
Computing zeta functions and L-functions

Lecture 2

Andrew V. Sutherland

June 26, 2019

CMI-HIMR Summer School in Computational Number Theory

Primer on fast finite field arithmetic

Represent Fp ' Z/pZ by [0, p− 1] ⊆ Z and Fpe ' Fp[x]/(f(x)) by {g ∈ Fp[x] : deg g ≤ e}.
For simplicity, assume q = pe with log e = O(log p) or log p = O(1).

operation complexity (n = log q,m ≥ deg) key idea

α± β O(n) none
αβ O(n log n) HvdH FFT + Newton
α−1 O(n log2n) fast xgcd
α−11 , . . . , α−1m O(mn log n) (log n� m) (α1 · · ·αm)−1

αm O(n log n logm) binary exp
gh O(mn log(mn)) HvdH FFT (conditional)
g = qh+ r O(mn log(mn)) Newton
d = sg + th O(mn log(mn) logm) fast xgcd
g(α1), . . . , g(αm) O(mn log(mn) logm)∗ product tree
g(αi) = βi O(mn log(mn) logm) stare at Lagrange
#{α : g(α) = 0} O(mn2 log n) (m� q) deg gcd(g(x), xq − x)
α ∈ {α : g(α) = 0} O(mn2 log n) (expected) gcd(g(x), (x+ δ)s − 1)

Näıve point counting

To count points on a curve X/Fq defined by a (possibly singular) plane model f(x, y, z) = 0:

1. Count non-singular affine points by counting roots of g(y) = f(x0, y, 1) for each x0 ∈ Fq.

2. Count singular or non-affine points (for suitable f there are O(1) of these).

Example: y2 = f(x). Count rational square roots of g(y) = f(x0, y) for x0 ∈ Fq, then add
0,1,2 points at infinity depending on parity of deg f and squareness of lc(f).

Example: smooth f(x, y, z) = 0. Count roots of g(y) = f(x0, y, 1) for x0 ∈ Fq, then count
roots of g(y) = f(1, y, 0), and add 1 if f(0, 1, 0) = 0.

Complexity is O(q log2q log log q).

Generic group algorithms

Assumptions:

1. Each group element is assigned a unique id in {0, 1}n with n = O(log#G).

2. We have a black box to compute group operations (ids go in, ids come out).

3. The black box has a “random” button that outputs the id of uniformly random α ∈ G.

Examples of generic groups algorithms:

1. binary exponentiation (multiplication) via square-and-multiply (double-and-add)

2. fast order algorithms (compute |α| given a multiple N of |α| in quasi-linear time).

3. Pohlig-Hellman (reduce discrete log to prime order case)

4. Pollard-rho (low memory randomized algorithm for order and discrete log)

5. Structure computation in finite abelian p-groups

6. baby-steps giant-steps

Baby-steps giant-steps

BSGS: To compute |α| given an upper bound |α| ≤M , pick r, s ≈
√
M such that rs > M .

1. Compute baby steps: 0α, 1α, 2α, . . . , (r − 1)α (store in lookup table).

2. Compute giant steps: 0α, rα, 2rα, . . . , (s− 1)rα (lookup as you go).

3. When we reach a collision rjα = iα with 0 ≤ i < r and 0 ≤ j < s, put N = rj − i.
4. Use a fast order algorithm to compute |α| given N (this involves factoring N).

Uses at most 2
√
M group operations.

I If you don’t know M , start with M = 4 and double until you succeed, or go triangular.

I If inverses are cheap, negate baby steps and double giant step size.

I Batch group operations using baby/giant armies that march in parallel.

I Easily adapted to search an interval or arithmetic progression containing a multiple of |α|.
I Can optimize for expected distribution of |α| in [1,M], and you can start in the center.

I Complexity can be improved to O(
√
M/ log logM) using a primorial search.

Computing the group order
Let G be an abelian group of order N ∈ [M0,M1] with 2M0 > M1:

1. Compute a lower bound e on λ(G) = lcm{|α| : α ∈ G} by computing |α| for at least two
random α ∈ G (with probability at least 1/ζ(2) > 1/2, two elements suffice).

2. If e has a unique multiple N in [M0,M1] then return N = |G|.
3. Heuristically compute the structure of p-Sylow subgroups of G for p|e less than

√
M1.

4. Using e and the results of step 3, determine a known divisor M of |G|, and if M has a
unique multiple N in [M0,M1] return N = |G|, otherwise go to step 1.

The heuristic computation of the p-Sylow subgroup uses Õ(
√
p log |G|) GOPs and outputs the

structure of a subgroup that is equal to the full p-Sylow subgroup probability greater than 1/2.

We can exponentially amplify the probability of correctness in steps 1,3 via repetition so that
with probability greater than 1/2 at step 4 we have M = |G| and the algorithm terminates.

Bottom line: we can rigorously compute #G using Õ((M1 −M0)
1/2 + (#G)1/4) expected

group operations.

Remark: For X/Fq of genus 1 with q > 49 one can avoid p-sylow structure computations completely
using a generalization of Mestre’s approach (via the quadratic twist). For g > 1 this is not possible.

Computing the order of Jac(X)(Fq)

Let X/Fq be a nice curve of genus g.

For G = Jac(X)(Fq) the Hasse-Weil bounds imply #G ∈ [(
√
q − 1)2g,

√
g + 1)2g], so if

2(
√
q − 1)2g > (

√
g + 1)2g,

we can rigorously compute #G in Õ(q(g−1/2)/2 + qg/4) = Õ(q(2g−1)/4) expected time.

For g = 1, 2, 3, 4, . . . we need q ≥ 32, 131, 293, 529, . . . , O(g2).

For g > 2 we can improve this by first computing #X(Fq), . . . ,#X(Fqb(g−1)/2c). This

improves the complexity to Õ(q(2g−1−dg/2e)/4), which is Õ(q) for g = 3.

For g ≤ 3 and q ≥ 1600 we can determine the L-polynomial LX(T) by computing
LX(1) = #Jac(X)(Fq) and LX(−1) = #Jac(X̃)(Fq).

1

1If X has no nontrivial quadratic twist we can instead compute LX(−1) = #ker(π + 1)/#Jac(X)[2](Fq).

Computing the order of Jac(X)(Fq)

Let X/Fq be a nice curve of genus g.

For G = Jac(X)(Fq) the Hasse-Weil bounds imply #G ∈ [(
√
q − 1)2g,

√
g + 1)2g], so if

2(
√
q − 1)2g > (

√
g + 1)2g,

we can rigorously compute #G in Õ(q(g−1/2)/2 + qg/4) = Õ(q(2g−1)/4) expected time.

For g = 1, 2, 3, 4, . . . we need q ≥ 32, 131, 293, 529, . . . , O(g2).

For g > 2 we can improve this by first computing #X(Fq), . . . ,#X(Fqb(g−1)/2c). This

improves the complexity to Õ(q(2g−1−dg/2e)/4), which is Õ(q) for g = 3.

For g ≤ 3 and q ≥ 1600 we can determine the L-polynomial LX(T) by computing
LX(1) = #Jac(X)(Fq) and LX(−1) = #Jac(X̃)(Fq).

1

1If X has no nontrivial quadratic twist we can instead compute LX(−1) = #ker(π + 1)/#Jac(X)[2](Fq).

Schoof’s algorithm

Let E/Fq be an elliptic curve y2 = f(x) with q = pe odd.
Then #E(Fq) = q + 1− t, where |t| ≤ 2

√
q.

Let n = log q and fix L ∼ n
2 such that

∏
`≤L > 4

√
q (for simplicity, let us exclude ` = p)

Our plan is to compute t` := t mod ` for primes ` ≤ L, then recover t via the CRT.
We will compute the characteristic polynomial of πE acting on E[`], which has the form

T 2 − t`T + q` ∈ (Z/`Z)[T],

where q` = q mod `. As elements of End(E[`]), we have the identity

π2
` − t`π` + q` = 0. (1)

where π` is the restriction of πE to E[`]. It suffices to compute π`, π
2
` , q` ∈ End(E[`])

(which we know a priori) and then try every possibility for t` (or better, use a BSGS search).

In order to do this, we need to explicitly represent elements of End(E[`]) and understand how
to compute the ring operations in End(E[`]).

Representing elements of End(E[`])

We can compute t2 ≡ #E[2](Fq) mod 2 by computing #{α ∈ Fq : f(α) = 0}, so let ` > 2.

Let h ∈ Fq[x] be the `th division polynomial of E; so P = (x0, y0) ∈ E[`]⇔ h(x0) = 0.

We can compute h ∈ Fq[x] in Õ(`2 log q) time using well known recurrence relations.

We represent elements of End(E[`]) using rational maps defined by polynomials that we may
view as elements of the ring

R` :=
Fq[x, y]

(h(x), y2 − f(x))

where y2 = f(x) = x3 +Ax+B is a Weierstrass equation for E/Fq. We have

π` =
(
xq mod h(x), yq mod (h(x), y2 − f(x))

)
=
(
xq mod h(x),

(
f(x)(q−1)/2 mod h(x)

)
y
)
.

and we also note that
1` = (x mod h(x),

(
1 mod h(x)

)
y)

Ring operations in End(E[`])

Observe that π` and 1` both have the form (a(x), b(x)y). Let α1 = (a1(x), b1(x)y) and
α2 = (a2(x), b2(x)y) be nonzero elements of End(E[`]).

Multiplication: α1 ◦ α2 = (a1(a2(x)), b1(a2(x))b2(x) y).

Addition: α3 = α1 + α2 has the form (a3(x), b3(x)y) with

a3 = r2f − a1 − a2,
b3 = r(a1 − a3)− b1,

where r = (b1 − b2)/(a2 − a1) when a1 6= a2 and r = (3a1 +A)/(2b1f) when α1 = α2.

What happens if we hit a zero divisor in the computation of the denominator of r?

Life is good! We can use this zero divisor to obtain a nontrivial factor g of h ∈ Fq[x].
We then replace h by g or h/g and restart the computation working in a smaller ring.

CoCalc Worksheet

https://cocalc.com/share/c83a1052-f91e-43a3-bc61-c1549d7e3b59/SchoofsAlgorithm.sagews?viewer=share

Ring operations in End(E[`])

Observe that π` and 1` both have the form (a(x), b(x)y). Let α1 = (a1(x), b1(x)y) and
α2 = (a2(x), b2(x)y) be nonzero elements of End(E[`]).

Multiplication: α1 ◦ α2 = (a1(a2(x)), b1(a2(x))b2(x) y).

Addition: α3 = α1 + α2 has the form (a3(x), b3(x)y) with

a3 = r2f − a1 − a2,
b3 = r(a1 − a3)− b1,

where r = (b1 − b2)/(a2 − a1) when a1 6= a2 and r = (3a1 +A)/(2b1f) when α1 = α2.

What happens if we hit a zero divisor in the computation of the denominator of r?
Life is good! We can use this zero divisor to obtain a nontrivial factor g of h ∈ Fq[x].
We then replace h by g or h/g and restart the computation working in a smaller ring.

CoCalc Worksheet

https://cocalc.com/share/c83a1052-f91e-43a3-bc61-c1549d7e3b59/SchoofsAlgorithm.sagews?viewer=share

Computational complexity

With the implementation described above, Schoof’s algorithm runs in O(n5 log log n) time,
where n = log q.

Elkies: If E admits an `-isogeny ϕ, we can replace the division polynomial with the polynomial
whose roots are the x-coordinates of the affine Fq-points in the kernel of ϕ. This reduces the
degree of h from (`2 − 1)/2 to (`− 1)/2.

Heuristically this gives a complexity to Õ(n4), but we cannot prove this, not even under GRH.
But we can prove it is true on average.

Pila showed how to generalize Schoof’s algorithm to higher dimension abelian varieties to
obtain a complexity that is polynomial in log q but doubly exponential in g.

Abelard, building on work of Gaudry, Harley, and Schöst improves Pila’s result to (log q)O(g)

for hyperelliptic curves. Practical implementations exist for g = 2 with complexity Õ((log q)8)

For RM hyperelliptic curves we can do better: Õ((log q)5) genus 2 and Õ((log q)6) genus 3.

Lemma

Suppose π2
` (P)− cπ`(P)+ q`P = 0 for a nonzero P ∈ E[`](Fq) and c ∈ Z. Then t` ≡ c mod `.

Proof: Subtracting the characteristic polynomial of π` yields (t` − c)π`(P) = 0, and π`(E) has
prime order `, so t` ≡ c mod `.

