Computing zeta functions and L-functions Lecture 4

Andrew V. Sutherland

June 27, 2019

CMI-HIMR Summer School in Computational Number Theory

Arithmetic schemes

Let X be a scheme of finite type over $\operatorname{Spec} \mathbb{Z}$, in other words, an arithmetic scheme. The Hasse-Weil zeta function (or arithmetic zeta function) of X is defined by

$$
\zeta_{X}(s):=\prod_{x \in X}\left(1-N(x)^{-s}\right)^{-1}=\prod \zeta_{X_{p}}(s)=\prod Z_{X_{p}}\left(p^{-s}\right)
$$

where the product is taken over closed points x, the norm $N(x):=\# \kappa(x)$ is the cardinality of the residue field $\kappa(x)$ at x, and $X_{p}:=X \times_{\operatorname{Spec} \mathbb{Z}} \operatorname{Spec}(\mathbb{Z} / p \mathbb{Z})$ is the reduction of X modulo p. The local zeta function $Z_{X_{p}}(T)$ is defined by the formal power series

$$
Z_{X_{p}}(T):=\exp \left(\sum_{r \geq 1}^{\infty} \# X_{p}\left(\mathbb{F}_{p^{r}}\right) \frac{T^{r}}{r}\right) \in 1+T \mathbb{Z}[[T]]
$$

which is known to lie in $\mathbb{Q}(T)$ (by work of Dwork and Grothendieck).

$$
\# X_{p}\left(\mathbb{F}_{p^{r}}\right)=\sum_{e \mid r} e \#\left\{x \in X: \kappa(x) \simeq \mathbb{F}_{p^{e}}\right\}
$$

Arithmetic zeta functions and L-functions

If X is a nice curve over \mathbb{Q}, by choosing an integral model \mathcal{X} for X we can view \mathcal{X} as an arithmetic scheme. We might then ask about the relationship between $L_{X}(s)$ and $\zeta_{\mathcal{X}}(s)$.

At all primes p where \mathcal{X} has good reduction we will have $Z_{X_{p}}(T)=Z_{\mathcal{X}_{p}}(T)$, and in particular, the L-polynomials $L_{X_{p}}(T)$ and $L_{\mathcal{X}_{p}}(T)$ in their numerators will agree.

From our "multiplicity one" perspective, this is all we need; the local zeta functions $Z_{\mathcal{X}_{p}}(T)$ at primes of good reduction for \mathcal{X} uniquely determine $L_{X}(s)$ (for any integral model \mathcal{X} of X).

In general the L-polynomial $L_{X_{p}}(T)$ in the Euler product $L_{X}(s)=\prod_{p} L_{X_{p}}\left(p^{-s}\right)$ may (but need not) differ from the numerator of the local zeta functions $Z_{\mathcal{X}_{p}}(T)$ at bad primes.

For example, if X is the elliptic curve $49 a 1$ and \mathcal{X} is the arithmetic scheme defined by its minimal Weierstrass equation $y^{2} z+x y z=x^{3}-x^{2} z-2 x z^{2}-z^{3}$, then

$$
L_{\mathcal{X}_{7}}(T)=-7 T^{2}+1 \neq 1=L_{X_{7}}(T) .
$$

On the other hand, when X is the elliptic curve 11a1 we actually have $L_{X}(s)=\zeta_{\mathcal{X}}(s)$.

Harvey's results for arithmetic schemes

Theorem (Harvey 2014)

Let X be an arithmetic scheme. The following hold:

1. There is a deterministic algorithm that, given a prime p, outputs $Z_{X_{p}} \in \mathbb{Q}[T]$ in $p(\log p)^{1+o(1)}$ time using $O(\log p)$ space.
2. There is a deterministic algorithm that, given a prime p, outputs $Z_{X_{p}} \in \mathbb{Q}[T]$ in $\sqrt{p}(\log p)^{2+o(1)}$ time using $O(\sqrt{p} \log p)$ space.
3. There is a deterministic algorithm that, given an integer N outputs $Z_{X_{p}} \in \mathbb{Q}[T]$ for all $p \leq N$ in time $N(\log N)^{3+o(1)}$ using $O\left(N \log ^{2} N\right)$ space.

In these complexity estimates, X is fixed, only p or the bound N are part of the input (the arithmetic scheme X is effectively "hardwired" into the algorithm).

If one constrains X and fixes its representation (a curve with a plane model, for example), one can make the dependence on X completely explicit.

This theorem is not merely an existence statement, its proof involves explicit algorithms.

Hypersurfaces in affine tori

Let $\mathbb{P}_{\mathbb{Z}}^{n}$ denote n-dimensional projective space over \mathbb{Z}. The affine torus $\mathbb{T}_{\mathbb{Z}}^{n}$ consists of all projective points in $\mathbb{P}_{\mathbb{Z}}^{n}$ whose coordinates are all nonzero; it is an open subscheme of $\mathbb{P}_{\mathbb{Z}}^{n}$.

A hypersurface in $\mathbb{T}_{\mathbb{Z}}^{n}$ is the zero locus of a nonconstant homogeneous polynomial.

Lemma

Let X be an arithmetic scheme. The zeta function $\zeta_{X}(s)$ can be written as a finite product

$$
\zeta_{X}(s)=\prod_{i} \zeta_{X_{i}}(s)^{e_{i}}
$$

where each X_{i} is a hypersurface in $\mathbb{T}_{\mathbb{Z}}^{n_{i}}$ and $e_{i}= \pm 1$. Moreover, for each prime p we have

$$
\zeta_{X_{p}}(s)=\prod_{i} \zeta_{X_{i, p}}(s)^{e_{i}}
$$

Proof of the lemma

Proof.

1. Write $X=V_{1} \sqcup \cdots \sqcup V_{n}$ with $V_{i}=\operatorname{Spec} A_{i}$ for some \mathbb{Z}-algebra A_{i} by covering X with affine opens U_{1}, \ldots, U_{n}, setting $V_{1}:=U_{1}$, and recursively treating $X^{\prime}=\left(U_{2} \cup \cdots \cup U_{n}\right) \backslash U_{1}$ covered by $n-1$ affine opens $U_{2}^{\prime}, \ldots U_{n}^{\prime}$, with $U_{i}^{\prime}:=U_{i} \backslash U_{1}$.
2. Now $X=\operatorname{Spec} \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right] /\left(F_{1}, \ldots, F_{k}\right)$. For each non-empty $S \subseteq\{1, \ldots, k\}$ define $X_{S}:=\operatorname{Spec} \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right] /\left(\prod_{i \in S} F_{i}\right)$. Then $\zeta_{X}(s)=\prod_{S} \zeta_{X_{S}}(s)^{e_{S}}$, where $e_{S}= \pm 1$ is positive if $|S|$ is odd and negative otherwise (the inclusion/exclusion trick).
3. Assume $X=\operatorname{Spec} \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right] /(F)$. For each non-empty $S \subseteq\{1, \ldots, m\}$ define $F_{S}=F\left(x_{i}=0: i \in S\right)$ and let X_{S} be the zero locus of F_{S} in the affine torus $\mathbb{T}_{\mathbb{Z}}^{|S|}$ with coordinates $\left\{x_{0}\right\} \cup\left\{x_{i}: i \in S\right\}$. Then $\zeta_{X}(s)=\prod_{S} \zeta_{X_{S}}(s)$.

Now note that 1-3 are all compatible with taking Euler products

Notation

Using $\boldsymbol{x}:=\left(x_{0}, \ldots, x_{n}\right)$ to denote our coordinates and $\boldsymbol{u}:=\left(u_{0}, \ldots, u_{n}\right) \in \mathbb{Z}_{\geq 0}^{n+1}$ to denote an exponent vector, we define the monomial

$$
\boldsymbol{x}^{u}:=x_{0}^{u_{0}} \cdots x_{n}^{u_{n}}
$$

and let $\operatorname{deg}(u):=u_{0}+\cdots+u_{n}=\operatorname{deg}\left(\boldsymbol{x}^{\boldsymbol{u}}\right)$.
We define $B_{d}:=\{\boldsymbol{u}: \operatorname{deg}(\boldsymbol{u})=d\}$, and use $\left\{\boldsymbol{x}^{\boldsymbol{u}}: \boldsymbol{u} \in B_{d}\right\}$ as a \mathbb{Z}-basis for the free \mathbb{Z}-module $\mathbb{Z}[x]_{d}$ of rank $\# B_{d}=\binom{d+n}{n}$ consisting of all homogeneous integer polynomials of degree d in $n+1$ variables.

For $F \in \mathbb{Z}[\boldsymbol{x}]_{d}, \boldsymbol{u} \in B_{d}$ and $e \in \mathbb{Z}_{\geq 0}$ we define $F_{\boldsymbol{u}}^{s}$ to be the coefficient of the monomial $\boldsymbol{x}^{\boldsymbol{u}}$ in the polynomial $F^{s} \in \mathbb{Z}[\boldsymbol{x}]_{d s}$.

The notation F_{u}^{s} is the multivariate analog of the notation f_{u}^{s} that we used in the previous lecture to denote the coefficient of x^{u} in f^{s}.

The trace formula

Lemma (Harvey 2014)

Let X be a hypersurface in $\mathbb{T}_{\mathbb{Z}}^{n}$ defined by $F \in \mathbb{Z}[\boldsymbol{x}]_{d}$, let r and e be positive integers, and let $p \geq 1+e / r$ be a prime. Then

$$
\# X_{p}\left(\mathbb{F}_{p^{r}}\right) \equiv\left(p^{r}-1\right)^{n} \sum_{s=0}^{e}(-1)^{s}\binom{e}{s} \operatorname{tr}\left(M_{s}^{r}\right) \bmod p^{e}
$$

where M_{s} is the $m \times m$ integer matrix $M_{s}:=\left[F_{p \boldsymbol{v}-\boldsymbol{u}}^{s(p-1)}\right]_{\boldsymbol{v}, \boldsymbol{u} \in B_{d s}}$, with $m=\# B_{d s}=\binom{d s+n}{n}$.

Let $D=2(4 d+4)^{n}$. To compute $\zeta_{X_{p}}(s)$ it suffices to compute $\# X\left(\mathbb{F}_{p^{r}}\right)$ for all $1 \leq r \leq D$ (by a theorem of Bombieri), and it is enough to compute $\# X\left(\mathbb{F}_{p^{r}}\right) \bmod p^{e}$ with $e=2 n D$.
If $F(x, y, z)=0$ is a smooth plane curve of genus g, we only need to consider $1 \leq r \leq g$, and for all sufficiently large p we can take $e=\left\lceil\frac{g+1}{2}\right\rceil$ (in general, $e=\left\lceil\frac{g}{2} \log _{p}\left(2\binom{2 g}{g}\right)\right\rceil$ suffices). (note that $\left\lceil\frac{g+1}{2}\right\rceil=O(g)$ and for $n=2$ we have $2 n D=O\left(d^{2}\right)=O(g)$, so this is an $O(1)$ difference)

Recurrence relations

Fix $s \geq 1$ and $\boldsymbol{v} \in B_{d s}$. We want to compute the \boldsymbol{v} th row of M_{s}.
Fix $h:=\max (d s,(d-1)(n+1)+1)$ and $\boldsymbol{w} \in B_{h}$, and let $m:=\# B_{h}=\binom{h+n}{n}$.
For $k \geq 1$ and $H \in \mathbb{Z}[\boldsymbol{x}]_{k d s}$, let $[H]_{k}$ to be the column vector $\left(H_{k \boldsymbol{v}+\boldsymbol{w}-\boldsymbol{t}}\right)^{\mathrm{T}}$ indexed by $t \in B_{h}$.
For each $t \in B_{h}$, pick i with $t_{i} \geq d$ and let $t^{\prime} \in B_{h-d}$ satisfy $t_{i}^{\prime}=t_{i}-d$ and $t_{j}^{\prime}=0$ for $j \neq i$. Given $F \in \mathbb{Z}[\boldsymbol{x}]_{d}$, define the matrix $Q \in \mathbb{Z}[k, \ell]^{m \times m}$ as follows: for each $z \in B_{h}$ let

$$
Q_{t, z}:=\left(k v_{i}+w_{i}-t_{i}^{\prime}-(\ell+1)\left(z_{i}-t_{i}^{\prime}\right)\right) F_{z-t^{\prime}} .
$$

Lemma

Let $G:=x_{0}^{d}+\cdots+x_{n}^{d}$, let $F \in \mathbb{Z}[\boldsymbol{x}]_{d}$, and let Q be defined as above. For all $c \geq 0$ we have

$$
\left[F^{c s}\right]_{c}=\frac{1}{d^{c s}(c s)!} Q(c, c s-1) \cdots Q(c, 0)\left[G^{c s}\right]_{c} .
$$

The coefficients of $\left[G^{c s}\right]_{c}$ are multinomial coefficients $\binom{n+d}{m_{1}, \ldots, m_{n}}$, which are easy to compute. Using $c=p-1$, we can compute $M_{s}[\boldsymbol{v}, \boldsymbol{u}]=F_{p \boldsymbol{v}-\boldsymbol{u}}^{s(p-1)}$ as the $\boldsymbol{w}+\boldsymbol{u}-\boldsymbol{v}$ entry of $\left[F^{c s}\right]_{c}$.

Complexity analysis for smooth plane curves

Let C / \mathbb{Q} be a smooth plane curve with an integral plane model $\mathcal{X}: F(x, y, z)=0$ of degree d, and X the hypersurface in $\mathbb{T}_{\mathbb{Z}}^{2}$ defined by F. Assume $d^{O(1)}$ and $\log \|F\|$ are $O(\log p)$
To compute $Z_{C_{p}}(T)$ at primes of good reduction for \mathcal{X}, it suffices to compute $\# C\left(\mathbb{F}_{p^{r}}\right)$ for $1 \leq r \leq g=\binom{d-1}{2}$. To do so we compute $\# X\left(\mathbb{F}_{p^{r}}\right)$ and then add the number of projective points ($x_{0}: y_{0}: z_{0}$) satisfying $F\left(x_{0}, y_{0}, z_{0}\right)=0$ and $x_{0} y_{0} z_{0}=0$; the latter can be computed in $\left.(\log p)^{2+o(1)}\right)$ time by counting the roots of 3 polynomials over $\mathbb{F}_{p^{r}}$ and checking 3 points. This means we can compute $Z_{C_{p}}(T)$ in $g(\log p)^{2+o(1)}$ time given $\# X\left(\mathbb{F}_{p^{r}}\right)$ for $1 \leq r \leq g$.

By the Weil bounds, it suffices to compute $\# X\left(\mathbb{F}_{p^{r}}\right) \bmod p^{e}$ with $e \geq\left\lceil\frac{r}{2} \log _{p}\left(2\binom{2 g}{r}\right\rceil\right.$, which is $\left\lceil\frac{r+1}{2}\right\rceil$ for all sufficiently large p, so let us fix $e=\left\lceil\frac{g+1}{2}\right\rceil$ (use the same e for all r).
By the trace formula, it suffices to compute $M_{s} \bmod p^{e}$ for $0 \leq s \leq e$. We can compute $\operatorname{tr} M_{s}^{r}$ for $1 \leq r \leq g$ by computing the charpoly of M_{s} and applying Newton identities (with $p>g$). Note that M_{s} has $\# B_{d s}=O\left((d s)^{2}\right)$ rows, which is $O\left(g^{3}\right)$.

Bottom line: given $M_{s} \bmod p^{e}$ for $1 \leq s \leq e$ we can compute $Z_{C_{p}}(T)$ in $g^{11}(\log p)^{2+o(1)}$ time. $\left(\sum_{0 \leq s \leq e}\left((d s)^{2}\right)^{3} e(\log p)^{1+o(1)}=g^{11}(\log p)^{1+o(1)}\right.$ since $\left.e \approx g \approx d^{2}\right)$.

Complexity analysis for smooth plane curves

There are four ways to compute $M_{s} \bmod p^{e}$ for $1 \leq s \leq e$;

1. Apply $M_{s}=\left[F_{p v-\boldsymbol{u}}^{s(p-1)}\right]$; time $g^{5} p^{2}(\log p)^{1+o(1)}$.
(multivariate Kronecker: $\left.\sum_{0 \leq s \leq e}\left((d s p)^{2}\right)^{3} e(\log p)^{1+o(1)}=g^{5} p^{2}(\log p)^{1+o(1)}\right)$
2. Use $Q(k, \ell)$ to compute rows of M_{s} using matrix-vector mults: time $g^{11} p(\log p)^{1+o(1)}$. $\left(\sum_{0 \leq s \leq e}\left((d s)^{2} p\left((d s)^{2}\right)^{2} e(\log p)^{1+o(1)}=g^{11} p(\log p)^{1+o(1)}\right)\right.$
3. Apply BGS to compute $Q(k, \ell)$ products: time $g^{14} \sqrt{p}(\log p)^{2+o(1)}$. (as above, but now we need matrix-matrix mults, dimension is $O\left(g^{3}\right)$)
4. Use an average polynomial time approach for $p \leq N$: time $g^{14} N(\log N)^{3+o(1)}$.

Except for 1, these complexities dominate the time to compute $Z_{C_{p}}(T)$ given the $M_{s} \bmod p^{e}$. In case 1 we obtain a total complexity of $\left(g^{5} p^{2}+g^{11} \log p\right)(\log p)^{1+o(1)}$.

