Modular polynomials and isogeny volcanoes

Andrew V. Sutherland

February 3, 2010

Reinier Bröker

Kristin Lauter

Andrew V. Sutherland (MIT) Modular polynomials and isogeny volcanoes 1 of 29

Isogenies

An *isogeny* $\phi : E_1 \rightarrow E_2$ is a morphism of elliptic curves, a nonzero rational map that preserves the identity.

Over a finite field, E_1 and E_2 are isogenous if and only if $\#E_1(\mathbb{F}_q) = \#E_2(\mathbb{F}_q).$

Some applications of isogenies

Isogenies make hard problems easier:

- Counting the points on E.
 Polynomial time (Schoof-Elkies-Atkin).
- Constructing *E* with the CM method. $|D| > 10^{15}$ (BBEL, S, Enge-S).
- Computing the endomorphism ring of *E*. Heuristically subexponential time (Bisson-S).

These algorithms all rely on modular polynomials $\Phi_{\ell}(X, Y)$.

Properties of isogenies

Degree

The kernel of $\phi : E_1 \to E_2$ is a finite subgroup of $E_1(\overline{F})$. When ϕ is separable, we have $|\ker \phi| = \deg \phi$.

An ℓ -isogeny is a (separable) isogeny of degree ℓ . For prime ℓ , the kernel is necessarily cyclic.

Orientation We say that $\phi : E_1 \to E_2$ is *horizontal* if $End(E_1) \cong End(E_2)$. Otherwise ϕ is *vertical*.

Isogenies from kernels

Any finite subgroup G of $E(\overline{F})$ determines a separable isogeny with G as its kernel

Given G, we can compute ϕ explicitly using Vélu's formula.

The complexity depends both on the size of ker ϕ , and the field in which the points of ker ϕ are defined.

If *E* is defined over *F*, so is ϕ , but the points in ker ϕ may have coordinates in an extension of degree up to $\ell^2 - 1$.

The classical modular polynomial Φ_ℓ

The modular function $j : \mathbb{H} \to \mathbb{C}$ is a complex analytic function

 $j(z) = 1/q + 744 + 196884q + 21493760q^2 + \dots,$

where $q = e^{2\pi i z}$. The function $j(\ell z)$ is algebraic over $\mathbb{C}(j)$, and its minimal polynomial $\Phi_{\ell}(X)$ has coefficients in $\mathbb{Z}[j]$.

$$\Phi_{\ell}(X, Y) = \Phi_{\ell}(Y, X);$$
 $\deg_X \Phi_{\ell} = \ell + 1.$

The modular equation $\Phi_{\ell}(X, Y) = 0$ parameterizes pairs of elliptic curves related by a cyclic ℓ -isogeny.

Parametrizing isogenies

Assuming char $F \neq \ell$, for all elliptic curves E_1/F and E_2/F :

 $\Phi_{\ell}(j(E_1), j(E_2)) = 0 \iff E_1 \text{ and } E_2 \text{ are } \ell \text{-isogenous.}$

Parametrizing isogenies

Assuming char $F \neq \ell$, for all elliptic curves E_1/F and E_2/F :

 $\Phi_{\ell}(j(E_1), j(E_2)) = 0 \iff E_1 \text{ and } E_2 \text{ are } \ell \text{-isogenous.}$

The ℓ -isogeny graph G_{ℓ} has vertex set $\{j(E) : E/F\}$, and edges (j_1, j_2) whenever $\Phi_{\ell}(j_1, j_2) = 0$.

The neighbors of j_0 are the roots of $\Phi_{\ell}(X, j_0)$ that lie in *F*.

Parametrizing isogenies

Assuming char $F \neq \ell$, for all elliptic curves E_1/F and E_2/F :

 $\Phi_{\ell}(j(E_1), j(E_2)) = 0 \iff E_1 \text{ and } E_2 \text{ are } \ell \text{-isogenous.}$

The ℓ -isogeny graph G_{ℓ} has vertex set $\{j(E) : E/F\}$, and edges (j_1, j_2) whenever $\Phi_{\ell}(j_1, j_2) = 0$.

The neighbors of j_0 are the roots of $\Phi_{\ell}(X, j_0)$ that lie in *F*.

 Φ_{ℓ} is big: $O(\ell^3 \log \ell)$ bits.

l	coefficients	largest	average	total
127	8258	7.5kb	5.3kb	5.5MB
251	31880	16kb	12kb	48MB
503	127262	36kb	27kb	431MB
1009	510557	78kb	60kb	3.9GB
2003	2009012	166kb	132kb	33GB
3001	4507505	259kb	208kb	117GB
4001	8010005	356kb	287kb	287GB
5003	12522512	454kb	369kb	577GB
10007	50085038	968kb	774kb	4.8TB
20011	200250080	2.0Mb	1.6Mb	40TB*

Size of $\Phi_{\ell}(X, Y)$

*Estimated

Algorithms to compute Φ_ℓ

q-expansions:

 $\begin{array}{ll} (\text{Atkin ?, Elkies '92, '98, LMMS '94, Morain '95, Müller '95, BCRS '99)} \\ \Phi_{\ell}: & O(\ell^4 \log^{3+\epsilon} \ell) & (\text{via the CRT}) \\ \Phi_{\ell} \bmod p: & O(\ell^3 \log \ell \log^{1+\epsilon} p) & (p > \ell+1) \end{array}$

Algorithms to compute Φ_{ℓ}

q-expansions:

 $\begin{array}{ll} (\text{Atkin ?, Elkies '92, '98, LMMS '94, Morain '95, Müller '95, BCRS '99)} \\ \Phi_{\ell} : & O(\ell^4 \log^{3+\epsilon} \ell) & (\text{via the CRT}) \\ \Phi_{\ell} \mbox{ mod } p : & O(\ell^3 \log \ell \log^{1+\epsilon} p) & (p > \ell+1) \end{array}$

Algorithms to compute Φ_{ℓ}

q-expansions:

 $\begin{array}{ll} (\text{Atkin ?, Elkies '92, '98, LMMS '94, Morain '95, Müller '95, BCRS '99)} \\ \Phi_{\ell} : & O(\ell^4 \log^{3+\epsilon} \ell) & (\text{via the CRT}) \\ \Phi_{\ell} \mbox{ mod } p : & O(\ell^3 \log \ell \log^{1+\epsilon} p) & (p > \ell+1) \end{array}$

evaluation-interpolation: (Enge 2009) Φ_{ℓ} : $O(\ell^3 \log^{4+\epsilon} \ell)$ (floating-point) Φ_{ℓ} mod m: $O(\ell^3 \log^{4+\epsilon} \ell)$ (reduces Φ_{ℓ})

We compute Φ_{ℓ} using isogenies and the CRT.

We compute Φ_{ℓ} using isogenies and the CRT. For certain *p* we can compute Φ_{ℓ} mod *p* in expected time

 $O(\ell^2 \log^{3+\epsilon} p).$

We compute Φ_{ℓ} using isogenies and the CRT. For certain *p* we can compute Φ_{ℓ} mod *p* in expected time

$$O(\ell^2 \log^{3+\epsilon} p).$$

Under the GRH, we find many such p with log $p = O(\log \ell)$.

 $\begin{array}{ll} \Phi_{\ell} : & O(\ell^3 \log^{3+\epsilon} \ell) & (\text{via the CRT}) \\ \Phi_{\ell} \bmod m : & O(\ell^3 \log^{3+\epsilon} \ell) & (\text{via the explicit CRT}) \end{array}$

Computing $\Phi_{\ell} \mod m$ uses $O(\ell^2 \log(\ell m))$ space.

We compute Φ_{ℓ} using isogenies and the CRT. For certain *p* we can compute Φ_{ℓ} mod *p* in expected time

$$O(\ell^2 \log^{3+\epsilon} p).$$

Under the GRH, we find many such p with log $p = O(\log \ell)$.

 $\begin{array}{ll} \Phi_{\ell} \colon & O(\ell^3 \log^{3+\epsilon} \ell) & \text{(via the CRT)} \\ \Phi_{\ell} \bmod m \colon & O(\ell^3 \log^{3+\epsilon} \ell) & \text{(via the explicit CRT)} \end{array}$

Computing $\Phi_{\ell} \mod m$ uses $O(\ell^2 \log(\ell m))$ space.

In practice the algorithm is much faster than other methods. It is probabilistic, but its output is unconditionally correct.

Explicit Chinese Remainder Theorem

Suppose $c \equiv c_i \mod p_i$ for distinct primes p_i, \ldots, p_n . Then

 $c\equiv \sum c_i a_i M_i \mod M,$

where $M = \prod p_i$, $M_i = M/p_i$ and $a_i = 1/M_i \mod p_i$.

With M > 4c, the explicit CRT computes $c \mod m$ directly via

$$c \equiv \left(\sum c_i a_i M_i - rM\right) \mod m,$$

where the integer $r \approx \sum a_i c_i / p_i$ (use $O(\log n)$ bits of precision).

Using an online algorithm, this can be applied to *N* coefficients *c* in parallel, using $O(\log M + n \log m + N(\log m + \log n))$ space.

Montgomery-Silverman, Bernstein, S.

Some performance highlights

Level records

- **1. 5003**: Φ_ℓ
- **2. 20011**: Φ_ℓ mod *m*
- **3.** 60013: Φ^f_ℓ

Speed records

1. 251: Φ_{ℓ} in 28s Φ_{ℓ} mod m in 4.8s(vs 688s)2. 1009: Φ_{ℓ} in 2830s Φ_{ℓ} mod m in 265s(vs 107000s)

Single core CPU times (AMD 3.0 GHz), using $m \approx 2^{256}$.

Effective throughput when computing $\Phi_{1009} \mod m$ is over 100 Mb/s.

A 3-volcano of depth 2

ℓ-volcanoes

An ℓ -volcano is a connected undirected graph whose vertices are partitioned into levels V_0, \ldots, V_d , such that:

- 1. The subgraph on V_0 (the *surface*) is a regular connected graph of degree at most 2.
- 2. For i > 0, each $v \in V_i$ has exactly one neighbor in V_{i-1} . All edges not on the surface arise in this manner.
- 3. For i < d, each $v \in V_i$ has degree ℓ +1.

The integers ℓ , d, and $|V_0|$ uniquely determine the shape.

The ℓ -isogeny graph G_{ℓ}

Some facts about G_{ℓ} (Kohel, Fouquet-Morain):

- ► The ordinary components of G_ℓ are ℓ-volcanoes (provided they don't contain j = 0, 1728).
- ► The curves in level V_i of a given ℓ-volcano all have the same endomorphism ring, isomorphic to an imaginary quadratic order O_i.
- The order \mathcal{O}_0 is maximal at ℓ , and $[\mathcal{O}_0 : \mathcal{O}_i] = \ell^i$.

Curves in the same ℓ -volcano are necessarily isogenous, but isogenous curves need not lie in the same ℓ -volcano.

Let E/\mathbb{F}_q be an ordinary elliptic curve with $End(E) \cong \mathcal{O}$. The class group $cl(\mathcal{O})$ acts on the set

 $\{j(E/\mathbb{F}_q): \operatorname{End}(E) \cong \mathcal{O}\}.$

Horizontal ℓ -isogenies are the action of an ideal with norm ℓ .

Let E/\mathbb{F}_q be an ordinary elliptic curve with $End(E) \cong \mathcal{O}$. The class group $cl(\mathcal{O})$ acts on the set

 $\{j(E/\mathbb{F}_q): \operatorname{End}(E)\cong \mathcal{O}\}.$

Horizontal ℓ -isogenies are the action of an ideal with norm ℓ .

The cardinality of V_0 is the order of the cyclic subgroup of $cl(\mathcal{O})$ generated by an ideal with norm ℓ .

Let E/\mathbb{F}_q be an ordinary elliptic curve with $End(E) \cong \mathcal{O}$. The class group $cl(\mathcal{O})$ acts on the set

 $\{j(E/\mathbb{F}_q): \operatorname{End}(E)\cong \mathcal{O}\}.$

Horizontal ℓ -isogenies are the action of an ideal with norm ℓ .

The cardinality of V_0 is the order of the cyclic subgroup of $cl(\mathcal{O})$ generated by an ideal with norm ℓ .

A horizontal isogeny of large degree may be equivalent to a sequence of isogenies of small degree, via relations in cl(O).

Let E/\mathbb{F}_q be an ordinary elliptic curve with $End(E) \cong \mathcal{O}$. The class group $cl(\mathcal{O})$ acts on the set

 $\{j(E/\mathbb{F}_q): \operatorname{End}(E)\cong \mathcal{O}\}.$

Horizontal ℓ -isogenies are the action of an ideal with norm ℓ .

The cardinality of V_0 is the order of the cyclic subgroup of $cl(\mathcal{O})$ generated by an ideal with norm ℓ .

A horizontal isogeny of large degree may be equivalent to a sequence of isogenies of small degree, via relations in cl(O).

Under the ERH this is always true, and "small" = $O(\log^2 |D|)$.

$$\begin{split} \Phi_2(X,Y) &= X^3 + Y^3 - X^2 Y^2 + 1488 X^2 Y - 162000 X^2 + 1488 X Y^2 + 40773375 X Y \\ &\quad + 874800000 X - 162000 Y^2 + 8748000000 Y - 15746400000000 \end{split}$$

$$\begin{split} \Phi_2(X,Y) &= X^3 + Y^3 - X^2 Y^2 + 1488 X^2 Y - 162000 X^2 + 1488 X Y^2 + 40773375 X Y \\ &\quad + 874800000 X - 162000 Y^2 + 8748000000 Y - 15746400000000 \end{split}$$

$$\begin{split} \Phi_2(X,Y) &= X^3 + Y^3 - X^2 Y^2 + 1488 X^2 Y - 162000 X^2 + 1488 X Y^2 + 40773375 X Y \\ &\quad + 874800000 X - 162000 Y^2 + 8748000000 Y - 15746400000000 \end{split}$$

Mapping a volcano

Example $\ell = 5$, p = 4451, D = -151

General requirements $4p = t^2 - v^2 \ell^2 D, \quad p \equiv 1 \mod \ell$

Example

 $\ell = 5, \quad p = 4451, \quad D = -151$ $t = 52, \quad v = 2, \quad h(D) = 7$ $\begin{array}{ll} \text{General requirements} \\ 4p = t^2 - v^2 \ell^2 D, \quad p \equiv 1 \bmod \ell \\ \ell \nmid v, \quad (\frac{D}{\ell}) = 1, \quad h(D) \geq \ell + 2 \end{array}$

Example

 $\ell = 5, \quad p = 4451, \quad D = -151$ $t = 52, \quad v = 2, \quad h(D) = 7$ $\begin{array}{ll} \text{General requirements} \\ 4\rho = t^2 - v^2 \ell^2 D, \quad p \equiv 1 \ \text{mod} \ \ell \\ \ell \nmid v, \quad (\frac{D}{\ell}) = 1, \quad h(D) \geq \ell + 2 \end{array}$

1. Find a root of $H_D(X)$

Example

 $\ell = 5, \quad p = 4451, \quad D = -151$ $t = 52, \quad v = 2, \quad h(D) = 7$ $\begin{array}{ll} \text{General requirements} \\ 4\rho = t^2 - v^2 \ell^2 D, \quad p \equiv 1 \ \text{mod} \ \ell \\ \ell \nmid v, \quad (\frac{D}{\ell}) = 1, \quad h(D) \geq \ell + 2 \end{array}$

1. Find a root of $H_D(X)$: 901

Example $\ell = 5$, p = 4451, D = -151 t = 52, v = 2, h(D) = 7 $\ell_0 = 2$ $\begin{array}{l} \text{General requirements} \\ 4p = t^2 - v^2 \ell^2 D, \quad p \equiv 1 \mod \ell \\ \ell \nmid v, \quad (\frac{D}{\ell}) = 1, \quad h(D) \geq \ell + 2 \\ \ell_0 \neq \ell, \left(\frac{D}{\ell_0}\right) = 1 \end{array}$

2. Enumerate surface using the action of α_{ℓ_0}

Example $\ell = 5, \quad p = 4451, \quad D = -151$ $t = 52, \quad v = 2, \quad h(D) = 7$ $\ell_0 = 2, \quad \alpha_5 = \alpha_2^3$ $\begin{array}{l} \text{General requirements} \\ 4\rho = t^2 - v^2 \ell^2 D, \quad p \equiv 1 \ \text{mod} \ \ell \\ \ell \nmid v, \quad (\frac{D}{\ell}) = 1, \quad h(D) \geq \ell + 2 \\ \ell_0 \neq \ell, \ (\frac{D}{\ell_0}) = 1, \quad \alpha_\ell = \alpha_{\ell_0}^k \end{array}$

Example $\ell = 5, \quad p = 4451, \quad D = -151$ $t = 52, \quad v = 2, \quad h(D) = 7$ $\ell_0 = 2, \quad \alpha_5 = \alpha_2^3$ $\begin{array}{l} \text{General requirements} \\ 4\rho = t^2 - v^2 \ell^2 D, \quad p \equiv 1 \ \text{mod} \ \ell \\ \ell \nmid v, \quad (\frac{D}{\ell}) = 1, \quad h(D) \geq \ell + 2 \\ \ell_0 \neq \ell, \ (\frac{D}{\ell_0}) = 1, \quad \alpha_\ell = \alpha_{\ell_0}^k \end{array}$

Example $\ell = 5, \quad p = 4451, \quad D = -151$ $t = 52, \quad v = 2, \quad h(D) = 7$ $\ell_0 = 2, \quad \alpha_5 = \alpha_2^3$ $\begin{array}{l} \text{General requirements} \\ 4\rho = t^2 - v^2 \ell^2 D, \quad p \equiv 1 \ \text{mod} \ \ell \\ \ell \nmid v, \quad (\frac{D}{\ell}) = 1, \quad h(D) \geq \ell + 2 \\ \ell_0 \neq \ell, \ (\frac{D}{\ell_0}) = 1, \quad \alpha_\ell = \alpha_{\ell_0}^k \end{array}$

Example $\ell = 5, \quad p = 4451, \quad D = -151$ $t = 52, \quad v = 2, \quad h(D) = 7$ $\ell_0 = 2, \quad \alpha_5 = \alpha_2^3$ $\begin{array}{l} \text{General requirements} \\ 4\rho = t^2 - v^2 \ell^2 D, \quad p \equiv 1 \ \text{mod} \ \ell \\ \ell \nmid v, \quad (\frac{D}{\ell}) = 1, \quad h(D) \geq \ell + 2 \\ \ell_0 \neq \ell, \ (\frac{D}{\ell_0}) = 1, \quad \alpha_\ell = \alpha_{\ell_0}^k \end{array}$

Example $\ell = 5, \quad p = 4451, \quad D = -151$ $t = 52, \quad v = 2, \quad h(D) = 7$ $\ell_0 = 2, \quad \alpha_5 = \alpha_2^3$ $\begin{array}{l} \text{General requirements} \\ 4p = t^2 - v^2 \ell^2 D, \quad p \equiv 1 \mod \ell \\ \ell \nmid v, \quad (\frac{D}{\ell}) = 1, \quad h(D) \geq \ell + 2 \\ \ell_0 \neq \ell, \left(\frac{D}{\ell_0}\right) = 1, \quad \alpha_\ell = \alpha_{\ell_0}^k \end{array}$

Example $\ell = 5, \quad p = 4451, \quad D = -151$ $t = 52, \quad v = 2, \quad h(D) = 7$ $\ell_0 = 2, \quad \alpha_5 = \alpha_2^3$

Example $\ell = 5, \quad p = 4451, \quad D = -151$ $t = 52, \quad v = 2, \quad h(D) = 7$ $\ell_0 = 2, \quad \alpha_5 = \alpha_2^3$

Example $\ell = 5, \quad p = 4451, \quad D = -151$ $t = 52, \quad v = 2, \quad h(D) = 7$ $\ell_0 = 2, \quad \alpha_5 = \alpha_2^3$

3. Descend to the floor using Vélu's formula

 $\begin{array}{lll} \text{Example} & & \text{General re} \\ \ell &= 5, \quad p = 4451, \quad D = -151 & & 4\rho = t^2 \\ t &= 52, \quad v = 2, \quad h(D) = 7 & & \ell \nmid v, \quad (\ell_0 = 2, \quad \alpha_5 = \alpha_2^3 & & \ell_0 \neq \ell, \end{array}$

3. Descend to the floor using Vélu's formula: 901 $\stackrel{5}{\longrightarrow}$ 3188

Example $\ell = 5, \quad p = 4451, \quad D = -151$ $t = 52, \quad v = 2, \quad h(D) = 7$ $\ell_0 = 2, \quad \alpha_5 = \alpha_2^3$

4. Enumerate floor using the action of β_{ℓ_0}

Example $\ell = 5, \quad p = 4451, \quad D = -151$ $t = 52, \quad v = 2, \quad h(D) = 7$ $\ell_0 = 2, \quad \alpha_5 = \alpha_2^3, \quad \beta_{25} = \beta_2^7$

4. Enumerate floor using the action of β_{ℓ_0}

Example $\ell = 5, \quad p = 4451, \quad D = -151$ $t = 52, \quad v = 2, \quad h(D) = 7$ $\ell_0 = 2, \quad \alpha_5 = \alpha_2^3, \quad \beta_{25} = \beta_2^7$

4. Enumerate floor using the action of β_{ℓ_0}

Example $\ell = 5, \quad p = 4451, \quad D = -151$ $t = 52, \quad v = 2, \quad h(D) = 7$ $\ell_0 = 2, \quad \alpha_5 = \alpha_2^3, \quad \beta_{25} = \beta_2^7$

$$\begin{array}{l} \text{General requirements} \\ 4p = t^2 - v^2 \ell^2 D, \quad p \equiv 1 \mod \ell \\ \ell \nmid v, \quad (\frac{D}{\ell}) = 1, \quad h(D) \geq \ell + 2 \\ \ell_0 \neq \ell, \, (\frac{D}{\ell_0}) = 1, \, \alpha_\ell = \alpha_{\ell_0}^k, \, \beta_{\ell^2} = \beta_{\ell_0}^{k'} \end{array}$$

 $\begin{array}{ll} \text{Example} & \text{General requirements} \\ \ell = 5, \quad p = 4451, \quad D = -151 & 4p = t^2 - v^2 \ell^2 D, \quad p \equiv 1 \mod \ell \\ t = 52, \quad v = 2, \quad h(D) = 7 & \ell \nmid v, \quad (\frac{D}{\ell}) = 1, \quad h(D) \geq \ell + 2 \\ \ell_0 = 2, \quad \alpha_5 = \alpha_2^3, \quad \beta_{25} = \beta_2^7 & \ell_0 \neq \ell, \quad (\frac{D}{\ell_0}) = 1, \quad \alpha_\ell = \alpha_{\ell_0}^k, \quad \beta_{\ell^2} = \beta_{\ell_0}^{k'} \end{array}$

 $\begin{array}{ll} \text{Example} & \text{General requirements} \\ \ell &= 5, \quad p = 4451, \quad D = -151 \\ t &= 52, \quad v = 2, \quad h(D) = 7 \\ \ell_0 = 2, \quad \alpha_5 = \alpha_2^3, \quad \beta_{25} = \beta_2^7 \end{array} \qquad \begin{array}{ll} \text{General requirements} \\ 4p = t^2 - v^2 \ell^2 D, \quad p \equiv 1 \mod \ell \\ \ell \nmid v, \quad (\frac{D}{\ell}) = 1, \quad h(D) \geq \ell + 2 \\ \ell_0 \neq \ell, \quad (\frac{D}{\ell_0}) = 1, \quad \alpha_\ell = \alpha_{\ell_0}^k, \quad \beta_{\ell^2} = \beta_{\ell_0}^{k'} \end{array}$

4. Enumerate floor using the action of β_{ℓ_0} $\stackrel{2}{\longrightarrow}$ 945 $\stackrel{2}{\longrightarrow}$ 3144 $\stackrel{2}{\longrightarrow}$ 3508 $\stackrel{2}{\longrightarrow}$ 2843 $\stackrel{2}{\longrightarrow}$ 1502 $\stackrel{2}{\longrightarrow}$ 676 $\stackrel{2}{\longrightarrow}$ $\stackrel{2}{\longrightarrow}$ 3497 $\stackrel{2}{\longrightarrow}$ 1180 $\stackrel{2}{\longrightarrow}$ 2464 $\stackrel{2}{\longrightarrow}$ 4221 $\stackrel{2}{\longrightarrow}$ 4228 $\stackrel{2}{\longrightarrow}$ 2434 $\stackrel{2}{\longrightarrow}$ $\stackrel{2}{\longrightarrow}$ 3244 $\stackrel{2}{\longrightarrow}$ 2255 $\stackrel{2}{\longrightarrow}$ 2976 $\stackrel{2}{\longrightarrow}$ 3345 $\stackrel{2}{\longrightarrow}$ 1064 $\stackrel{2}{\longrightarrow}$ 1868 $\stackrel{2}{\longrightarrow}$ $\stackrel{2}{\longrightarrow}$ 291 $\stackrel{2}{\longrightarrow}$ 3147 $\stackrel{2}{\longrightarrow}$ 2566 $\stackrel{2}{\longrightarrow}$ 4397 $\stackrel{2}{\longrightarrow}$ 2087 $\stackrel{2}{\longrightarrow}$ 3341 $\stackrel{2}{\longrightarrow}$

 $\begin{array}{ll} \text{Example} & \text{General requirements} \\ \ell &= 5, \quad p = 4451, \quad D = -151 \\ t &= 52, \quad v = 2, \quad h(D) = 7 \\ \ell_0 = 2, \quad \alpha_5 = \alpha_2^3, \quad \beta_{25} = \beta_2^7 \end{array} \qquad \begin{array}{ll} \text{General requirements} \\ 4p = t^2 - v^2 \ell^2 D, \quad p \equiv 1 \mod \ell \\ \ell \nmid v, \quad (\frac{D}{\ell}) = 1, \quad h(D) \geq \ell + 2 \\ \ell_0 \neq \ell, \quad (\frac{D}{\ell_0}) = 1, \quad \alpha_\ell = \alpha_{\ell_0}^k, \quad \beta_{\ell^2} = \beta_{\ell_0}^{k'} \end{array}$

 $\begin{array}{ll} \text{Example} & \text{General requirements} \\ \ell &= 5, \quad p = 4451, \quad D = -151 \\ t &= 52, \quad v = 2, \quad h(D) = 7 \\ \ell_0 = 2, \quad \alpha_5 = \alpha_2^3, \quad \beta_{25} = \beta_2^7 \end{array} \qquad \begin{array}{ll} \text{General requirements} \\ 4p = t^2 - v^2 \ell^2 D, \quad p \equiv 1 \mod \ell \\ \ell \nmid v, \quad (\frac{D}{\ell}) = 1, \quad h(D) \geq \ell + 2 \\ \ell_0 \neq \ell, \quad (\frac{D}{\ell_0}) = 1, \quad \alpha_\ell = \alpha_{\ell_0}^k, \quad \beta_{\ell^2} = \beta_{\ell_0}^{k'} \end{array}$

 $\begin{array}{ll} \text{Example} & \text{General requirements} \\ \ell &= 5, \quad p = 4451, \quad D = -151 \\ t &= 52, \quad v = 2, \quad h(D) = 7 \\ \ell_0 = 2, \quad \alpha_5 = \alpha_2^3, \quad \beta_{25} = \beta_2^7 \end{array} \qquad \begin{array}{ll} \text{General requirements} \\ 4p = t^2 - v^2 \ell^2 D, \quad p \equiv 1 \mod \ell \\ \ell \nmid v, \quad (\frac{D}{\ell}) = 1, \quad h(D) \geq \ell + 2 \\ \ell_0 \neq \ell, \quad (\frac{D}{\ell_0}) = 1, \quad \alpha_\ell = \alpha_{\ell_0}^k, \quad \beta_{\ell^2} = \beta_{\ell_0}^{k'} \end{array}$

Example $\ell = 5, \quad p = 4451, \quad D = -151$ $t = 52, \quad v = 2, \quad h(D) = 7$ $\ell_0 = 2, \quad \alpha_5 = \alpha_2^3, \quad \beta_{25} = \beta_2^7$

Interpolation

$$\begin{split} & \Phi_5(X, \ 901) = (X - \ 701)(X - \ 351)(X - \ 3188)(X - \ 2970)(X - \ 1478)(X - \ 3328) \\ & \Phi_5(X, \ 351) = (X - \ 901)(X - \ 2215)(X - \ 3508)(X - \ 2464)(X - \ 2976)(X - \ 2566) \\ & \Phi_5(X, \ 2215) = (X - \ 351)(X - \ 2501)(X - \ 3341)(X - \ 1868)(X - \ 2434)(X - \ 676) \\ & \Phi_5(X, \ 2501) = (X - \ 2215)(X - \ 2872)(X - \ 3147)(X - \ 2255)(X - \ 1180)(X - \ 3144) \\ & \Phi_5(X, \ 2872) = (X - \ 2501)(X - \ 1582)(X - \ 1502)(X - \ 4228)(X - \ 1064)(X - \ 2087) \\ & \Phi_5(X, \ 1582) = (X - \ 2872)(X - \ 701)(X - \ 945)(X - \ 3497)(X - \ 3244)(X - \ 291) \\ & \Phi_5(X, \ 701) = (X - \ 1582)(X - \ 901)(X - \ 2843)(X - \ 4221)(X - \ 3345)(X - \ 4397) \\ \end{split}$$

Interpolation

$$\begin{split} & \Phi_5(X, \ 901) = X^6 + 1337X^5 + \ 543X^4 + \ 497X^3 + 4391X^2 + 3144X + 3262 \\ & \Phi_5(X, \ 351) = X^6 + 3174X^5 + 1789X^4 + 3373X^3 + 3972X^2 + 2932X + 4019 \\ & \Phi_5(X, 2215) = X^6 + 2182X^5 + \ 512X^4 + \ 435X^3 + 2844X^2 + 2084X + 2709 \\ & \Phi_5(X, 2501) = X^6 + 2991X^5 + 3075X^5 + 3918X^3 + 2241X^2 + 3755X + 1157 \\ & \Phi_5(X, 2872) = X^6 + \ 389X^5 + 3292X^4 + 3909X^3 + \ 161X^2 + 1003X + 2091 \\ & \Phi_5(X, 1582) = X^6 + \ 1803X^5 + \ 794X^4 + \ 3584X^3 + \ 225X^2 + 1530X + 1975 \\ & \Phi_5(X, \ 701) = X^6 + \ 515X^5 + 1419X^4 + \ 941X^3 + 4145X^2 + 2722X + 2754 \end{split}$$

Interpolation

Computing $\Phi_{\ell}(X, Y) \mod p$

Assume *D* and *p* are suitably chosen with $D = O(\ell^2)$ and $\log p = O(\log \ell)$, and that $H_D(X)$ has been precomputed.

- 1. Find a root of $H_D(X)$ over \mathbb{F}_p .
- 2. Enumerate the surface(s) using cl(D)-action.
- 3. Descend to the floor using Vélu.
- 4. Enumerate the floor using $cl(\ell^2 D)$ -action.
- 5. Build each $\Phi_{\ell}(X, j_i)$ from its roots.
- 6. Interpolate $\Phi_{\ell}(X, Y) \mod p$.

Time complexity is $O(\ell^2 \log^{3+\epsilon} \ell)$. Space complexity is $O(\ell^2 \log \ell)$. $\begin{array}{l} O(\ell \log^{3+\epsilon} \ell) \\ O(\ell \log^{2+\epsilon} \ell) \\ O(\ell \log^{1+\epsilon} \ell) \\ O(\ell^2 \log^{2+\epsilon} \ell) \\ O(\ell^2 \log^{3+\epsilon} \ell) \\ O(\ell^2 \log^{3+\epsilon} \ell) \\ O(\ell^2 \log^{3+\epsilon} \ell) \end{array}$

After computing $\Phi_5(X, Y) \mod p$ for the primes:

4451, 6911, 9551, 28111, 54851, 110051, 123491, 160591, 211711, 280451, 434111, 530851, 686051, 736511, we apply the CRT to obtain

$$\begin{split} \Phi_5(X,Y) &= X^6 + Y^6 - X^5 Y^5 + 3720 (X^5 Y^4 + X^4 Y^5) - 4550940 (X^5 Y^3 + X^3 Y^5) \\ &+ 2028551200 (X^5 Y^2 + X^2 Y^5) - 246683410950 (X^5 Y + XY^5) + 1963211489280 (X^5 + Y^5) \\ &+ 1665999364600 X^4 Y^4 + 107878928185336800 (X^4 Y^3 + X^3 Y^4) \\ &+ 383083609779811215375 (X^4 Y^2 + X^2 Y^4) + 128541798906828816384000 (X^4 Y + XY^4) \\ &+ 1284733132841424456253440 (X^4 + Y^4) - 4550940 (X^3 Y^5 + X^5 Y^3) \\ &- 441206965512914835246100 X^3 Y^3 + 26898488858380731577417728000 (X^3 Y^2 + X^2 Y^3) \\ &- 192457934618928299655108231168000 (X^3 Y + XY^3) \\ &+ 280244777828439527804321565297868800 (X^3 + Y^3) \\ &+ 5110941777552418083110765199360000 X^2 Y^2 \\ &+ 36554736583949629295706472332656640000 (X^2 Y + XY^2) \\ &+ 6692500042627997708487149415015068467200 (X^2 + Y^2) \\ &- 264073457076620596259715790247978782949376XY \\ &+ 53274330803424425450420160273336509151232000 (X + Y) \\ &+ 141359947154721358697753474691071362751004672000. \end{split}$$

After computing $\Phi_5(X, Y) \mod p$ for the primes:

4451, 6911, 9551, 28111, 54851, 110051, 123491, 160591, 211711, 280451, 434111, 530851, 686051, 736511, we apply the CRT to obtain

$$\begin{split} \Phi_5(X,Y) &= X^6 + Y^6 - X^5Y^5 + 3720(X^5Y^4 + X^4Y^5) - 4550940(X^5Y^3 + X^3Y^5) \\ &+ 2028551200(X^5Y^2 + X^2Y^5) - 246683410950(X^5Y + XY^5) + 1963211489280(X^5 + Y^5) \\ &+ 1665999364600X^4Y^4 + 107878928185336800(X^4Y^3 + X^3Y^4) \\ &+ 383083609779811215375(X^4Y^2 + X^2Y^4) + 128541798906828816384000(X^4Y + XY^4) \\ &+ 1284733132841424456253440(X^4 + Y^4) - 4550940(X^3Y^5 + X^5Y^3) \\ &- 441206965512914835246100X^3Y^3 + 26898488858380731577417728000(X^3Y^2 + X^2Y^3) \\ &- 192457934618928299655108231168000(X^3Y + XY^3) \\ &+ 280244777828439527804321565297868800(X^3 + Y^3) \\ &+ 5110941777552418083110765199360000X^2Y^2 \\ &+ 36554736583949629295706472332656640000(X^2Y + XY^2) \\ &+ 6692500042627997708487149415015068467200(X^2 + Y^2) \\ &- 264073457076620596259715790247978782949376XY \\ &+ 53274330803424425450420160273356509151232000(X + Y) \\ &+ 141359947154721358697753474691071362751004672000. \end{split}$$

(but note that $\Phi_5^{f}(X, Y) = X^6 + Y^6 - X^5 Y^5 + 4XY$).

Computing $\Phi_\ell \mod m$

Given a prime $\ell > 2$ and an integer m > 0:

- 1. Pick a discriminant D suitable for ℓ .
- 2. Select a set of primes S suitable for ℓ and D.
- 3. Precompute H_D , cl(D), $cl(\ell^2 D)$, and CRT data.
- 4. For each $p \in S$, compute $\Phi_{\ell} \mod p$ and update CRT data.
- 5. Perform CRT postcomputation and output $\Phi_{\ell} \mod m$.

To compute Φ_{ℓ} over \mathbb{Z} , just use $m = \prod p$.

For "small" m, use explicit CRT mod m. For "large" m, standard CRT for large m. For m in between, use a hybrid approach.

Complexity

Theorem (GRH)

For every prime $\ell > 2$ there is a suitable discriminant D with $|D| = O(\ell^2)$ for which there are $\Omega(\ell^3 \log^3 \ell)$ primes $p = O(\ell^6 (\log \ell)^4)$ that are suitable for ℓ and D.

Heuristically, $p = O(\ell^4)$. In practice, $\lg p < 64$.

Theorem (GRH)

The expected running time is $O(\ell^3 \log^3 \ell \log \log \ell)$. The space required is $O(\ell^2 \log(\ell m))$.

An explicit height bound for Φ_ℓ

Let ℓ be a prime. Let $h(\Phi_{\ell})$ be the (natural) logarithmic height of Φ_{ℓ} .

Asymptotic bound: $h(\Phi_{\ell}) = 6\ell \log \ell + O(\ell)$ (Paula Cohen 1984).

An explicit height bound for Φ_ℓ

Let ℓ be a prime. Let $h(\Phi_{\ell})$ be the (natural) logarithmic height of Φ_{ℓ} .

Asymptotic bound: $h(\Phi_{\ell}) = 6\ell \log \ell + O(\ell)$ (Paula Cohen 1984).

Explicit bound: $h(\Phi_{\ell}) \leq 6\ell \log \ell + 17\ell$ (Bröker-S 2009).

Conjectural bound: $h(\Phi_{\ell}) \leq 6\ell \log \ell + 12\ell$ (for $\ell > 30$).

The explicit bound holds for all ℓ . The conjectural bound is known to hold for $30 < \ell < 3600$.

Other modular functions

We can compute polynomials relating f(z) and $f(\ell z)$ for other modular functions, including the Weber f-function.

The coefficients of Φ_{ℓ}^{f} are roughly 72 times smaller. This means we need 72 fewer primes.

The polynomial Φ_{ℓ}^{f} is roughly 24 times sparser. This means we need 24 times fewer interpolation points.

We get a better than 1728-fold speedup using Φ_{ℓ}^{\dagger} .

Modular polynomials for $\ell = 11$

Classical:

 $X^{12} + Y^{12} - X^{11}Y^{11} + -1X^{11}Y^{11} + 8184X^{11}Y^{10} - 28278756X^{11}Y^9 + 53686822816X^{11}Y^8 + 28278756X^{11}Y^8 + 28278756X^{11}Y^9 + 282787575X^{11}Y^9 + 28277575X^{11}Y^{11}Y^{11}Y^{11}Y^{11}Y^{11}Y^{11}Y^{11}Y^{11}Y^{11}Y^{11}Y^{11}Y^{11}Y^{11}Y^{11}Y^$

- $\ 61058988656490 X^{11} Y^7 + 42570393135641712 X^{11} Y^6 17899526272883039048 X^{11} Y^5$
- $+\,4297837238774928467520 X^{11} Y^4\,-\,529134841844639613861795 X^{11} Y^3\,+\,27209811658056645815522600 X^{11} Y^2$
- $-\ 374642006356701393515817612 X^{11} Y + 296470902355240575283200000 X^{11}$
- ... 8 pages omitted ...
- + 392423345094527654908696 . . . 100 digits omitted . . . 000

Atkin:

$$\begin{split} X^{12} &- X^{11} Y + 744 X^{11} + 196680 X^{10} + 187 X^9 Y + 21354080 X^9 + 506 X^8 Y + 830467440 X^8 \\ &- 11440 X^7 Y + 16875327744 X^7 - 57442 X^6 Y + 208564958976 X^6 + 184184 X^5 Y + 1678582287360 X^5 \\ &+ 1675784 X^4 Y + 9031525113600 X^4 + 1867712 X^3 Y + 32349979904000 X^3 - 8252640 X^2 Y + 74246810880000 X^2 \\ &- 19849600 X Y + 98997734400000 X + Y^2 - 872000 Y + 58411072000000 \end{split}$$

Weber:

 $X^{12} + Y^{12} - X^{11}Y^{11} + 11X^9Y^9 - 44X^7Y^7 + 88X^5Y^5 - 88X^3Y^3 + 32XY^5$
Weber modular polynomials

For $\ell = 1009$, the size of Φ_{ℓ}^{f} is 2.3MB, versus 3.9GB for Φ_{ℓ} , and computing Φ_{ℓ}^{f} takes 1.5s, versus 2840s for Φ_{ℓ} .

The current record is $\ell = 60013$. Working mod *m*, level $\ell > 100000$ is feasible.

The polynomials Φ^{f}_{ℓ} for all $\ell < 5000$ are available for download:

http://math.mit.edu/~drew