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Sato-Tate in genus 1

Let E/Q be an elliptic curve.
Let tp = p + 1−#E(Fp) denote the trace of Frobenius.

Consider the distribution of

a1 = −tp/
√

p ∈ [−2, 2]

as p ≤ N varies over primes of good reduction.

What happens as N →∞?
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Sato-Tate distributions in genus 1

1. Typical case (no CM)
Elliptic curves E/Q w/o CM have the semi-circular trace distribution.
(This also holds for E/k when k is a totally real number field).

[Clozel, Harris, Shepherd-Barron, Taylor, Barnet-Lamb, and Geraghty].

2. Exceptional cases (CM)
Elliptic curves E/k with CM have one of two distinct trace distributions,
depending on whether k contains the CM field or not.

[classical]
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Sato-Tate groups in genus 1

The Sato-Tate group of E is a closed subgroup G of SU(2) = USp(2)
that may be derived from the `-adic Galois representation of E.

The generalized Sato-Tate conjecture implies that the normalized trace
distribution of E converges to the distribution of the traces in G given
by the Haar measure (the unique translation-invariant measure).

Each such distribution is uniquely determined by its moment sequence.

G G/G0 Example curve k E[a0
1],E[a2

1],E[a4
1] . . .

U(1) C1 y2 = x3 + 1 Q(
√
−3) 1, 2, 6, 20, 70, 252, . . .

N(U(1)) C2 y2 = x3 + 1 Q 1, 1, 3, 10, 35, 126, . . .
SU(2) C1 y2 = x3 + x + 1 Q 1, 1, 2, 5, 14, 42, . . .

Three Sato-Tate groups, two of which arise for curves defined over Q.
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Normalized Euler factors (L-polynomials)

Let A be an abelian variety of dimension g ≥ 1 over a number field k.
Let ρ` : Gk → AutQ`

(V`(A)) ∼= GSp2g(Q`) be the Galois representation
arising from the action of Gk on the `-adic Tate module V`(A).

For each prime p of good reduction for A, let q = ‖p‖ and define

Lp(T) = det(1− ρ`(Frobp)T),

L̄p(T) = Lp(T/
√

q) =

2g∑
i=0

aiT i.

The polynomial L̄p(T) is real, monic, symmetric, and unitary.

Every such polynomial occurs as the characteristic polynomial of a
unique conjugacy class in the compact Lie group USp(2g).
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The Sato-Tate group STA

Let G1
k be the kernel of the cyclotomic character χ` : Gk → Q×` .

Let G1,Zar
` be the Zariski closure of ρ`(G1

k) in GSp2g(Q`).
Choose an embedding ι : Q` ↪→ C and let G1 = G1,Zar

` ⊗ι C.

Definition [Serre]
STA ⊆ USp(2g) is a maximal compact subgroup of G1 ⊆ Sp2g(C).
For each prime p of good reduction for A, let s(p) denote the
conjugacy class of ‖p‖−1/2ρ`(Frobp) ∈ G1 in STA.

The characteristic polynomial of s(p) is L̄p(T).
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The refined Sato-Tate conjecture

Let µSTA denote the image on Conj(STA) of the Haar measure on STA.

Conjecture [Serre]
The conjugacy classes s(p) are µSTA-equidistributed.

In particular, the distribution of A’s normalized Euler factors L̄p(T)
matches the distribution of characteristic polynomials of random
matrices in STA.

We can test this numerically by comparing statistics of the coefficients
a1, . . . , ag of L̄p(T) over ‖p‖ ≤ N to the predictions given by µSTA .

http://math.mit.edu/˜drew
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The Sato-Tate axioms (weight 1 case)

A subgroup G of USp(2g) satisfies the Sato-Tate axioms if:

1 G is a closed.
2 (Hodge condition) There exists a homomorphism θ : U(1)→ G0

such that θ(u) has eigenvalues u and u−1 with multiplicity g.
3 (Rationality condition) For each component H of G and each

irreducible character χ of GL2g(C) we have E[χ(γ) : γ ∈ H] ∈ Z.

Note: for any fixed g, the set of subgroups of USp(2g) that satisfy the
Sato-Tate axioms is finite (up to conjugacy).

Proposition
For g ≤ 3, the group STA satisfies the Sato-Tate axioms.

Conjecturally, this holds for all g.
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Sato-Tate groups in genus 2

Theorem 1 [FKRS]
Up to conjugacy, there are exactly 55 closed subgroups of USp(4)
that satisfy the Sato-Tate axioms:

U(1) : C1,C2,C3,C4,C6,D2,D3,D4,D6,T,O,
J(C1), J(C2), J(C3), J(C4), J(C6),
J(D2), J(D3), J(D4), J(D6), J(T), J(O),
C2,1,C4,1,C6,1,D2,1,D3,2,D4,1,D4,2,D6,1,D6,2,O1

SU(2) : E1,E2,E3,E4,E6, J(E1), J(E2), J(E3), J(E4), J(E6)
U(1)× U(1) : F,Fa,Fc,Fa,b,Fab,Fac,Fab,c,Fa,b,c

U(1)× SU(2) : U(1)× SU(2), N(U(1)× SU(2))
SU(2)× SU(2) : SU(2)× SU(2), N(SU(2)× SU(2))

USp(4) : USp(4)

Of these, 52 can and do arise as STA for some abelian surface A,
of which 34 can and do occur with A defined over Q.
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Sato-Tate groups in genus 2 with G0 = U(1).

d c G G/G0 z1 z2 M[a2
1] M[a2]

1 1 C1 C1 0 0, 0, 0, 0, 0 8, 96, 1280, 17920 4, 18, 88, 454
1 2 C2 C2 1 0, 0, 0, 0, 0 4, 48, 640, 8960 2, 10, 44, 230
1 3 C3 C3 0 0, 0, 0, 0, 0 4, 36, 440, 6020 2, 8, 34, 164
1 4 C4 C4 1 0, 0, 0, 0, 0 4, 36, 400, 5040 2, 8, 32, 150
1 6 C6 C6 1 0, 0, 0, 0, 0 4, 36, 400, 4900 2, 8, 32, 148
1 4 D2 D2 3 0, 0, 0, 0, 0 2, 24, 320, 4480 1, 6, 22, 118
1 6 D3 D3 3 0, 0, 0, 0, 0 2, 18, 220, 3010 1, 5, 17, 85
1 8 D4 D4 5 0, 0, 0, 0, 0 2, 18, 200, 2520 1, 5, 16, 78
1 12 D6 D6 7 0, 0, 0, 0, 0 2, 18, 200, 2450 1, 5, 16, 77
1 2 J(C1) C2 1 1, 0, 0, 0, 0 4, 48, 640, 8960 1, 11, 40, 235
1 4 J(C2) D2 3 1, 0, 0, 0, 1 2, 24, 320, 4480 1, 7, 22, 123
1 6 J(C3) C6 3 1, 0, 0, 2, 0 2, 18, 220, 3010 1, 5, 16, 85
1 8 J(C4) C4 × C2 5 1, 0, 2, 0, 1 2, 18, 200, 2520 1, 5, 16, 79
1 12 J(C6) C6 × C2 7 1, 2, 0, 2, 1 2, 18, 200, 2450 1, 5, 16, 77
1 8 J(D2) D2 × C2 7 1, 0, 0, 0, 3 1, 12, 160, 2240 1, 5, 13, 67
1 12 J(D3) D6 9 1, 0, 0, 2, 3 1, 9, 110, 1505 1, 4, 10, 48
1 16 J(D4) D4 × C2 13 1, 0, 2, 0, 5 1, 9, 100, 1260 1, 4, 10, 45
1 24 J(D6) D6 × C2 19 1, 2, 0, 2, 7 1, 9, 100, 1225 1, 4, 10, 44
1 2 C2,1 C2 1 0, 0, 0, 0, 1 4, 48, 640, 8960 3, 11, 48, 235
1 4 C4,1 C4 3 0, 0, 2, 0, 0 2, 24, 320, 4480 1, 5, 22, 115
1 6 C6,1 C6 3 0, 2, 0, 0, 1 2, 18, 220, 3010 1, 5, 18, 85
1 4 D2,1 D2 3 0, 0, 0, 0, 2 2, 24, 320, 4480 2, 7, 26, 123
1 8 D4,1 D4 7 0, 0, 2, 0, 2 1, 12, 160, 2240 1, 4, 13, 63
1 12 D6,1 D6 9 0, 2, 0, 0, 4 1, 9, 110, 1505 1, 4, 11, 48
1 6 D3,2 D3 3 0, 0, 0, 0, 3 2, 18, 220, 3010 2, 6, 21, 90
1 8 D4,2 D4 5 0, 0, 0, 0, 4 2, 18, 200, 2520 2, 6, 20, 83
1 12 D6,2 D6 7 0, 0, 0, 0, 6 2, 18, 200, 2450 2, 6, 20, 82
1 12 T A4 3 0, 0, 0, 0, 0 2, 12, 120, 1540 1, 4, 12, 52
1 24 O S4 9 0, 0, 0, 0, 0 2, 12, 100, 1050 1, 4, 11, 45
1 24 O1 S4 15 0, 0, 6, 0, 6 1, 6, 60, 770 1, 3, 8, 30
1 24 J(T) A4 × C2 15 1, 0, 0, 8, 3 1, 6, 60, 770 1, 3, 7, 29
1 48 J(O) S4 × C2 33 1, 0, 6, 8, 9 1, 6, 50, 525 1, 3, 7, 26
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Sato-Tate groups in genus 2 with G0 6= U(1).

d c G G/G0 z1 z2 M[a2
1] M[a2]

3 1 E1 C1 0 0, 0, 0, 0, 0 4, 32, 320, 3584 3, 10, 37, 150
3 2 E2 C2 1 0, 0, 0, 0, 0 2, 16, 160, 1792 1, 6, 17, 78
3 3 E3 C3 0 0, 0, 0, 0, 0 2, 12, 110, 1204 1, 4, 13, 52
3 4 E4 C4 1 0, 0, 0, 0, 0 2, 12, 100, 1008 1, 4, 11, 46
3 6 E6 C6 1 0, 0, 0, 0, 0 2, 12, 100, 980 1, 4, 11, 44
3 2 J(E1) C2 1 0, 0, 0, 0, 0 2, 16, 160, 1792 2, 6, 20, 78
3 4 J(E2) D2 3 0, 0, 0, 0, 0 1, 8, 80, 896 1, 4, 10, 42
3 6 J(E3) D3 3 0, 0, 0, 0, 0 1, 6, 55, 602 1, 3, 8, 29
3 8 J(E4) D4 5 0, 0, 0, 0, 0 1, 6, 50, 504 1, 3, 7, 26
3 12 J(E6) D6 7 0, 0, 0, 0, 0 1, 6, 50, 490 1, 3, 7, 25
2 1 F C1 0 0, 0, 0, 0, 0 4, 36, 400, 4900 2, 8, 32, 148
2 2 Fa C2 0 0, 0, 0, 0, 1 3, 21, 210, 2485 2, 6, 20, 82
2 2 Fc C2 1 0, 0, 0, 0, 0 2, 18, 200, 2450 1, 5, 16, 77
2 2 Fab C2 1 0, 0, 0, 0, 1 2, 18, 200, 2450 2, 6, 20, 82
2 4 Fac C4 3 0, 0, 2, 0, 1 1, 9, 100, 1225 1, 3, 10, 41
2 4 Fa,b D2 1 0, 0, 0, 0, 3 2, 12, 110, 1260 2, 5, 14, 49
2 4 Fab,c D2 3 0, 0, 0, 0, 1 1, 9, 100, 1225 1, 4, 10, 44
2 8 Fa,b,c D4 5 0, 0, 2, 0, 3 1, 6, 55, 630 1, 3, 7, 26
4 1 G4 C1 0 0, 0, 0, 0, 0 3, 20, 175, 1764 2, 6, 20, 76
4 2 N(G4) C2 0 0, 0, 0, 0, 1 2, 11, 90, 889 2, 5, 14, 46
6 1 G6 C1 0 0, 0, 0, 0, 0 2, 10, 70, 588 2, 5, 14, 44
6 2 N(G6) C2 1 0, 0, 0, 0, 0 1, 5, 35, 294 1, 3, 7, 23

10 1 USp(4) C1 0 0, 0, 0, 0, 0 1, 3, 14, 84 1, 2, 4, 10
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Galois types

Let A be an abelian surface defined over a number field k.
Let K be the minimal extension of k for which End(AK) = End(AQ̄).
The group Gal(K/k) acts on the R-algebra End(AK)R = End(AK)⊗Z R.

The Galois type of A is the isomorphism class of [Gal(K/k),End(AK)R].

An isomorphism [G,E] ∼= [G′,E′] is an isomorphism G ∼= G′ of groups
and an equivariant isomorphism E ∼= E′ of R-algebras.

Note that one may have G ∼= G′ and E ∼= E′ but [G,E] 6∼= [G′,E′].
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Galois types and Sato-Tate groups

Theorem 2 [FKRS]
Up to conjugacy, the Sato-Tate group G of A is uniquely determined
by its Galois type, and vice versa.

Moreover, G0 is uniquely determined by the isomorphism class of
End(AK)R, and vice versa:

U(1) M2(C) U(1)× SU(2) C× R
SU(2) M2(R) SU(2)× SU(2) R× R

U(1)× U(1) C× C USp(4) R

We also have G/G0 ∼= Gal(K/k).
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Twisted Lefschetz groups

The Lefschetz group LA is defined as

LA = {γ ∈ Sp2g : γ−1αγ = α for all α ∈ End(AK)Q}0.

For each τ ∈ Gk define

LA(τ) = {γ ∈ Sp2g : γ−1αγ = τ(α) for all α ∈ End(AK)Q}.

The twisted Lefschetz group is defined as TLA = ∪τ∈Gk LA(τ).

Theorem [Banaszak-Kedlaya]
Assume g ≤ 3. Then STA is a maximal compact subgroup of TLA ⊗Q C.
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Exhibiting Sato-Tate groups in genus 2

For each Sato-Tate group G that can occur for an abelian surface
defined over Q, we can exhibit a curve C/Q for which STJac(C) = G.

This accounts for 34 of the 52 Sato-Tate groups in genus 2.

The remaining 18 groups all arise as subgroups of these 34.

By extending the field of definition of a suitable curve C/Q,
we can address the remaining 18 cases.

In fact, one can realize all 52 groups using just 9 curves.

http://math.mit.edu/˜drew
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Genus 2 curves realizing Sato-Tate groups with G0 = U(1)

Group Curve y2 = f(x) k K
C1 x6 + 1 Q(

√
−3) Q(

√
−3)

C2 x5 − x Q(
√
−2) Q(i,

√
2)

C3 x6 + 4 Q(
√
−3) Q(

√
−3, 3
√

2)
C4 x6 + x5 − 5x4 − 5x2 − x + 1 Q(

√
−2) Q(

√
−2, a); a4 + 17a2 + 68 = 0

C6 x6 + 2 Q(
√
−3) Q(

√
−3, 6
√

2)
D2 x5 + 9x Q(

√
−2) Q(i,

√
2,
√

3)
D3 x6 + 10x3 − 2 Q(

√
−2) Q(

√
−3, 6
√
−2)

D4 x5 + 3x Q(
√
−2) Q(i,

√
2, 4
√

3)
D6 x6 + 3x5 + 10x3 − 15x2 + 15x − 6 Q(

√
−3) Q(i,

√
2,
√

3, a); a3 + 3a − 2 = 0
T x6 + 6x5 − 20x4 + 20x3 − 20x2 − 8x + 8 Q(

√
−2) Q(

√
−2, a, b);

a3 − 7a + 7 = b4 + 4b2 + 8b + 8 = 0
O x6 − 5x4 + 10x3 − 5x2 + 2x − 1 Q(

√
−2) Q(

√
−2,
√
−11, a, b);

a3 − 4a + 4 = b4 + 22b + 22 = 0
J(C1) x5 − x Q(i) Q(i,

√
2)

J(C2) x5 − x Q Q(i,
√

2)
J(C3) x6 + 10x3 − 2 Q(

√
−3) Q(

√
−3, 6
√
−2)

J(C4) x6 + x5 − 5x4 − 5x2 − x + 1 Q see entry for C4
J(C6) x6 − 15x4 − 20x3 + 6x + 1 Q Q(i,

√
3, a); a3 + 3a2 − 1 = 0

J(D2) x5 + 9x Q Q(i,
√

2,
√

3)
J(D3) x6 + 10x3 − 2 Q Q(

√
−3, 6
√
−2)

J(D4) x5 + 3x Q Q(i,
√

2, 4
√

3)
J(D6) x6 + 3x5 + 10x3 − 15x2 + 15x − 6 Q see entry for D6
J(T) x6 + 6x5 − 20x4 + 20x3 − 20x2 − 8x + 8 Q see entry for T
J(O) x6 − 5x4 + 10x3 − 5x2 + 2x − 1 Q see entry for O
C2,1 x6 + 1 Q Q(

√
−3)

C4.1 x5 + 2x Q(i) Q(i, 4
√

2)
C6,1 x6 + 6x5 − 30x4 + 20x3 + 15x2 − 12x + 1 Q Q(

√
−3, a); a3 − 3a + 1 = 0

D2,1 x5 + x Q Q(i,
√

2)
D4,1 x5 + 2x Q Q(i, 4

√
2)

D6,1 x6 + 6x5 − 30x4 − 40x3 + 60x2 + 24x − 8 Q Q(
√
−2,
√
−3, a); a3 − 9a + 6 = 0

D3,2 x6 + 4 Q Q(
√
−3, 3
√

2)
D4,2 x6 + x5 + 10x3 + 5x2 + x − 2 Q Q(

√
−2, a); a4 − 14a2 + 28a − 14 = 0

D6,2 x6 + 2 Q Q(
√
−3, 6
√

2)
O1 x6 + 7x5 + 10x4 + 10x3 + 15x2 + 17x + 4 Q Q(

√
−2, a, b);

a3 + 5a + 10 = b4 + 4b2 + 8b + 2 = 0
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Genus 2 curves realizing Sato-Tate groups with G0 6= U(1)

Group Curve y2 = f (x) k K
F x6 + 3x4 + x2 − 1 Q(i,

√
2) Q(i,

√
2)

Fa x6 + 3x4 + x2 − 1 Q(i) Q(i,
√

2)
Fab x6 + 3x4 + x2 − 1 Q(

√
2) Q(i,

√
2)

Fac x5 + 1 Q Q(a); a4 + 5a2 + 5 = 0
Fa,b x6 + 3x4 + x2 − 1 Q Q(i,

√
2)

E1 x6 + x4 + x2 + 1 Q Q
E2 x6 + x5 + 3x4 + 3x2 − x + 1 Q Q(

√
2)

E3 x5 + x4 − 3x3 − 4x2 − x Q Q(a); a3 − 3a + 1 = 0
E4 x5 + x4 + x2 − x Q Q(a); a4 − 5a2 + 5 = 0
E6 x5 + 2x4 − x3 − 3x2 − x Q Q(

√
7, a); a3 − 7a− 7 = 0

J(E1) x5 + x3 + x Q Q(i)
J(E2) x5 + x3 − x Q Q(i,

√
2)

J(E3) x6 + x3 + 4 Q Q(
√
−3, 3√2)

J(E4) x5 + x3 + 2x Q Q(i, 4√2)
J(E6) x6 + x3 − 2 Q Q(

√
−3, 6√−2)

G1,3 x6 + 3x4 − 2 Q(i) Q(i)
N(G1,3) x6 + 3x4 − 2 Q Q(i)
G3,3 x6 + x2 + 1 Q Q
N(G3,3) x6 + x5 + x− 1 Q Q(i)
USp(4) x5 − x + 1 Q Q

Andrew V. Sutherland (MIT) Sato-Tate distributions in genus 2 November 28, 2011 18 / 20



Searching for curves
We surveyed the L̄-polynomial distributions of genus 2 curves

y2 = x5 + c4x4 + c3x3 + c2x2 + c1x + c0,

y2 = x6 + c5x5 + c4x4 + c3x3 + c2x2 + c1x + c0,

with integer coefficients |ci| ≤ 128, over 248 curves.

We specifically searched for curves with zero trace density z1 ≥ 1/2,
which accounts for all cases not already addressed in [KS09].

We found over 10 million non-isogenous curves with exceptional
distributions, including at least 3 apparent matches for each of our
target Sato-Tate groups.

Representative examples were computed to high precision N = 230.

For each example the field K was then determined, allowing the Galois
type, and therefore the Sato-Tate group, to be provably identified.
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