
Computing zeta functions and L-functions

Lecture 3

Andrew V. Sutherland

June 25, 2019

CMI-HIMR Summer School in Computational Number Theory

Computing Frobenius traces of elliptic curves

Let E/Q be an elliptic curve y2 = f(x) and let p an odd prime of good reduction.

#Ep(Fp) = p+ 1− ap = 1 +
∑

x0∈Fp

(
1 +

(
f(x0)

p

))
Reducing modulo p yields

ap ≡ −
∑

x0∈Fp

(
f(x0)

p

)
≡ −

∑
x0∈Fp

f(x0)
(p−1)/2 ≡ −

∑
x0∈Fp

f (p−1)/2(x0) mod p, (*)

which determines ap ∈ Z for all p > 13 (since |ap| ≤ 2
√
p). For k > 0 we have∑

x0∈Fp

xk
0 =

{
−1 (p− 1)|k
0 otherwise

(sums of non-trivial roots of unity vanish), and deg f (p−1)/2 < 2(p− 1), so (*) reduces to

ap ≡ f
(p−1)/2
p−1 mod p.

where f
(p−1/)2
p−1 is the coefficient of xp−1 in f (p−1)/2; this is the Hasse invariant of Ep.

Recurrence relations

Now let f ∈ Z[x] have degree r. For n ≥ 0 and k ∈ Z, let fn
k be the coefficient of xk in fn.

The relations fn+1 = f · fn and (fn+1)′ = (n+ 1)f ′ · fn yield the identities

fn+1
k =

∑
0≤i≤r

fif
n
k−i and kfn+1

k = (n+ 1)
∑

0≤i≤r

ifif
n
k−i.

Multiplying the first identity by k and subtracting the second yields the linear recurrence

kf0f
n
k =

∑
1≤i≤r

(
(n+ 1)i− k

)
fif

n
k−i,

We can express this recurrence in terms of vnk ∈ Zr and Rn
k ∈ Zr×r, which for r = 3 look like

vnk := [fn
k−2, f

n
k−1, f

n
k], Rn

k :=

 0 0 (3n+ 3− k)f3
kf0 0 (2n+ 2− k)f2
0 kf0 (n+ 1− k)f1

 .

Provided f0 6= 0, we have vnk = (kf0)
−1vnk−1 = (k!(f0)

k)−1vn0R
n
1 · · ·Rn

k for all k, n ≥ 0.

Computing the Hasse invariant

Now consider f(x) = x3 +Ax+B, where E : y2 = x3 +Ax+B has good reduction at p.
Let us assume f0 = B 6= 0 (or work with g = f/x and gn = f/xn which is even easier).

To compute ap ≡ f
(p−1)/2
p−1 mod p, it suffices to compute vn2n mod (2n+ 1) for n = (p− 1)/2.

We have 2(n+ 1) ≡ 1 mod p and now define

Mk := 2Rn
k mod p =

 0 0 (3− 2k)f3
kf0 0 (3− 2k)f2
0 kf0 (1− 2k)f1

 mod p,

which we not is independent of n. We then have

vn2n ≡
1

(2n)!f2n
0

vn0
1

22n
M1M2 · · ·M2n ≡ −vn0M1 · · ·Mp−1 mod p,

where we have used (2n)! = (p− 1)! ≡ −1 mod p and a2n = ap−1 ≡ 1 mod p for p 6 | a.
Computing ap mod p reduces to computing M1 · · ·Mp−1 mod p and vn0 = [0, 0, fn

0] mod p.

Complexity analysis for a single prime p
If we simply evaluate the matrix product M1 · · ·Mp−1 mod p we obtain a bit-complexity of

O(pM(log p)) = O(p log p log log p)

which we is already slightly better than näıve point counting (even with a fast implementation
of the Legendre symbol rather than counting square roots of f(x0) for each x0 ∈ Fp).

To improve this, let us view Mk mod p as M(k) ∈ Fp[k]
3×3, fix s := b

√
p− 1c, and define

A(k) := M(k)M(k + 1) · · ·M(k + s− 1) ∈ Fp[k]
3×3,

We can then compute the desired matrix product as

M1M2 · · ·Mp−1 ≡p A(1)A(s+ 1)A(2s+ 1) · · ·A((s− 1)s+ 1)Ms2+1 · · ·Mp−1

Using a product tree to compute A(k), and standard multipoint evaluation yields a complexity
of p1/2(log p)2+o(1). Applying the algorithm of Bostan-Gaudry-Schöst improves this to

p1/2(log p)1+o(1)

Accumulating remainder tree

Given integer matrices A0, . . . , An−1 and integer moduli m1, . . . ,mn, we want to compute

Cj := A0 · · ·Aj−1 mod mj

for 1 ≤ j ≤ n. We now define Bi = A2iA2i+1 and ni = m2im2i+1 (pad as needed to make n even).
We now recursively compute Di = B0 · · ·Bi−1 mod ni for 1 ≤ i < n/2, put C1 = A0 mod m1 and

C2i = Di mod m2i and C2i+1 = (Di mod m2i+1)A2i.

The recursion depth is O(logn), and the total number of bits at each level is roughly the same (the
matrix dimension is fixed, so the bit size of a product of two matrices is the sum of the bit sizes of the
factors plus O(1) bits; the total bit size increases by O(logn) bits over the course of the algorithm).

If we assume the entries of the matrices Ai and the moduli mi have O(logn) bits (this is true in our
application, since the fi are fixed and k ≤ n), then the total complexity is O(M(n logn) logn) or

O(n(logn)3 log log n) or O((log p)4 log log p) per prime

This is asymptotically faster than both Schoof’s algorithm and the expected running time of SEA,
even under the best-case heuristic assumptions for SEA (by a factor of (log log p)2)

