Computing zeta functions and L-functions Lecture 3

Andrew V. Sutherland

June 25, 2019

CMI-HIMR Summer School in Computational Number Theory

Computing Frobenius traces of elliptic curves

Let E / \mathbb{Q} be an elliptic curve $y^{2}=f(x)$ and let p an odd prime of good reduction.

$$
\# E_{p}\left(\mathbb{F}_{p}\right)=p+1-a_{p}=1+\sum_{x_{0} \in \mathbb{F}_{p}}\left(1+\left(\frac{f\left(x_{0}\right)}{p}\right)\right)
$$

Reducing modulo p yields

$$
\begin{equation*}
a_{p} \equiv-\sum_{x_{0} \in \mathbb{F}_{p}}\left(\frac{f\left(x_{0}\right)}{p}\right) \equiv-\sum_{x_{0} \in \mathbb{F}_{p}} f\left(x_{0}\right)^{(p-1) / 2} \equiv-\sum_{x_{0} \in \mathbb{F}_{p}} f^{(p-1) / 2}\left(x_{0}\right) \bmod p, \tag{*}
\end{equation*}
$$

which determines $a_{p} \in \mathbb{Z}$ for all $p>13$ (since $\left|a_{p}\right| \leq 2 \sqrt{p}$). For $k>0$ we have

$$
\sum_{x_{0} \in \mathbb{F}_{p}} x_{0}^{k}= \begin{cases}-1 & (p-1) \mid k \\ 0 & \text { otherwise }\end{cases}
$$

(sums of non-trivial roots of unity vanish), and $\operatorname{deg} f^{(p-1) / 2}<2(p-1)$, so $\left(^{*}\right.$) reduces to

$$
a_{p} \equiv f_{p-1}^{(p-1) / 2} \bmod p
$$

where $f_{p-1}^{(p-1 /) 2}$ is the coefficient of x^{p-1} in $f^{(p-1) / 2}$; this is the Hasse invariant of E_{p}.

Recurrence relations

Now let $f \in \mathbb{Z}[x]$ have degree r. For $n \geq 0$ and $k \in \mathbb{Z}$, let f_{k}^{n} be the coefficient of x_{k} in f^{n}. The relations $f^{n+1}=f \cdot f^{n}$ and $\left(f^{n+1}\right)^{\prime}=(n+1) f^{\prime} \cdot f^{n}$ yield the identities

$$
f_{k}^{n+1}=\sum_{0 \leq i \leq r} f_{i} f_{k-i}^{n} \quad \text { and } \quad k f_{k}^{n+1}=(n+1) \sum_{0 \leq i \leq r} i f_{i} f_{k-i}^{n} .
$$

Multiplying the first identity by k and subtracting the second yields the linear recurrence

$$
k f_{0} f_{k}^{n}=\sum_{1 \leq i \leq r}((n+1) i-k) f_{i} f_{k-i}^{n}
$$

We can express this recurrence in terms of $v_{k}^{n} \in \mathbb{Z}^{r}$ and $R_{k}^{n} \in \mathbb{Z}^{r \times r}$, which for $r=3$ look like

$$
v_{k}^{n}:=\left[f_{k-2}^{n}, f_{k-1}^{n}, f_{k}^{n}\right], \quad R_{k}^{n}:=\left[\begin{array}{ccc}
0 & 0 & (3 n+3-k) f_{3} \\
k f_{0} & 0 & (2 n+2-k) f_{2} \\
0 & k f_{0} & (n+1-k) f_{1}
\end{array}\right] .
$$

Provided $f_{0} \neq 0$, we have $v_{k}^{n}=\left(k f_{0}\right)^{-1} v_{k-1}^{n}=\left(k!\left(f_{0}\right)^{k}\right)^{-1} v_{0}^{n} R_{1}^{n} \cdots R_{k}^{n}$ for all $k, n \geq 0$.

Computing the Hasse invariant

Now consider $f(x)=x^{3}+A x+B$, where $E: y^{2}=x^{3}+A x+B$ has good reduction at p. Let us assume $f_{0}=B \neq 0$ (or work with $g=f / x$ and $g^{n}=f / x^{n}$ which is even easier).

To compute $a_{p} \equiv f_{p-1}^{(p-1) / 2} \bmod p$, it suffices to compute $v_{2 n}^{n} \bmod (2 n+1)$ for $n=(p-1) / 2$. We have $2(n+1) \equiv 1 \bmod p$ and now define

$$
M_{k}:=2 R_{k}^{n} \bmod p=\left[\begin{array}{ccc}
0 & 0 & (3-2 k) f_{3} \\
k f_{0} & 0 & (3-2 k) f_{2} \\
0 & k f_{0} & (1-2 k) f_{1}
\end{array}\right] \bmod p
$$

which we not is independent of n. We then have

$$
v_{2 n}^{n} \equiv \frac{1}{(2 n)!f_{0}^{2 n}} v_{0}^{n} \frac{1}{2^{2 n}} M_{1} M_{2} \cdots M_{2 n} \equiv-v_{0}^{n} M_{1} \cdots M_{p-1} \bmod p
$$

where we have used $(2 n)!=(p-1)!\equiv-1 \bmod p$ and $a^{2 n}=a^{p-1} \equiv 1 \bmod p$ for $p \nmid a$. Computing $a_{p} \bmod p$ reduces to computing $M_{1} \cdots M_{p-1} \bmod p$ and $v_{0}^{n}=\left[0,0, f_{0}^{n}\right] \bmod p$.

Complexity analysis for a single prime p

If we simply evaluate the matrix product $M_{1} \cdots M_{p-1} \bmod p$ we obtain a bit-complexity of

$$
O(p \mathrm{M}(\log p))=O(p \log p \log \log p)
$$

which we is already slightly better than naïve point counting (even with a fast implementation of the Legendre symbol rather than counting square roots of $f\left(x_{0}\right)$ for each $x_{0} \in \mathbb{F}_{p}$). To improve this, let us view $M_{k} \bmod p$ as $M(k) \in \mathbb{F}_{p}[k]^{3 \times 3}$, fix $s:=\lfloor\sqrt{p-1}\rfloor$, and define

$$
A(k):=M(k) M(k+1) \cdots M(k+s-1) \in \mathbb{F}_{p}[k]^{3 \times 3}
$$

We can then compute the desired matrix product as

$$
M_{1} M_{2} \cdots M_{p-1} \equiv_{p} A(1) A(s+1) A(2 s+1) \cdots A((s-1) s+1) M_{s^{2}+1} \cdots M_{p-1}
$$

Using a product tree to compute $A(k)$, and standard multipoint evaluation yields a complexity of $p^{1 / 2}(\log p)^{2+o(1)}$. Applying the algorithm of Bostan-Gaudry-Schöst improves this to

$$
p^{1 / 2}(\log p)^{1+o(1)}
$$

Accumulating remainder tree

Given integer matrices A_{0}, \ldots, A_{n-1} and integer moduli m_{1}, \ldots, m_{n}, we want to compute

$$
C_{j}:=A_{0} \cdots A_{j-1} \bmod m_{j}
$$

for $1 \leq j \leq n$. We now define $B_{i}=A_{2 i} A_{2 i+1}$ and $n_{i}=m_{2 i} m_{2 i+1}$ (pad as needed to make n even). We now recursively compute $D_{i}=B_{0} \cdots B_{i-1} \bmod n_{i}$ for $1 \leq i<n / 2$, put $C_{1}=A_{0} \bmod m_{1}$ and

$$
C_{2} i=D_{i} \bmod m_{2 i} \quad \text { and } \quad C_{2 i+1}=\left(D_{i} \bmod m_{2 i+1}\right) A_{2 i}
$$

The recursion depth is $O(\log n)$, and the total number of bits at each level is roughly the same (the matrix dimension is fixed, so the bit size of a product of two matrices is the sum of the bit sizes of the factors plus $O(1)$ bits; the total bit size increases by $O(\log n)$ bits over the course of the algorithm).

If we assume the entries of the matrices A_{i} and the moduli m_{i} have $O(\log n)$ bits (this is true in our application, since the f_{i} are fixed and $\left.k \leq n\right)$, then the total complexity is $O(\mathrm{M}(n \log n) \log n)$ or

$$
O\left(n(\log n)^{3} \log \log n\right) \quad \text { or } \quad O\left((\log p)^{4} \log \log p\right) \text { per prime }
$$

This is asymptotically faster than both Schoof's algorithm and the expected running time of SEA, even under the best-case heuristic assumptions for SEA (by a factor of $\left.(\log \log p)^{2}\right)$

