
Computing zeta functions and L-functions

Lecture 1

Andrew V. Sutherland

June 24, 2019

CMI-HIMR Summer School in Computational Number Theory

Zeta functions of curves and their function fields
Recall that the zeta function of a nice curve X/Fq is defined by

ZX(T) := exp

∑
r≥1

Nr
r
T r

 ,

where Nr := #X(Fqr). Equivalently, if we put K := Fq(X) then

ZX(T) = ZK(T) :=
∑
n≥1

bnT
n =

∏
e≥1

(1− T e)−ce ,

where bn counts effective divisors of degree n, and ce counts prime divisors (places of K,
equivalently, closed points of X) of degree e. Indeed, we have

Nr = #X(Fqr) =
∑
e|r

ece,

logZX(T) = −
∑
e≥1

ce log(1− T e) =
∑
e≥1

ce
∑
d≥1

1

d
T de =

∑
r≥1

Nr
r
T r.

Key properties of the zeta function of a curve
From the Weil conjectures for curves (and abelian varieties), we have

1. ZX(T) = LX(T)
(1−T)(1−qT) with LX ∈ Z[T] of degree 2g.

2. LX(T) = qgT 2g + qg−1a1T
2g−1 + · · ·+ qag−1T

g+1 + agT
g

1 + a1T + · · ·+ ag−1T
g−1 +

�

3. LX(T) =
∏2g
i=1(1− αiT) with |αi| = q1/2;

4. #X(Fqr) = qr + 1−
∑2g

1 αri and # Jac(X)(Fqr) =
∏2g
i=1(1− αri).

It follows that a1, . . . , ag determine N1, . . . , Ng and conversely,
and that both determine #X(Fqr) and # Jac(X)(Fqr) for all r ≥ 1.

We also have the bounds |ai| ≤
(
2g
i

)
qi/2 (which are not tight in general).

Setting all αi to
√
q, and then to −√q, yields the Hasse-Weil bounds

(
√
q − 1)2g ≤ # Jac(Fq) ≤ (

√
q + 1)2g

spanning an interval of width 4gqg−1/2 +O(qg−3/2).

The L-function of a curve

Now let X be a nice curve of genus g over a number field K.
The L-function of X is defined the Euler product

L(X, s) = L(Jac(X), s) :=
∑
n≥1

ann
−s :=

∏
p

Lp(N(p)−s)−1.

where p varies over the primes of K (prime ideals of OK) and N(p) := #Fp is the cardinality
of the residue field Fp := OK/p.

For primes p of good reduction for X we have Lp(T) := LXp
(T),

where Xp denotes the reduction of X to the residue field Fp.

In every case Lp ∈ Z[T] has degree at most 2g.
Thus the an are integers and L(X, s) is an arithmetic L-function of degree 2g with analytic
normalization Lan(X, s+ 1

2) .

It can happen that X has bad reduction at p but Jac(X) does not;
from the L-function perspective, these are good primes.

The Selberg class with polynomial Euler factors

The Selberg class Spoly consists of Dirichlet series L(s) =
∑
n≥1 ann

−s:

1. L(s) has an analytic continuation that is holomorphic at s 6= 1;

2. For some γ(s) = Qs
∏r
i=1 Γ(λis+ µi) and ε, the completed L-function Λ(s) := γ(s)L(s)

satisfies the functional equation

Λ(s) = εΛ(1− s̄),

where Q > 0, λi > 0, Re(µi) ≥ 0, |ε| = 1. Define degL := 2
∑r
i λi.

3. a1 = 1 and an = O(nε) for all ε > 0 (Ramanujan conjecture).

4. L(s) =
∏
p Lp(p

−s)−1 for some Lp ∈ Z[T] with degLp ≤ degL
(has an Euler product).

The Dirichlet series Lan(s,X) := L(X, s+ 1
2) satisfies (3) and (4),

and conjecturally lies in Spoly; for g = 1 and K totally real this is known.

Strong multiplicity one

Theorem (Kaczorowski-Perelli 2001)

If A(s) =
∑
n≥1 ann

−s and B(s) =
∑
n≥1 bnn

−s lie in Spoly and ap = bp for all but finitely
many primes p, then A(s) = B(s).

Corollary

If Lan(s,X) lies in Spoly then it is completely determined by any choice of all but finitely many
coefficients ap.

Henceforth we assume that Lan(s,X) ∈ Spoly.

Let ΓC(s) = 2(2π)sΓ(s) and define Λ(X, s) := ΓC(s)gL(X, s). Then

Λ(X, s) = εN1−sΛ(X, 2− s).

where the analytic root number ε = ±1 and the analytic conductor N ∈ Z≥1 are determined
by the ap (let us take these as definitions).

Testing the functional equation

Let G(x) be the inverse Mellin transform of ΓC(s)g =
∫∞
0
G(x)xs−1dx,

and define

S(x) :=
1

x

∑
anG(n/x),

so that Λ(X, s) =
∫∞
0
S(x)x−sdx, and for all x > 0 we have

S(x) = εS(N/x).

The function G(x) decays rapidly, and for sufficiently large c0 we have

S(x) ≈ S0(x) :=
1

x

∑
n≤c0x

anG(n/x),

with an explicit bound on the error |S(x)− S0(x)|.

Effective strong multiplicity one

Fix a finite set of small primes S (e.g. S = {2}) and an integer M that we know is a multiple
of the conductor N (e.g. M = ∆(X)).

There is a finite set of possibilities for ε = ±1, N |M , and the Euler factors Lp ∈ Z[T] for
p ∈ S (the coefficients of Lp(T) are bounded).

Suppose we can compute an for n ≤ c1
√
M whenever p - n for p ∈ S.

We now compute δ(x) := |S0(x)− εS0(N/x)| with x = c1
√
N for every possible choice of ε,

N , and Lp(T) for p ∈ S. If all but one choice makes δ(x) larger than our explicit error bound,
we know the correct choice.

For a suitable choice of c1 this is guaranteed to happen.1 One can explicitly determine a set of
O(N ε) candidate values of c1, one of which is guaranteed to work; in practice the first one
usually works.

1Subject to our assumptions; if it does not happen then we have found an explicit counterexample to the
conjectured Langlands correspondence.

Conductor bounds

The formula of Brumer and Kramer gives explicit bounds on the p-adic valuation of the
algebraic conductor N of Jac(X):

vp(N) ≤ 2g + pd+ (p− 1)λp(d),

where d = b 2g
p−1c and λp(d) =

∑
idip

i, with d =
∑
dip

i, 0 ≤ di < p.

g p = 2 p = 3 p = 5 p = 7 p > 7
1 8 5 2 2 2
2 20 10 9 4 4
3 28 21 11 13 6

For g ≤ 2 these bounds are tight (see www.lmfdb.org for examples).

For hyperelliptic curves N divides ∆(X). What about other curves?

www.lmfdb.org

Algorithms to compute zeta functions

Given X/Q of genus g, we want to compute Lp(T) for all good p ≤ B.

complexity per prime
(ignoring factors of O(log log p))

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3(log p)2

group computation p1/4 log p p3/4 log p p(log p)2

p-adic cohomology p1/2(log p)2 p1/2(log p)2 p1/2(log p)2

CRT (Schoof-Pila) (log p)5 (log p)8 (log p)14

average poly-time (log p)4 (log p)4 (log p)4

For L(X, s) =
∑
ann

−s, we only need ap2 for p2 ≤ B, and ap3 for p3 ≤ B. For 1 < r ≤ g we
can compute all apr with pr ≤ B in time O(B logB) using naive point counting.

The bottom line: it all comes down to computing ap’s at good primes, equivalently,
computing #X(Fp) = p+ 1− ap (aka counting points).

The divisor group of a curve (function field)

Recall that we have a (contravariant) equivalence of categories

{nice curves X/Fq} ←→ {function fields K/Fq} ,

which sends X to Fq(X) and morphisms ϕ : X → Y to field embeddings ϕ∗ : Fq(Y)→ Fq(X)
defined by f 7→ f ◦ ϕ.

We have a bijection between closed points P of X (GFq -orbits of X(Fq)) and places P of K
(equivalence classes of absolute values of K).

The divisor group Div(X) = Div(K) is the free abelian group on closed points (places) P .
Each D ∈ Div(X) has the form

D =
∑
P

nPP.

For f ∈ K× we define div(f) :=
∑
P vP (f)P , and let Princ(X) denote the subgroup

{div(f) : f ∈ K×} ∪ {0} of principal divisors.

The divisor class group

Define the homomorphism deg : Div(X)→ Z by D 7→
∑
P nP deg(P), where

deg(P) = #P = [κ(P) : Fq]; note that Princ(X) ⊆ ker deg.

We now define Pic(X) := Div(X)
Princ(X) , and the divisor class group Pic0(X) as the kernel of the

degree map Pic(X)→ Z, yielding the exact sequence

0 −→ Pic0(X) −→ Pic(X) −→ Z −→ 0.

Provided that X has a rational point we have a functorial isomorphism
Pic0(X) ' Jac(X)(Fq), meaning Pic0(XL) ' Jac(X)(L) for all L/Fq.2 We shall henceforth
assume X(Fq) contains a rational point O. W now define the Abel-Jacobi map

X → Pic0(X)

P 7→ [O − P]

When X is an elliptic curve this map is an isomorphism.

2This assumption is necessary, Pic0(XFq)
GFq need not equal Pic0(X) when X(Fq) = ∅

Representing elements of the divisor class group

The Riemann-Roch theorem implies that if we fix O ∈ X(Fq), every α ∈ Pic0(X) can be
written as α = [D − gO] for some D ≥ 0.

This allows us to define a birational map between Symg(X) := Xg/Sg and Jac(X), but this
map is not an isomorphism (see the exercises). Explicitly representing elements of Jac(X) is a
hard problem, in general.

Now suppose X is defined by an equation y2 = f(x) with f monic, squarefree, of degree
2g + 1 and g ≥ 1. Then X is an elliptic or hyperelliptic curve with a unique rational point ∞
at infinity.

Let π : X → P1 be the x-coordinate projection and let φ ∈ Aut(X) denote the hyperelliptic
involution, which operates on the fibers of π by negating the y-coordinate. For each affine
closed point P of X the monic polynomial hP ∈ Fq[x] whose roots form π(P) is an element of
Fq(P1) that we can pullback via π to obtain a principal divisor

div(π∗(hp)) = P + φ(P)− 2 deg(P)∞

Mumford representation of divisor classes
With X : y2 = f(x) of genus g, each element of Pic0(X) contains a divisor D − g∞ with
D ≥ 0 which we can then write as D̄ = P1 + · · ·+ Pn − n∞ with P1, . . . , Pn ∈ X(Fq)− {∞}
such that φ(Pi) 6= Pj for any j 6= i (with 0 ≤ n ≤ g). Call such a D̄ reduced.

If we put Pi = (xi : yi : 1), note that if xi = xj then yi = yj .

We now define u(x) :=
∏n
i=1(x− xi) ∈ Fq[x], and let v ∈ Fq[x] be the unique polynomial of

minimal degree such that v(xi) = yi with appropriate multiplicity: if (x− xi)k|u then
(x− xi)k|(v(x)− yi).

The pair (u, v) ∈ Fq[x]2 representing a reduced divisor satisfies:

1. u is monic with deg(u) ≤ g,

2. deg(v) < deg(u),

3. u divides v2 − f (because ordx=xi
(u) ≤ ordx=xi

(v2 − f)).

Any such Mumford pair (u, v) determines a reduced divisor [u, v]

Theorem: [u, v] ∼ [s, t]⇔ (u, v) = (s, t).

Cantor’s algorithm

The representation [u, v] of reduced divisors is Mumford representation.
To compute in Pic0(X) we then rely on Cantor’s algorithm.

Input: Pairs (u1, v1), (u2, v2) ∈ Fq[x]2 for reduced divisors D1, D2. Output: The pair (u3, v3)
representing the divisor class [D1 +D2]

1. Compute d = gcd(u1, u2, v1 + v2) = s1u1 + s2u2 + s3(v1 + v2).

2. Compute u := u1u2/d
2.

3. Compute v := (s1u1v2 + s2u2v1 + s3(v1v2 + f))/d mod u.

4. While deg u > g:

4.1 Replace u with (f − v2)/u and then replace v with −v mod u.

5. Return (u3, v3)

To generate elements of Pic0(X) we pick random monic u ∈ Fq[x] of degree at most g and try
to find v such that (u, v) is a Mumford pair.

This is not always possible, but it must succeed with probability ≈ 1/2, since # Pic0(Fq) ≈ qg.

Remarks and generalizations

Cantor’s algorithm has bit-complexity Õ(g2(log q)) (near optimal), but the constant factors
can be substantially improved for fixed g.

Cantor’s algorithm can be generalized to handle arbitrary hyperelliptic curves (in two
apparently different but ultimately equivalent ways).

Approximate current state of the art (odd characteristic, affine coords):

rational WS point no rational WS point

genus add dbl add dbl

1 3M+I 4M+I
2 24M+I 27M+I 28M+I 32M+I
3 67M+I 68M+I 79M+I 82M+I

As with elliptic curves, inversions can be avoided by using projective (or other) coordinates, but
we prefer affine coordinates; the cost of inversions can be ameliorated with batching.

