Computing the endomorphism ring of an ordinary elliptic curve

Andrew V. Sutherland

Massachusetts Institute of Technology

April 3, 2009

joint work with Gaetan Bisson

http://arxiv.org/abs/0902.4670

Andrew V. Sutherland Computing the endomorphism ring of an ordinary elliptic curve

Elliptic curves

An *elliptic curve* E/F is a smooth projective curve of genus 1 with a distinguished rational point 0.

The set E(F) of rational points on *E* form an abelian group.

For char(F) \neq 2,3 we define E with an affine equation

$$y^2 = x^3 + Ax + B_2$$

where $4A^3 + 27B^2 \neq 0$. The *j*-invariant of *E* is

$$j(E) = 12^3 \frac{4A^3}{4A^3 + 27B^2}$$

If $F = \overline{F}$ then j(E) uniquely identifies E (but not in \mathbb{F}_q).

Elliptic curves over finite fields

Consider $F = \mathbb{F}_q$. The size of the group $E(\mathbb{F}_q)$ is

$$\#E(\mathbb{F}_q)=q+1-t,$$

for some integer *t* with $|t| \le 2\sqrt{q}$. The SEA algorithm computes *t* in polynomial time (very fast in practice).

Typically *t* is nonzero in \mathbb{F}_q , in which case *E* is called *ordinary*.

Some useful facts about t = t(E):

- 1. $t(E_1) = t(E_2) \iff E_1$ and E_2 are isogenous.
- 2. $j(E_1) = j(E_2)$ and $t(E_1) = t(E_2) \iff E_2 \cong E_2$.
- 3. $j(E_1) = j(E_2) \Longrightarrow |t(E_1)| = |t(E_2)|$ for $j(E_1) \notin \{0, 12^3\}$.

Maps between elliptic curves

An *isogeny* $\phi : E_1 \to E_2$ is a rational map (defined over \overline{F}) with $\phi(0) = 0$. It induces a homomorphism from $E_1(F)$ to $E_2(F)$.

The *endomorphism ring* End(E) contains all $\phi : E \to E$. We have $\mathbb{Z} \subseteq End E$, but for $F = \mathbb{F}_q$, equality never holds.

If E/\mathbb{F}_q is ordinary, then $\operatorname{End}(E) \cong \mathcal{O}(D)$ where

$$\mathcal{O}(D) = \mathbb{Z} + rac{D + \sqrt{D}}{2}\mathbb{Z}$$

is the imaginary quadratic order of some discriminant D.

We want to compute *D*.

The Frobenius endomorphism

The endomorphism $\pi : (x, y) \rightsquigarrow (x^q, y^q)$ on $E(\overline{\mathbb{F}}_q)$ satisfies

$$\pi^2 - t\pi + q = 0.$$

If we set $D_{\pi} = t^2 - 4q$ and fix an isomorphism End $E \cong \mathcal{O}(D)$ we may regard $\pi = \frac{t + \sqrt{D_{\pi}}}{2}$ as an element of $\mathcal{O}(D)$.

Thus $\mathcal{O}(D_{\pi}) \subseteq \mathcal{O}(D)$, which implies $D|D_{\pi}$ and that D and D_{π} have the same fundamental discriminant D_{K} .

By factoring $D_{\pi} = v^2 D_K$ we may determine D_K and v. We then have $D = u^2 D_K$ for some u | v.

We want to compute *u*.

This is easy if v is small (or smooth), but may be hard if not.

Computing isogenies

We call a (separable) isogeny ϕ an ℓ -isogeny if $\# \ker \phi = \ell$. We restrict to prime ℓ , in which case ker ϕ is cyclic.

The classical modular polynomial $\Phi_{\ell} \in \mathbb{Z}[X, Y]$ has the property

 $\Phi_{\ell}(j(E_1), j(E_2)) = 0 \iff E_1 \text{ and } E_2 \text{ are } \ell \text{-isogenous.}$

The ℓ -isogeny graph $G_{\ell}(\mathbb{F}_q)$ has vertex set

$$\mathcal{E}(\mathbb{F}_q) = \{j(E/\mathbb{F}_q)\} = \mathbb{F}_q,$$

and edges (j_1, j_2) for $\Phi_{\ell}(j_1, j_2) = 0$ (note Φ_{ℓ} is symmetric).

 Φ_{ℓ} is big: $O(\ell^{3+\epsilon})$ bits.

The structure of the *l*-isogeny graph [Kohel]

The connected components of $G_{\ell}(\mathbb{F}_q)$ are ℓ -volcanoes. An ℓ -volcano of height *h* has vertices in level V_0, \ldots, V_h .

Vertices in V_0 have endomorphism ring $\mathcal{O}(D_0)$ with $\ell \nmid u_0$. Vertices in V_k have endomorphism ring $\mathcal{O}(\ell^{2k}D_0)$.

- 1. The subgraph on V_0 is a cycle (the *surface*). All other edges lie between V_k and V_{k+1} for some k.
- 2. For k > 0 each vertex in V_k has one neighbor in V_{k-1} .
- 3. For k < h every vertex in V_k has degree $\ell + 1$.

See [Kohel 1996], [Fouquet-Morain 2002], or [S 2009] for more details.

A 3-volcano of height 2 with a 4-cycle

Algorithms to compute *u*

- Isogeny climbing: computes ℓ-isogenies for prime ℓ|v to determine the power of ℓ dividing u in. Probabilistic complexity O(q^{3/2+ε}).
- ► Kohel's algorithm: computes the kernel of *n*-isogenies, where n = O(q^{1/6}) need not be a divisor of v. Deterministic complexity O(q^{1/3+ϵ}) (GRH).
- ▶ New algorithm: computes the cardinality of smooth relations using isogenies of subexponential degree. Probabilistic complexity $L[1/2, \sqrt{3}/2](q)$ (GRH+).

$$L[\alpha, c](x) = \exp\left((c + o(1))(\log x)^{\alpha}(\log \log x)^{1-\alpha}\right)$$

All algorithms have unconditionally correct output.

The action of the class group [CM theory]

For an invertible ideal $\mathfrak{a} \subset \mathcal{O}_D \cong \text{End}(E)$, let $E[\mathfrak{a}]$ be the subgroup of points annihilated by all $a \in \mathfrak{a}$. The map

 $j(E) \rightarrow j(E/E[\mathfrak{a}])$

corresponds to an isogeny of degree N(a).

This defines a group action by the ideal group on the set

$$\{j(E/\mathbb{F}_q): \operatorname{End}(E) \cong \mathcal{O}(D)\}.$$

This action factors through the class group cl(O(D)) = cl(D). The action is faithful and transitive.

See the books of [Cox], [Lang], or [Silverman] for more on CM theory.

Walking isogeny cycles

If $\ell \nmid v$ and $\left(\frac{D}{\ell}\right) = 1$, the ℓ -volcano containing j(E) is a cycle of length $|\alpha|$, where $\alpha \in cl(D)$ contains an ideal of norm ℓ .

We can compute $|\alpha|$ (without knowing *D*) by walking a path $j_0, j_1, ...$ in $G_{\ell}(\mathbb{F}_q)$ starting from $j_0 = j(E)$:

- 1. Let j_1 be one of the two roots of $\Phi_\ell(X, j_0)$ in \mathbb{F}_q .
- 2. Let j_{k+1} be the unique root of $\Phi_{\ell}(X, j_k)/(X j_{k-1})$ in \mathbb{F}_q .

The choice of j_1 is arbitrary (we cannot distinguish α and α^{-1}). In either case, $|\alpha|$ (and $|\alpha^{-1}|$) is the least *n* for which $j_n = j_0$.

Step 2 finds the unique root of a degree ℓ polynomial f(X) over \mathbb{F}_q . Complexity is $T(\ell) = O(\ell^2 + M(\ell) \log q)$ operations in \mathbb{F}_q .

Computing End(E) with class groups (naïvely)

Given E/\mathbb{F}_q , let #E = q + 1 - t and $4q = t^2 - v^2 D_K$, so that End(E) $\cong \mathcal{O}(D)$ where $D = u^2 D_K$ for some u|v. If u_1, \ldots, u_m are the divisors of v, then $u = u_i$ for some i. Pick any $\ell \nmid v$ satisfying $\left(\frac{D_K}{\ell}\right) = 1$. For each $D_i = u_i^2 D_K$ there is an element $\alpha_i \in cl(D_i)$ containing an ideal of norm ℓ , but $|\alpha_i|$ typically varies with i.

We can compare $|\alpha_i|$ to the length of the ℓ -isogeny cycle containing j(E). These must be equal if $u = u_i$.

This is too slow, but we can exploit this idea.

Relations

A relation *R* is a pair of vectors (ℓ_1, \ldots, ℓ_k) and (e_1, \ldots, e_k) .

We say *R* holds in cl(D) if for each *i* there is an $\alpha_i \in cl(D)$ containing an ideal of norm ℓ_i such that

$$\alpha_1^{\boldsymbol{e}_1}\cdots\alpha_k^{\boldsymbol{e}_k}=\mathbf{1}.$$

More generally, we define the *cardinality* of R in cl(D) by

$$\# \mathbf{R}/\mathbf{D} = \# \left\{ \tau \in \{\pm 1\}^k : \prod \alpha_i^{\tau_i \mathbf{e}_i} = 1 \text{ in } \mathsf{cl}(\mathbf{D}) \right\}.$$

#R/D does not depend on the choice of α_i .

Counting relations

Given a relation *R* with (ℓ_1, \ldots, ℓ_k) and (e_1, \ldots, e_k) :

- 1. Set J_0 be a list containing the single element j(E).
- 2. For each element in J_i walk e_i steps in both directions of the ℓ_i cycle and append the two end points to the list J_{i+1} .
- 3. #R/E is the number of times j(E) appears in the list J_k .

The complexity is $\sum_{i=1}^{k} 2^{i} e_{i} T(\ell_{i})$ operations in \mathbb{F}_{q} .

The key lemma

Lemma: If $\mathcal{O}(D_1) \subseteq \mathcal{O}(D_2)$ then $\#R/D_1 \leq \#R/D_2$. **Proof**: There is a norm-preserving map from $\mathcal{O}(D_1)$ to $\mathcal{O}(D_2)$ that induces a group homomorphism from $cl(D_1)$ to $cl(D_2)$.

Corollary: Let $p \parallel v$ and set $D_1 = (v/p)^2 D_K$ and $D_2 = p^2 D_K$. Let *R* be a relation with $\#R/D_1 > \#R/D_2$. If *u* is the conductor of $\mathcal{O}(D) \cong \text{End}(E)$ then

$$p|u \iff \#R/E < \#R/D_1.$$

Theorem: Such an *R* exists.

Conjecture: Almost all *R* that hold in $cl(D_1)$ don't hold in $cl(D_2)$.

Algorithm to compute End(E)

Given E/\mathbb{F}_q , the following algorithm computes $D = u^2 D_K$, the discriminant of the order isomorphic to End(*E*).

- 1. Compute t = q + 1 #E, *v*, and D_k , with $4q = t^2 v^2 D_K$.
- 2. For primes p|v, find a relation *R* satisfying the corollary. Count #R/E in the isogeny graph to test whether p|u.
- 3. Output $u^2 D_K$.

The algorithm above assumes v is square-free.

Finding smooth relations

The following algorithm is adapted from Hafner/McCurley.

We seek a smooth relation in $cl(D_1)$.

Pick a smoothness bound B and a small constant k_0 (say 3).

- 1. Let ℓ_1, \ldots, ℓ_n be the primes up to *B* with $\left(\frac{D_1}{\ell_i}\right) = 1$, and let $\alpha_i \in cl(D_1)$ contain an ideal of norm ℓ_i .
- 2. Generate $\beta = \prod \alpha_i^{x_i}$ where all but k_0 of the x_i are zero and the other x_i are suitably bounded.
- For each β, test whether N(b) is B-smooth, where b is a the reduced representative of β.
- 4. If so write $\prod \alpha_i^{x_i} = \prod \alpha_i^{y_i}$ and compute *R*. Verify that $\#R/D_1 > \#R/D_2$ (almost always true).

For suitable *B*, the complexity is $L[1/2, \sqrt{3}/2](|D|)$

An example of cryptographic size (200 bits)

We have $4q = t^2 - v^2 D_K$ where t = 212, $D_K = -7$ and

$$v = 2 \cdot 127 \cdot \underbrace{524287}_{p_1} \cdot \underbrace{7195777666870732918103}_{p_2}$$

After finding $2 \nmid u$ and $127 \nmid u$ we test $p_1 \mid u$ by computing

 $R_1 = (2^{2533}, 11^{752}, 29^2, 37^{47}, 79^1, 113^1, 149^1, 151^2, 347^1, 431^1),$

which holds in $cl(p_2^2 D_K)$ but not $cl(p_1^2 D_K)$. We test $p_2|u$ using

$$R_2 = (2^{23}, 11^5, 43^1, 71^2),$$

which holds in $cl(p_1^2 D_K)$ but not in $cl(p_2^2 D_K)$.

Total time to compute End(E) is under 30 minutes

Certifying the endomorphism ring

To verify a claimed value of u, it suffices to have a relation R_p for each prime divisor of v such that:

1. For each prime p|(v/u), we have $\#R_p/E > \#R_p/p^2D_K$.

2. For each prime p|u, we have $\#R_p/(u/p)^2D_K > \#R_p/E$. Certificate size is $O(\log^{2+\epsilon} q)$.

Note that either $D_1 u^2 D_K$ or $D_1 = (u/p)^2 D_K$. We always have $D_1 \le D$. Very useful when $D \ll D_{\pi}$.

This yields an algorithm to compute *u* with complexity

$$L[1/2 + o(1), 1](|D|) + L[1/3, c](q)$$

which depends primarily on D, not q.