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Arithmetic schemes

Let X be a scheme of finite type over SpecZ, in other words, an arithmetic scheme.
The Hasse-Weil zeta function (or arithmetic zeta function) of X is defined by

(x(s) =[] (1 =1l =1 2x, "
rzeX

where the product is taken over closed points x, the norm N(z) := #k(x) is the cardinality of
the residue field k(x) at z, and X, := X Xgpecz Spec(Z/pZ) is the reduction of X modulo p.
The local zeta function Zx,(T') is defined by the formal power series

o0 TT.
Zx,(T) =exp [ Y #X,(Fpr)— | €1+ TZ[T]),
r>1
which is known to lie in Q(7) (by work of Dwork and Grothendieck).
The set of Fyr-rational points X,(IF,-) := Homp, (Spec(IF,-), X) satisfies

#Xp(Fpr) = > ed{r € X : i(x) = Fpe}.

elr



Arithmetic zeta functions and L-functions

If X is a nice curve over QQ, by choosing an integral model X for X we can view X as an
arithmetic scheme. We might then ask about the relationship between Lx (s) and (x(s).

At all primes p where X has good reduction we will have Zx (T') = Zx,(T'), and in particular,
the L-polynomials Lx,(T) and L, (T') in their numerators will agree.

From our “multiplicity one” perspective, this is all we need; the local zeta functions Zx (T') at
primes of good reduction for X' uniquely determine Lx (s) (for any integral model X of X).

In general the L-polynomial Lx, (T) in the Euler product Lx(s) =[], Lx,(p~*) may (but
need not) differ from the numerator of the local zeta functions Zx, (T') at bad primes.

For example, if X is the eIIiptic curve 49al and X is the arithmetic scheme defined by its

minimal Weierstrass equation 32z + zyz = 2% — 222 — 2222 — 23, then

La,(T) = —TT? +1# 1 = Lx,(T).

On the other hand, when X is the elliptic curve 11al we actually have Lx(s) = Cx(s).


http://www/lmfdb.org/EllipticCurve/Q/11a1
http://www/lmfdb.org/EllipticCurve/Q/11a1

Harvey’s results for arithmetic schemes

Theorem (Harvey 2014)
Let X be an arithmetic scheme. The following hold:
1. There is a deterministic algorithm that, given a prime p, outputs Zx A€ Q[T] in
p(logp)'+°) time using O(log p) space.
2. There is a deterministic algorithm that, given a prime p, outputs Zx, € Q[T] in
VP (log p)?t°M time using O(y/plogp) space.
3. There is a deterministic algorithm that, given an integer N outputs Zx, € Q[T
for all p < N in time N (log N)3*t°() using O(N log®N) space.

In these complexity estimates, X is fixed, only p or the bound N are part of the input
(the arithmetic scheme X is effectively “hardwired” into the algorithm).

If one constrains X and fixes its representation (a curve with a plane model, for example),
one can make the dependence on X completely explicit.

This theorem is not merely an existence statement, its proof involves explicit algorithms.



Hypersurfaces in affine tori

Let IP;; denote n-dimensional projective space over Z. The affine torus Tj consists of all
projective points in [P whose coordinates are all nonzero; it is an open subscheme of 7.

A hypersurface in T7 is the zero locus of a nonconstant homogeneous polynomial.

Lemma

Let X be an arithmetic scheme. The zeta function (x(s) can be written as a finite product
Cx(s) = [T ¢xi (o),
i
where each X; is a hypersurface in T;' and e; = £1. Moreover, for each prime p we have

(x,(s) = HCXi,p(S)ei-



Proof of the lemma

Proof.

1. Write X =V U--- UV, with V; = Spec A; for some Z-algebra A; by covering X with
affine opens Uy, ..., U,, setting V7 := Uj, and recursively treating
X' = (UaU---UU,)\U; covered by n — 1 affine opens Uj, ... U}, with U/ := U;\Us.

2. Now X = SpecZ[z1,...,xm|/(F1,...,Fy). For each non-empty S C {1,...,k} define
Xs :=SpecZlzwi,...,2m]/([1;cg Fi)- Then (x(s) = [IgCxs(5)°%, where es = £1 is
positive if |S| is odd and negative otherwise (the inclusion/exclusion trick).

3. Assume X = SpecZ|xy,...,ZTn]/(F). For each non-empty S C {1,...,m} define

Fs=F(z;=0:1€5) and let Xg be the zero locus of Fg in the affine torus ’]I‘|ZS| with
coordinates {xo} U {x; : i € S}. Then (x(s) = []q (xs(s)-

Now note that 1-3 are all compatible with taking Euler products



Notation

Using & == (zo, . .. 790,1).to denote our coordinates and u = (ug, ..., u,) € Z'Zlgl to denote an
exponent vector, we define the monomial

U . U0
€T .—SL’O

and let deg(u) == ug + - - - + u, = deg(x™).

We define By := {u : deg(u) = d}, and use {x™ : u € By} as a Z-basis for the free Z-module
Z[x]q of rank #Bg = (d:”) consisting of all homogeneous integer polynomials of degree d in
n + 1 variables.

For F' € Z[x]q, u € By and e € Z>( we define F to be the coefficient of the monomial  in
the polynomial F* € Z[x]gs.

The notation F; is the multivariate analog of the notation f; that we used in the previous
lecture to denote the coefficient of z* in f*.



The trace formula

Lemma (Harvey 2014)

Let X be a hypersurface in T? defined by F € Z[x]q, let v and e be positive integers, and let
p>1+e/r be a prime. Then

(&

#26,) = 7 - 1" L0 (§) () mod
s=0

FS(P—l)

pv—u

, with m = #Bgs = (**1).

where My is the m X m integer matrix My := { n

j| v, uE€EBgs

Let D = 2(4d +4)". To compute (x, (s) it suffices to compute #X (F,-) forall 1 <r < D
(by a theorem of Bombieri), and it is enough to compute #X (F,-) mod p® with e = 2nD.

If F(x,y,2z) =0 is a smooth plane curve of genus g, we only need to consider 1 <r < g, and
for all sufficiently large p we can take e = [Zf*] (in general, e = [£ logp(2(299))] suffices).
(note that [97“] = O(g) and for n = 2 we have 2nD = O(d?) = O(g), so this is an O(1) difference)



Recurrence relations
Fix s > 1 and v € Bg,. We want to compute the vth row of Mj.

Fix h := max(ds,(d —1)(n+ 1)+ 1) and w € By, and let m = #B), = (h:”).
For k > 1 and H € Z[x|gas, let [H] to be the column vector (Hy1q4-¢)T indexed by t € By,.

For each t € By, pick i with t; > d and let t' € By,_g4 satisfy t; = t; — d and t; =0 for j # 1.
Given F € Z[x]q, define the matrix Q € Z[k, £]™*™ as follows: for each z € By, let

Qt = (kvi+w; —t; — (L +1)(z; — ) Fo—yr.

Lemma
Let G =al+---+al, let F € Z[zx]q, and let Q be defined as above. For all ¢ > 0 we have

n-+d
Mi,...,Mn

Using ¢ = p — 1, we can compute M,[v,u] = F;(,’i;l) as the w + u — v entry of [F**]...

The coefficients of [G®*]. are multinomial coefficients ( ) which are easy to compute.



Complexity analysis for smooth plane curves

Let C'/Q be a smooth plane curve with an integral plane model X': F(z,y, z) = 0 of degree d,
and X the hypersurface in T% defined by F. Assume d°1) and log || F'|| are O(log p)

To compute Z¢, (T') at primes of good reduction for X', it suffices to compute #C(IF,-) for
1<r<g= (dgl). To do so we compute #X (F,-) and then add the number of projective
points (zo : yo : 20) satisfying F'(xo,yo0,20) = 0 and zoyozo = 0; the latter can be computed in
(log p)?t°(M)) time by counting the roots of 3 polynomials over F,~ and checking 3 points.
This means we can compute Z¢, (T) in g(log p)>t°™) time given #X (Fpr) for 1 <r < g.

By the Weil bounds, it suffices to compute #X (F,-) mod p¢ with e > [4log,(2(*?)], which is
[£17 for all sufficiently large p, so let us fix e = [£51] (use the same e for all ).

By the trace formula, it suffices to compute M mod p° for 0 < s < e. We can compute tr M
for 1 <r < g by computing the charpoly of M, and applying Newton identities (with p > g).
Note that M has #Bys = O((ds)?) rows, which is O(g3).

Bottom line: given M, mod p° for 1 < s < e we can compute Z¢, (T) in g'!(log p)**°(!) time.
(Zogsge((d5)2)36(10gp)1+0(1) = g (logp)1T°M) since e = g = d?).



Complexity analysis for smooth plane curves

There are four ways to compute M, mod p® for 1 < s < ¢;

1. Apply M, = [F:P7.D]: time g5p?(log p)+o).

pv—u
(multivariate Kronecker: Zogsgc((dSP)z)Be(Ing)1+O(1) = g®p?(log p)1toM))

2. Use Q(k, ) to compute rows of M, using matrix-vector mults: time g'*p(log p)' o).
(Co<s<e((ds)?p((ds)?)2e(log p) o) = gllp(log p)1+oh)

3. Apply BGS to compute Q(k, £) products: time g% /p(log p)?+o(1).

(as above, but now we need matrix-matrix mults, dimension is O(g®))

4. Use an average polynomial time approach for p < N: time g'*N(log N)3+°(1).

Except for 1, these complexities dominate the time to compute Z¢, (T) given the M mod p°.
In case 1 we obtain a total complexity of (¢°p? + g'' logp)(log p)*+o(V).



