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Arithmetic schemes
Let X be a scheme of finite type over SpecZ, in other words, an arithmetic scheme.
The Hasse–Weil zeta function (or arithmetic zeta function) of X is defined by

ζX(s) :=
∏
x∈X

(1−N(x)−s)−1 =
∏

ζXp
(s) =

∏
ZXp

(p−s)

where the product is taken over closed points x, the norm N(x) := #κ(x) is the cardinality of
the residue field κ(x) at x, and Xp := X ×SpecZ Spec(Z/pZ) is the reduction of X modulo p.
The local zeta function ZXp

(T ) is defined by the formal power series

ZXp
(T ) := exp

 ∞∑
r≥1

#Xp(Fpr )
T r

r

 ∈ 1 + TZ[[T ]],

which is known to lie in Q(T ) (by work of Dwork and Grothendieck).

The set of Fpr -rational points Xp(Fpr ) := HomFp(Spec(Fpr ), X) satisfies

#Xp(Fpr ) =
∑
e|r

e#{x ∈ X : κ(x) ' Fpe}.



Arithmetic zeta functions and L-functions

If X is a nice curve over Q, by choosing an integral model X for X we can view X as an
arithmetic scheme. We might then ask about the relationship between LX(s) and ζX (s).

At all primes p where X has good reduction we will have ZXp
(T ) = ZXp

(T ), and in particular,
the L-polynomials LXp

(T ) and LXp
(T ) in their numerators will agree.

From our “multiplicity one” perspective, this is all we need; the local zeta functions ZXp(T ) at
primes of good reduction for X uniquely determine LX(s) (for any integral model X of X).

In general the L-polynomial LXp
(T ) in the Euler product LX(s) =

∏
p LXp

(p−s) may (but
need not) differ from the numerator of the local zeta functions ZXp

(T ) at bad primes.

For example, if X is the elliptic curve 49a1 and X is the arithmetic scheme defined by its
minimal Weierstrass equation y2z + xyz = x3 − x2z − 2xz2 − z3, then

LX7(T ) = −7T 2 + 1 6= 1 = LX7(T ).

On the other hand, when X is the elliptic curve 11a1 we actually have LX(s) = ζX (s).

http://www/lmfdb.org/EllipticCurve/Q/11a1
http://www/lmfdb.org/EllipticCurve/Q/11a1


Harvey’s results for arithmetic schemes

Theorem (Harvey 2014)

Let X be an arithmetic scheme. The following hold:

1. There is a deterministic algorithm that, given a prime p, outputs ZXp
∈ Q[T ] in

p(log p)1+o(1) time using O(log p) space.

2. There is a deterministic algorithm that, given a prime p, outputs ZXp
∈ Q[T ] in

√
p (log p)2+o(1) time using O(

√
p log p) space.

3. There is a deterministic algorithm that, given an integer N outputs ZXp
∈ Q[T ]

for all p ≤ N in time N(logN)3+o(1) using O(N log2N) space.

In these complexity estimates, X is fixed, only p or the bound N are part of the input
(the arithmetic scheme X is effectively “hardwired” into the algorithm).

If one constrains X and fixes its representation (a curve with a plane model, for example),
one can make the dependence on X completely explicit.

This theorem is not merely an existence statement, its proof involves explicit algorithms.



Hypersurfaces in affine tori

Let Pn
Z denote n-dimensional projective space over Z. The affine torus Tn

Z consists of all
projective points in Pn

Z whose coordinates are all nonzero; it is an open subscheme of Pn
Z.

A hypersurface in Tn
Z is the zero locus of a nonconstant homogeneous polynomial.

Lemma

Let X be an arithmetic scheme. The zeta function ζX(s) can be written as a finite product

ζX(s) =
∏
i

ζXi
(s)ei ,

where each Xi is a hypersurface in Tni

Z and ei = ±1. Moreover, for each prime p we have

ζXp
(s) =

∏
i

ζXi,p
(s)ei .



Proof of the lemma

Proof.

1. Write X = V1 t · · · t Vn with Vi = SpecAi for some Z-algebra Ai by covering X with
affine opens U1, . . . , Un, setting V1 := U1, and recursively treating
X ′ = (U2 ∪ · · · ∪ Un)\U1 covered by n− 1 affine opens U ′2, . . . U

′
n, with U ′i := Ui\U1.

2. Now X = SpecZ[x1, . . . , xm]/(F1, . . . , Fk). For each non-empty S ⊆ {1, . . . , k} define
XS := SpecZ[x1, . . . , xm]/(

∏
i∈S Fi). Then ζX(s) =

∏
S ζXS

(s)eS , where eS = ±1 is
positive if |S| is odd and negative otherwise (the inclusion/exclusion trick).

3. Assume X = SpecZ[x1, . . . , xm]/(F ). For each non-empty S ⊆ {1, . . . ,m} define

FS = F (xi = 0 : i ∈ S) and let XS be the zero locus of FS in the affine torus T|S|Z with
coordinates {x0} ∪ {xi : i ∈ S}. Then ζX(s) =

∏
S ζXS

(s).

Now note that 1–3 are all compatible with taking Euler products



Notation

Using x := (x0, . . . , xn) to denote our coordinates and u := (u0, . . . , un) ∈ Zn+1
≥0 to denote an

exponent vector, we define the monomial

xu := xu0
0 · · ·xun

n

and let deg(u) := u0 + · · ·+ un = deg(xu).

We define Bd := {u : deg(u) = d}, and use {xu : u ∈ Bd} as a Z-basis for the free Z-module
Z[x]d of rank #Bd =

(
d+n
n

)
consisting of all homogeneous integer polynomials of degree d in

n+ 1 variables.

For F ∈ Z[x]d, u ∈ Bd and e ∈ Z≥0 we define F s
u to be the coefficient of the monomial xu in

the polynomial F s ∈ Z[x]ds.

The notation F s
u is the multivariate analog of the notation fsu that we used in the previous

lecture to denote the coefficient of xu in fs.



The trace formula

Lemma (Harvey 2014)

Let X be a hypersurface in Tn
Z defined by F ∈ Z[x]d, let r and e be positive integers, and let

p ≥ 1 + e/r be a prime. Then

#Xp(Fpr ) ≡ (pr − 1)n
e∑

s=0

(−1)s
(
e

s

)
tr(Mr

s ) mod pe,

where Ms is the m×m integer matrix Ms :=
[
F

s(p−1)
pv−u

]
v,u∈Bds

, with m = #Bds =
(
ds+n

n

)
.

Let D = 2(4d+ 4)n. To compute ζXp(s) it suffices to compute #X(Fpr ) for all 1 ≤ r ≤ D
(by a theorem of Bombieri), and it is enough to compute #X(Fpr ) mod pe with e = 2nD.

If F (x, y, z) = 0 is a smooth plane curve of genus g, we only need to consider 1 ≤ r ≤ g, and
for all sufficiently large p we can take e = d g+1

2 e (in general, e = d g2 logp(2
(
2g
g

)
)e suffices).

(note that d g+1
2
e = O(g) and for n = 2 we have 2nD = O(d2) = O(g), so this is an O(1) difference)



Recurrence relations
Fix s ≥ 1 and v ∈ Bds. We want to compute the vth row of Ms.

Fix h := max(ds, (d− 1)(n+ 1) + 1) and w ∈ Bh, and let m := #Bh =
(
h+n
n

)
.

For k ≥ 1 and H ∈ Z[x]kds, let [H]k to be the column vector (Hkv+w−t)
T indexed by t ∈ Bh.

For each t ∈ Bh, pick i with ti ≥ d and let t′ ∈ Bh−d satisfy t′i = ti − d and t′j = 0 for j 6= i.
Given F ∈ Z[x]d, define the matrix Q ∈ Z[k, `]m×m as follows: for each z ∈ Bh let

Qt,z := (kvi + wi − t′i − (`+ 1)(zi − t′i))Fz−t′ .

Lemma

Let G := xd0 + · · ·+ xdn, let F ∈ Z[x]d, and let Q be defined as above. For all c ≥ 0 we have

[F cs]c =
1

dcs(cs)!
Q(c, cs− 1) · · ·Q(c, 0)[Gcs]c.

The coefficients of [Gcs]c are multinomial coefficients
(

n+d
m1,...,mn

)
, which are easy to compute.

Using c = p− 1, we can compute Ms[v,u] = F
s(p−1)
pv−u as the w + u− v entry of [F cs]c.



Complexity analysis for smooth plane curves

Let C/Q be a smooth plane curve with an integral plane model X : F (x, y, z) = 0 of degree d,
and X the hypersurface in T2

Z defined by F . Assume dO(1) and log ‖F‖ are O(log p)

To compute ZCp
(T ) at primes of good reduction for X , it suffices to compute #C(Fpr ) for

1 ≤ r ≤ g =
(
d−1
2

)
. To do so we compute #X(Fpr ) and then add the number of projective

points (x0 : y0 : z0) satisfying F (x0, y0, z0) = 0 and x0y0z0 = 0; the latter can be computed in
(log p)2+o(1)) time by counting the roots of 3 polynomials over Fpr and checking 3 points.
This means we can compute ZCp(T ) in g(log p)2+o(1) time given #X(Fpr ) for 1 ≤ r ≤ g.

By the Weil bounds, it suffices to compute #X(Fpr ) mod pe with e ≥ d r2 logp(2
(
2g
r

)
e, which is

d r+1
2 e for all sufficiently large p, so let us fix e = d g+1

2 e (use the same e for all r).

By the trace formula, it suffices to compute Ms mod pe for 0 ≤ s ≤ e. We can compute trMr
s

for 1 ≤ r ≤ g by computing the charpoly of Ms and applying Newton identities (with p > g).
Note that Ms has #Bds = O((ds)2) rows, which is O(g3).

Bottom line: given Ms mod pe for 1 ≤ s ≤ e we can compute ZCp
(T ) in g11(log p)2+o(1) time.

(
∑

0≤s≤e((ds)
2)3e(log p)1+o(1) = g11(log p)1+o(1) since e ≈ g ≈ d2).



Complexity analysis for smooth plane curves

There are four ways to compute Ms mod pe for 1 ≤ s ≤ e;

1. Apply Ms = [F
s(p−1)
pv−u ]; time g5p2(log p)1+o(1).

(multivariate Kronecker:
∑

0≤s≤e((dsp)
2)3e(log p)1+o(1) = g5p2(log p)1+o(1))

2. Use Q(k, `) to compute rows of Ms using matrix-vector mults: time g11p(log p)1+o(1).
(
∑

0≤s≤e((ds)
2p((ds)2)2e(log p)1+o(1) = g11p(log p)1+o(1))

3. Apply BGS to compute Q(k, `) products: time g14
√
p(log p)2+o(1).

(as above, but now we need matrix-matrix mults, dimension is O(g3))

4. Use an average polynomial time approach for p ≤ N : time g14N(logN)3+o(1).

Except for 1, these complexities dominate the time to compute ZCp
(T ) given the Ms mod pe.

In case 1 we obtain a total complexity of (g5p2 + g11 log p)(log p)1+o(1).


