polynomial time (very fast in practice).

Typically t is nonzero in Fq, in which case E is called ordinary.

Some useful facts about t = t(E):
1. t(E1) = t(E2)⇐⇒ E1 and E2 are isogenous.
2. j(E1) = j(E2) and t(E1) = t(E2) ⇐⇒ E2 ∼= E2.
3. j(E1) = j(E2) =⇒ |t(E1)| = |t(E2)| for j(E1) /∈ {0,123}.
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Maps between elliptic curves

An isogeny φ : E1 → E2 is a rational map (defined over F ) with
φ(0) = 0. It induces a homomorphism from E1(F ) to E2(F ).

The endomorphism ring End(E) contains all φ : E → E .
We have Z ⊆ End E , but for F = Fq, equality never holds.

If E/Fq is ordinary, then End(E) ∼= O(D) where

O(D) = Z +
D +
√

D
2

Z

is the imaginary quadratic order of some discriminant D.

We want to compute D.
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The Frobenius endomorphism

The endomorphism π : (x , y) (xq, yq) on E(Fq) satisfies

π2 − tπ + q = 0.

If we set Dπ = t2 − 4q and fix an isomorphism End E ∼= O(D)

we may regard π = t+
√

Dπ
2 as an element of O(D).

Thus O(Dπ) ⊆ O(D), which implies D|Dπ and that D and Dπ

have the same fundamental discriminant DK .

By factoring Dπ = v2DK we may determine DK and v .
We then have D = u2DK for some u|v .

We want to compute u.

This is easy if v is small (or smooth), but may be hard if not.

Andrew V. Sutherland Computing the endomorphism ring of an ordinary elliptic curve



Computing isogenies

We call a (separable) isogeny φ an `-isogeny if # kerφ = `.
We restrict to prime `, in which case kerφ is cyclic.

The classical modular polynomial Φ` ∈ Z[X ,Y ] has the property

Φ`

(
j(E1), j(E2)

)
= 0 ⇐⇒ E1 and E2 are `-isogenous.

The `-isogeny graph G`(Fq) has vertex set

E(Fq) = {j(E/Fq)} = Fq,

and edges (j1, j2) for Φ`(j1, j2) = 0 (note Φ` is symmetric).

Φ` is big: O(`3+ε) bits.
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The structure of the `-isogeny graph [Kohel]

The connected components of G`(Fq) are `-volcanoes.
An `-volcano of height h has vertices in level V0, . . . ,Vh.

Vertices in V0 have endomorphism ring O(D0) with ` - u0.
Vertices in Vk have endomorphism ring O(`2kD0).

1. The subgraph on V0 is a cycle (the surface).
All other edges lie between Vk and Vk+1 for some k .

2. For k > 0 each vertex in Vk has one neighbor in Vk−1.
3. For k < h every vertex in Vk has degree `+ 1.

See [Kohel 1996], [Fouquet-Morain 2002], or [S 2009] for more details.
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A 3-volcano of height 2 with a 4-cycle
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Algorithms to compute u

I Isogeny climbing: computes `-isogenies for prime `|v to
determine the power of ` dividing u in.
Probabilistic complexity O(q3/2+ε).

I Kohel’s algorithm: computes the kernel of n-isogenies,
where n = O(q1/6) need not be a divisor of v .
Deterministic complexity O(q1/3+ε) (GRH).

I New algorithm: computes the cardinality of smooth
relations using isogenies of subexponential degree.
Probabilistic complexity L[1/2,

√
3/2](q) (GRH+).

L [α, c] (x) = exp
(

(c + o(1)) (log x)α (log log x)1−α
)
.

All algorithms have unconditionally correct output.

Andrew V. Sutherland Computing the endomorphism ring of an ordinary elliptic curve



The action of the class group [CM theory]

For an invertible ideal a ⊂ OD
∼= End(E), let E [a] be the

subgroup of points annihilated by all a ∈ a. The map

j(E)→ j(E/E [a])

corresponds to an isogeny of degree N(a).

This defines a group action by the ideal group on the set

{j(E/Fq) : End(E) ∼= O(D)}.

This action factors through the class group cl(O(D)) = cl(D).
The action is faithful and transitive.

See the books of [Cox], [Lang], or [Silverman] for more on CM theory.
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Walking isogeny cycles

If ` - v and
(

D
`

)
= 1, the `-volcano containing j(E) is a cycle of

length |α|, where α ∈ cl(D) contains an ideal of norm `.

We can compute |α| (without knowing D) by walking a path
j0, j1, . . . in G`(Fq) starting from j0 = j(E):

1. Let j1 be one of the two roots of Φ`

(
X , j0

)
in Fq.

2. Let jk+1 be the unique root of Φ`

(
X , jk

)
/(X − jk−1) in Fq.

The choice of j1 is arbitrary (we cannot distinguish α and α−1).
In either case, |α| (and |α−1|) is the least n for which jn = j0.

Step 2 finds the unique root of a degree ` polynomial f (X ) over
Fq. Complexity is T (`) = O(`2 + M(`) log q) operations in Fq.
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Computing End(E) with class groups (naı̈vely)

Given E/Fq, let #E = q + 1− t and 4q = t2 − v2DK , so that
End(E) ∼= O(D) where D = u2DK for some u|v .

If u1, . . . ,um are the divisors of v , then u = ui for some i .

Pick any ` - v satisfying
(

DK
`

)
= 1.

For each Di = u2
i DK there is an element αi ∈ cl(Di) containing

an ideal of norm `, but |αi | typically varies with i .

We can compare |αi | to the length of the `-isogeny cycle
containing j(E). These must be equal if u = ui .

This is too slow, but we can exploit this idea.
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Relations

A relation R is a pair of vectors (`1, . . . , `k ) and (e1, . . . ,ek ).

We say R holds in cl(D) if for each i there is an αi ∈ cl(D)
containing an ideal of norm `i such that

αe1
1 · · ·α

ek
k = 1.

More generally, we define the cardinality of R in cl(D) by

#R/D = #
{
τ ∈ {±1}k :

∏
ατi ei

i = 1 in cl(D)
}
.

#R/D does not depend on the choice of αi .
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Counting relations

Given a relation R with (`1, . . . , `k ) and (e1, . . . ,ek ):

1. Set J0 be a list containing the single element j(E).

2. For each element in Ji walk ei steps in both directions of
the `i cycle and append the two end points to the list Ji+1.

3. #R/E is the number of times j(E) appears in the list Jk .

The complexity is
∑k

i=1 2ieiT (`i) operations in Fq.

Andrew V. Sutherland Computing the endomorphism ring of an ordinary elliptic curve



The key lemma

Lemma: If O(D1) ⊆ O(D2) then #R/D1 ≤ #R/D2.
Proof: There is a norm-preserving map from O(D1) to O(D2)
that induces a group homomorphism from cl(D1) to cl(D2).

Corollary: Let p ‖ v and set D1 = (v/p)2DK and D2 = p2DK .
Let R be a relation with #R/D1 > #R/D2.
If u is the conductor of O(D) ∼= End(E) then

p|u ⇐⇒ #R/E < #R/D1.

Theorem: Such an R exists.

Conjecture: Almost all R that hold in cl(D1) don’t hold in cl(D2).
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Algorithm to compute End(E)

Given E/Fq, the following algorithm computes D = u2DK , the
discriminant of the order isomorphic to End(E).

1. Compute t = q + 1−#E , v , and Dk , with 4q = t2 − v2DK .
2. For primes p|v , find a relation R satisfying the corollary.

Count #R/E in the isogeny graph to test whether p|u.
3. Output u2DK .

The algorithm above assumes v is square-free.
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Finding smooth relations
The following algorithm is adapted from Hafner/McCurley.

We seek a smooth relation in cl(D1).
Pick a smoothness bound B and a small constant k0 (say 3).

1. Let `1, . . . , `n be the primes up to B with
(

D1
`i

)
= 1,

and let αi ∈ cl(D1) contain an ideal of norm `i .
2. Generate β =

∏
αxi

i where all but k0 of the xi are zero and
the other xi are suitably bounded.

3. For each β, test whether N(b) is B-smooth, where b is a
the reduced representative of β.

4. If so write
∏
αxi

i =
∏
α

yi
i and compute R.

Verify that #R/D1 > #R/D2 (almost always true).

For suitable B, the complexity is L[1/2,
√

3/2](|D|)
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An example of cryptographic size (200 bits)
We have 4q = t2 − v2DK where t = 212, DK = −7 and

v = 2 · 127 · 524287︸ ︷︷ ︸
p1

·7195777666870732918103︸ ︷︷ ︸
p2

.

After finding 2 - u and 127 - u we test p1|u by computing

R1 = (22533,11752,292,3747,791,1131,1491,1512,3471,4311),

which holds in cl(p2
2DK ) but not cl(p2

1DK ).We test p2|u using

R2 = (223,115,431,712),

which holds in cl(p2
1DK ) but not in cl(p2

2DK ).

Total time to compute End(E) is under 30 minutes
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Certifying the endomorphism ring

To verify a claimed value of u, it suffices to have a relation Rp
for each prime divisor of v such that:

1. For each prime p|(v/u), we have #Rp/E > #Rp/p2DK .
2. For each prime p|u, we have #Rp/(u/p)2DK > #Rp/E .

Certificate size is O(log2+ε q).

Note that either D1u2DK or D1 = (u/p)2DK .
We always have D1 ≤ D. Very useful when D � Dπ.

This yields an algorithm to compute u with complexity

L [1/2 + o(1),1] (|D|) + L [1/3, c] (q)

which depends primarily on D, not q.
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