Sato-Tate distributions in genus 2

Andrew V. Sutherland Massachusetts Institute of Technology

November 28, 2011

Joint work with Francesc Fité, Kiran S. Kedlaya, and Victor Rotger http://arxiv.org/abs/1110.6638

Sato-Tate in genus 1

Let E/\mathbb{Q} be an elliptic curve.

Let $t_p = p + 1 - \#E(\mathbb{F}_p)$ denote the trace of Frobenius.

Consider the distribution of

$$a_1 = -t_p/\sqrt{p} \in [-2,2]$$

as $p \leq N$ varies over primes of good reduction.

What happens as $N \to \infty$?

http://math.mit.edu/~drew

Sato-Tate distributions in genus 1

1. Typical case (no CM)

Elliptic curves E/\mathbb{Q} w/o CM have the semi-circular trace distribution. (This also holds for E/k when k is a totally real number field).

[Clozel, Harris, Shepherd-Barron, Taylor, Barnet-Lamb, and Geraghty].

2. Exceptional cases (CM)

Elliptic curves E/k with CM have one of two distinct trace distributions, depending on whether k contains the CM field or not.

[classical]

Sato-Tate groups in genus 1

The *Sato-Tate group* of *E* is a closed subgroup *G* of SU(2) = USp(2) that may be derived from the ℓ -adic Galois representation of *E*.

The generalized Sato-Tate conjecture implies that the normalized trace distribution of E converges to the distribution of the traces in G given by the Haar measure (the unique translation-invariant measure).

Each such distribution is uniquely determined by its moment sequence.

G	G/G^0	Example curve	k	$E[a_1^0], E[a_1^2], E[a_1^4] \dots$
U(1)	C1	$y^2 = x^3 + 1$	$\mathbb{Q}(\sqrt{-3})$	$1, 2, 6, 20, 70, 252, \ldots$
N(U(1))	C_2	$y^2 = x^3 + 1$	\mathbb{Q}	$1, 1, 3, 10, 35, 126, \ldots$
SU(2)	C_1	$y^2 = x^3 + x + 1$	\mathbb{Q}	$1, 1, 2, 5, 14, 42, \ldots$

Three Sato-Tate groups, two of which arise for curves defined over \mathbb{Q} .

Normalized Euler factors (*L*-polynomials)

Let *A* be an abelian variety of dimension $g \ge 1$ over a number field *k*. Let $\rho_{\ell} : G_k \to \operatorname{Aut}_{\mathbb{Q}_{\ell}}(V_{\ell}(A)) \cong \operatorname{GSp}_{2g}(\mathbb{Q}_{\ell})$ be the Galois representation arising from the action of G_k on the ℓ -adic Tate module $V_{\ell}(A)$.

For each prime \mathfrak{p} of good reduction for *A*, let $q = \|\mathfrak{p}\|$ and define

$$L_{\mathfrak{p}}(T) = \det(1 - \rho_{\ell}(\operatorname{Frob}_{\mathfrak{p}})T),$$

$$\bar{L}_{\mathfrak{p}}(T) = L_{\mathfrak{p}}(T/\sqrt{q}) = \sum_{i=0}^{2g} a_i T^i.$$

The polynomial $\bar{L}_{p}(T)$ is real, monic, symmetric, and unitary.

Every such polynomial occurs as the characteristic polynomial of a unique conjugacy class in the compact Lie group USp(2g).

The Sato-Tate group ST_A

Let G_k^1 be the kernel of the cyclotomic character $\chi_\ell \colon G_k \to \mathbb{Q}_\ell^{\times}$. Let $G_\ell^{1,\text{Zar}}$ be the Zariski closure of $\rho_\ell(G_k^1)$ in $\operatorname{GSp}_{2g}(\mathbb{Q}_\ell)$. Choose an embedding $\iota \colon \mathbb{Q}_\ell \hookrightarrow \mathbb{C}$ and let $G^1 = G_\ell^{1,\text{Zar}} \otimes_\iota \mathbb{C}$.

Definition [Serre]

 $ST_A \subseteq USp(2g)$ is a maximal compact subgroup of $G^1 \subseteq Sp_{2g}(\mathbb{C})$. For each prime p of good reduction for *A*, let $s(\mathfrak{p})$ denote the conjugacy class of $\|\mathfrak{p}\|^{-1/2}\rho_\ell(\operatorname{Frob}_{\mathfrak{p}}) \in G^1$ in ST_A .

The characteristic polynomial of $s(\mathfrak{p})$ is $\overline{L}_{\mathfrak{p}}(T)$.

The refined Sato-Tate conjecture

Let μ_{ST_A} denote the image on $Conj(ST_A)$ of the Haar measure on ST_A .

Conjecture [Serre]

The conjugacy classes s(p) are μ_{ST_A} -equidistributed.

In particular, the distribution of *A*'s normalized Euler factors $\bar{L}_{\mathfrak{p}}(T)$ matches the distribution of characteristic polynomials of random matrices in ST_A.

The refined Sato-Tate conjecture

Let μ_{ST_A} denote the image on $Conj(ST_A)$ of the Haar measure on ST_A .

Conjecture [Serre]

The conjugacy classes $s(\mathfrak{p})$ are μ_{ST_A} -equidistributed.

In particular, the distribution of *A*'s normalized Euler factors $\bar{L}_{p}(T)$ matches the distribution of characteristic polynomials of random matrices in ST_A.

We can test this numerically by comparing statistics of the coefficients a_1, \ldots, a_g of $\bar{L}_{\mathfrak{p}}(T)$ over $\|\mathfrak{p}\| \leq N$ to the predictions given by μ_{ST_A} .

```
http://math.mit.edu/~drew
```

The Sato-Tate axioms (weight 1 case)

A subgroup G of USp(2g) satisfies the Sato-Tate axioms if:

- G is a closed.
- (Hodge condition) There exists a homomorphism $\theta : U(1) \to G^0$ such that $\theta(u)$ has eigenvalues u and u^{-1} with multiplicity g.
- **③** (Rationality condition) For each component *H* of *G* and each irreducible character χ of GL_{2g}(ℂ) we have E[$\chi(\gamma) : \gamma \in H$] ∈ ℤ.

Note: for any fixed g, the set of subgroups of USp(2g) that satisfy the Sato-Tate axioms is **finite** (up to conjugacy).

The Sato-Tate axioms (weight 1 case)

A subgroup G of USp(2g) satisfies the Sato-Tate axioms if:

- G is a closed.
- (Hodge condition) There exists a homomorphism $\theta : U(1) \to G^0$ such that $\theta(u)$ has eigenvalues u and u^{-1} with multiplicity g.
- **③** (Rationality condition) For each component *H* of *G* and each irreducible character χ of GL_{2g}(ℂ) we have E[$\chi(\gamma) : \gamma \in H$] ∈ ℤ.

Note: for any fixed g, the set of subgroups of USp(2g) that satisfy the Sato-Tate axioms is **finite** (up to conjugacy).

Proposition

For $g \leq 3$, the group ST_A satisfies the Sato-Tate axioms.

Conjecturally, this holds for all g.

Sato-Tate groups in genus 2

Theorem 1 [FKRS]

Up to conjugacy, there are exactly 55 closed subgroups of USp(4)that satisfy the Sato-Tate axioms:

$$\begin{array}{rll} \mathrm{U}(1)\colon & C_1, C_2, C_3, C_4, C_6, D_2, D_3, D_4, D_6, T, O, \\ & J(C_1), J(C_2), J(C_3), J(C_4), J(C_6), \\ & J(D_2), J(D_3), J(D_4), J(D_6), J(T), J(O), \\ & C_{2,1}, C_{4,1}, C_{6,1}, D_{2,1}, D_{3,2}, D_{4,1}, D_{4,2}, D_{6,1}, D_{6,2}, O_1 \\ & \mathrm{SU}(2)\colon & E_1, E_2, E_3, E_4, E_6, J(E_1), J(E_2), J(E_3), J(E_4), J(E_6) \\ & \mathrm{U}(1) \times \mathrm{U}(1)\colon & F, F_a, F_c, F_{a,b}, F_{ab}, F_{ac}, F_{a,b,c} \\ & \mathrm{U}(1) \times \mathrm{SU}(2)\colon & \mathrm{U}(1) \times \mathrm{SU}(2), N(\mathrm{U}(1) \times \mathrm{SU}(2)) \\ & \mathrm{SU}(2) \times \mathrm{SU}(2)\colon & \mathrm{SU}(2) \times \mathrm{SU}(2), N(\mathrm{SU}(2) \times \mathrm{SU}(2)) \\ & \mathrm{USp}(4)\colon & \mathrm{USp}(4) \end{array}$$

U U(

Sato-Tate groups in genus 2

Theorem 1 [FKRS]

Up to conjugacy, there are exactly 55 closed subgroups of USp(4) that satisfy the Sato-Tate axioms:

U(1):	$C_1, C_2, C_3, C_4, C_6, D_2, D_3, D_4, D_6, T, O,$
	$J(C_1), J(C_2), J(C_3), J(C_4), J(C_6),$
	$J(D_2), J(D_3), J(D_4), J(D_6), J(T), J(O),$
	$C_{2,1}, C_{4,1}, C_{6,1}, D_{2,1}, D_{3,2}, D_{4,1}, D_{4,2}, D_{6,1}, D_{6,2}, O_1$
SU(2):	$E_1, E_2, E_3, E_4, E_6, J(E_1), J(E_2), J(E_3), J(E_4), J(E_6)$
$(1) \times \mathrm{U}(1)$:	$F, F_a, F_c, F_{a,b}, F_{ab}, F_{ac}, F_{ab,c}, F_{a,b,c}$
1) \times SU(2):	$U(1) \times SU(2), N(U(1) \times SU(2))$
$2) \times SU(2):$	$SU(2) \times SU(2), N(SU(2) \times SU(2))$
USp(4):	USp(4)

Of these, 52 can and do arise as ST_A for some abelian surface *A*, of which 34 can and do occur with *A* defined over \mathbb{Q} .

SU(

Sato-Tate groups in genus 2 with $G^0 = U(1)$.

d	С	G	G/G^0	z_1	z2	$M[a_1^2]$	$M[a_2]$
1	1	C_1	C1	0	0, 0, 0, 0, 0, 0	8, 96, 1280, 17920	4, 18, 88, 454
1	2	C_2	C_2	1	0, 0, 0, 0, 0, 0	4, 48, 640, 8960	2, 10, 44, 230
1	3	C_3	C3	0	0, 0, 0, 0, 0, 0	4, 36, 440, 6020	2, 8, 34, 164
1	4	C_4	C_4	1	0, 0, 0, 0, 0, 0	4, 36, 400, 5040	2, 8, 32, 150
1	6	C_6	C ₆	1	0, 0, 0, 0, 0, 0	4, 36, 400, 4900	2, 8, 32, 148
1	4	D_2	D ₂	3	0, 0, 0, 0, 0, 0	2, 24, 320, 4480	1, 6, 22, 118
1	6	D_3	D ₃	3	0, 0, 0, 0, 0, 0	2, 18, 220, 3010	1, 5, 17, 85
1	8	D_4	D_4	5	0, 0, 0, 0, 0, 0	2, 18, 200, 2520	1, 5, 16, 78
1	12	D_6	D ₆	7	0, 0, 0, 0, 0, 0	2, 18, 200, 2450	1, 5, 16, 77
1	2	$J(C_1)$	C2	1	1, 0, 0, 0, 0	4, 48, 640, 8960	1, 11, 40, 235
1	4	$J(C_2)$	D ₂	3	1, 0, 0, 0, 1	2, 24, 320, 4480	1, 7, 22, 123
1	6	$J(C_3)$	C ₆	3	1, 0, 0, 2, 0	2, 18, 220, 3010	1, 5, 16, 85
1	8	$J(C_4)$	$C_4 \times C_2$	5	1, 0, 2, 0, 1	2, 18, 200, 2520	1, 5, 16, 79
1	12	$J(C_6)$	$C_6 \times C_2$	7	1, 2, 0, 2, 1	2, 18, 200, 2450	1, 5, 16, 77
1	8	$J(D_2)$	$D_2 \times C_2$	7	1, 0, 0, 0, 3	1, 12, 160, 2240	1, 5, 13, 67
1	12	$J(D_3)$	D ₆	9	1, 0, 0, 2, 3	1, 9, 110, 1505	1, 4, 10, 48
1	16	$J(D_4)$	$D_4 \times C_2$	13	1, 0, 2, 0, 5	1, 9, 100, 1260	1, 4, 10, 45
1	24	$J(D_6)$	$D_6 \times C_2$	19	1, 2, 0, 2, 7	1, 9, 100, 1225	1, 4, 10, 44
1	2	$C_{2,1}$	C ₂	1	0, 0, 0, 0, 1	4, 48, 640, 8960	3, 11, 48, 235
1	4	$C_{4,1}$	C_4	3	0, 0, 2, 0, 0	2, 24, 320, 4480	1, 5, 22, 115
1	6	$C_{6,1}$	C ₆	3	0, 2, 0, 0, 1	2, 18, 220, 3010	1, 5, 18, 85
1	4	$D_{2,1}$	D ₂	3	0, 0, 0, 0, 2	2, 24, 320, 4480	2, 7, 26, 123
1	8	$D_{4,1}$	D_4	7	0, 0, 2, 0, 2	1, 12, 160, 2240	1, 4, 13, 63
1	12	$D_{6,1}$	D ₆	9	0, 2, 0, 0, 4	1, 9, 110, 1505	1, 4, 11, 48
1	6	$D_{3,2}$	D ₃	3	0, 0, 0, 0, 3	2, 18, 220, 3010	2, 6, 21, 90
1	8	$D_{4,2}$	D_4	5	0, 0, 0, 0, 4	2, 18, 200, 2520	2, 6, 20, 83
1	12	$D_{6,2}$	D ₆	7	0, 0, 0, 0, 6	2, 18, 200, 2450	2, 6, 20, 82
1	12	Т	A ₄	3	0, 0, 0, 0, 0, 0	2, 12, 120, 1540	1, 4, 12, 52
1	24	0	S ₄	9	0, 0, 0, 0, 0, 0	2, 12, 100, 1050	1, 4, 11, 45
1	24	O_1	S ₄	15	0, 0, 6, 0, 6	1, 6, 60, 770	1, 3, 8, 30
1	24	J(T)	$A_4 \times C_2$	15	1,0,0,8,3	1, 6, 60, 770	1, 3, 7, 29
1	48	J(O)	$S_4 \times C_2$	33	1, 0, 6, 8, 9	1, 6, 50, 525	1, 3, 7, 26

d	С	G	G/G^0	z_1	z_2	$M[a_1^2]$	$M[a_2]$
3	1	E_1	C1	0	0, 0, 0, 0, 0	4, 32, 320, 3584	3, 10, 37, 150
3	2	E_2	C_2	1	0, 0, 0, 0, 0	2, 16, 160, 1792	1, 6, 17, 78
3	3	E_3	C3	0	0, 0, 0, 0, 0, 0	2, 12, 110, 1204	1, 4, 13, 52
3	4	E_4	C_4	1	0, 0, 0, 0, 0, 0	2, 12, 100, 1008	1, 4, 11, 46
3	6	E_6	C ₆	1	0, 0, 0, 0, 0	2, 12, 100, 980	1, 4, 11, 44
3	2	$J(E_1)$	C_2	1	0, 0, 0, 0, 0, 0	2, 16, 160, 1792	2, 6, 20, 78
3	4	$J(E_2)$	D ₂	3	0, 0, 0, 0, 0	1, 8, 80, 896	1, 4, 10, 42
3	6	$J(E_3)$	D ₃	3	0, 0, 0, 0, 0, 0	1, 6, 55, 602	1, 3, 8, 29
3	8	$J(E_4)$	D_4	5	0, 0, 0, 0, 0, 0	1, 6, 50, 504	1, 3, 7, 26
3	12	$J(E_6)$	D ₆	7	0, 0, 0, 0, 0, 0	1, 6, 50, 490	1, 3, 7, 25
2	1	F	C_1	0	0, 0, 0, 0, 0	4, 36, 400, 4900	2, 8, 32, 148
2	2	F_a	C_2	0	0, 0, 0, 0, 1	3, 21, 210, 2485	2, 6, 20, 82
2	2	F_c	C ₂	1	0, 0, 0, 0, 0, 0	2, 18, 200, 2450	1, 5, 16, 77
2	2	Fab	C_2	1	0, 0, 0, 0, 1	2, 18, 200, 2450	2, 6, 20, 82
2	4	Fac	C_4	3	0, 0, 2, 0, 1	1, 9, 100, 1225	1, 3, 10, 41
2	4	$F_{a,b}$	D ₂	1	0, 0, 0, 0, 3	2, 12, 110, 1260	2, 5, 14, 49
2	4	F _{ab.c}	D ₂	3	0, 0, 0, 0, 1	1, 9, 100, 1225	1, 4, 10, 44
2	8	$F_{a,b,c}$	D_4	5	0, 0, 2, 0, 3	1, 6, 55, 630	1, 3, 7, 26
4	1	G_4	C1	0	0, 0, 0, 0, 0	3, 20, 175, 1764	2, 6, 20, 76
4	2	$N(G_4)$	C ₂	0	0, 0, 0, 0, 1	2, 11, 90, 889	2, 5, 14, 46
6	1	G_6	C1	0	0, 0, 0, 0, 0, 0	2, 10, 70, 588	2, 5, 14, 44
6	2	$N(G_6)$	C ₂	1	0, 0, 0, 0, 0	1, 5, 35, 294	1, 3, 7, 23
10	1	USp(4)	C1	0	0, 0, 0, 0, 0, 0	1, 3, 14, 84	1, 2, 4, 10

Sato-Tate groups in genus 2 with $G^0 \neq U(1)$.

Galois types

Let *A* be an abelian surface defined over a number field *k*. Let *K* be the minimal extension of *k* for which $\operatorname{End}(A_K) = \operatorname{End}(A_{\overline{\mathbb{Q}}})$. The group $\operatorname{Gal}(K/k)$ acts on the \mathbb{R} -algebra $\operatorname{End}(A_K)_{\mathbb{R}} = \operatorname{End}(A_K) \otimes_{\mathbb{Z}} \mathbb{R}$.

The *Galois type* of *A* is the isomorphism class of $[Gal(K/k), End(A_K)_{\mathbb{R}}]$.

Galois types

Let *A* be an abelian surface defined over a number field *k*. Let *K* be the minimal extension of *k* for which $\operatorname{End}(A_K) = \operatorname{End}(A_{\overline{\mathbb{Q}}})$. The group $\operatorname{Gal}(K/k)$ acts on the \mathbb{R} -algebra $\operatorname{End}(A_K)_{\mathbb{R}} = \operatorname{End}(A_K) \otimes_{\mathbb{Z}} \mathbb{R}$.

The *Galois type* of *A* is the isomorphism class of $[Gal(K/k), End(A_K)_{\mathbb{R}}]$.

An isomorphism $[G, E] \cong [G', E']$ is an isomorphism $G \cong G'$ of groups and an equivariant isomorphism $E \cong E'$ of \mathbb{R} -algebras.

Note that one may have $G \cong G'$ and $E \cong E'$ but $[G, E] \ncong [G', E']$.

Galois types and Sato-Tate groups

Theorem 2 [FKRS]

Up to conjugacy, the Sato-Tate group G of A is uniquely determined by its Galois type, and vice versa.

Moreover, G^0 is uniquely determined by the isomorphism class of $End(A_K)_{\mathbb{R}}$, and vice versa:

U(1)	$M_2(\mathbb{C})$
SU (2)	$M_2(\mathbb{R})$
$U(1) \times U(1)$	$\mathbb{C} \times \mathbb{C}$

 $\begin{array}{ll} U(1)\times SU(2) & \mathbb{C}\times\mathbb{R}\\ SU(2)\times SU(2) & \mathbb{R}\times\mathbb{R}\\ & USp(4) & \mathbb{R} \end{array}$

We also have $G/G^0 \cong \operatorname{Gal}(K/k)$.

Twisted Lefschetz groups

The Lefschetz group L_A is defined as

$$\mathbf{L}_{A} = \{\gamma \in \operatorname{Sp}_{2g} : \gamma^{-1} \alpha \gamma = \alpha \text{ for all } \alpha \in \operatorname{End}(A_{K})_{\mathbb{Q}} \}^{0}.$$

For each $\tau \in G_k$ define

$$\mathcal{L}_{A}(\tau) = \{ \gamma \in \operatorname{Sp}_{2g} : \gamma^{-1} \alpha \gamma = \tau(\alpha) \text{ for all } \alpha \in \operatorname{End}(A_{K})_{\mathbb{Q}} \}.$$

The *twisted Lefschetz group* is defined as $TL_A = \bigcup_{\tau \in G_k} L_A(\tau)$.

Theorem [Banaszak-Kedlaya] Assume $g \leq 3$. Then ST_A is a maximal compact subgroup of TL_A $\otimes_{\mathbb{Q}} \mathbb{C}$.

Exhibiting Sato-Tate groups in genus 2

For each Sato-Tate group *G* that can occur for an abelian surface defined over \mathbb{Q} , we can exhibit a curve C/\mathbb{Q} for which $ST_{Jac(C)} = G$.

This accounts for 34 of the 52 Sato-Tate groups in genus 2.

Exhibiting Sato-Tate groups in genus 2

For each Sato-Tate group *G* that can occur for an abelian surface defined over \mathbb{Q} , we can exhibit a curve C/\mathbb{Q} for which $ST_{Jac(C)} = G$.

This accounts for 34 of the 52 Sato-Tate groups in genus 2. The remaining 18 groups all arise as subgroups of these 34.

Exhibiting Sato-Tate groups in genus 2

For each Sato-Tate group *G* that can occur for an abelian surface defined over \mathbb{Q} , we can exhibit a curve C/\mathbb{Q} for which $ST_{Jac(C)} = G$.

This accounts for 34 of the 52 Sato-Tate groups in genus 2. The remaining 18 groups all arise as subgroups of these 34.

By extending the field of definition of a suitable curve C/\mathbb{Q} , we can address the remaining 18 cases.

In fact, one can realize all 52 groups using just 9 curves.

http://math.mit.edu/~drew

Genus 2 curves realizing Sato-Tate groups with $G^0 = U(1)$

Group	Curve $y^2 = f(x)$	k	Κ
C1	$x^{6} + 1$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3})$
C_2	$x^{5} - x$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(i, \sqrt{2})$
C_3	$x^{6} + 4$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3},\sqrt[3]{2})$
C_4	$x^6 + x^5 - 5x^4 - 5x^2 - x + 1$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(\sqrt{-2}, a); a^4 + 17a^2 + 68 = 0$
C_6	$x^{6} + 2$	$\mathbb{Q}(\sqrt{-3})$	$Q(\sqrt{-3}, \sqrt[6]{2})$
D_2	$x^{5} + 9x$	$\mathbb{Q}(\sqrt{-2})$	$Q(i, \sqrt{2}, \sqrt{3})$
D_3	$x^{6} + 10x^{3} - 2$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{-2})$
D_4	$x^{5} + 3x$	$\mathbb{Q}(\sqrt{-2})$	$Q(i, \sqrt{2}, \sqrt[4]{3})$
D_6	$x^{6} + 3x^{5} + 10x^{3} - 15x^{2} + 15x - 6$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(i, \sqrt{2}, \sqrt{3}, a); a^3 + 3a - 2 = 0$
Т	$x^{6} + 6x^{5} - 20x^{4} + 20x^{3} - 20x^{2} - 8x + 8$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(\sqrt{-2}, a, b);$
			$a^{3} - 7a + 7 = b^{4} + 4b^{2} + 8b + 8 = 0$
0	$x^{b} - 5x^{4} + 10x^{3} - 5x^{2} + 2x - 1$	$\mathbb{Q}(\sqrt{-2})$	$\mathbb{Q}(\sqrt{-2}, \sqrt{-11}, a, b);$
			$a^{3} - 4a + 4 = b^{4} + 22b + 22 = 0$
$J(C_1)$	$x^3 - x$	$\mathbb{Q}(i)$	$\mathbb{Q}(i, \sqrt{2})$
$J(C_2)$	$x^3 - x$	Q	$\mathbb{Q}(i, \sqrt{2})$
$J(C_3)$	$x^{0} + 10x^{3} - 2$	$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Q}(\sqrt{-3},\sqrt[4]{-2})$
$J(C_4)$	$x^{0} + x^{3} - 5x^{4} - 5x^{2} - x + 1$	Q	see entry for C ₄
$J(C_6)$	$x^{0} - 15x^{4} - 20x^{3} + 6x + 1$	Q	$\mathbb{Q}(i, \sqrt{3}, a); a^3 + 3a^2 - 1 = 0$
$J(D_2)$	$x^{2} + 9x$	Q	$\mathbb{Q}(i,\sqrt{2},\sqrt{3})$
$J(D_3)$	$x^{0} + 10x^{3} - 2$	Q	$\mathbb{Q}(\sqrt{-3},\sqrt[3]{-2})$
$J(D_4)$	$x^{3} + 3x$	Q	$\mathbb{Q}(i,\sqrt{2},\sqrt{3})$
$J(D_6)$	$x^{5} + 3x^{2} + 10x^{2} - 15x^{2} + 15x - 6$	Q	see entry for D ₆
J(I)	$x^{0} + 6x^{2} - 20x^{2} + 20x^{2} - 20x^{2} - 8x + 8$	Q	see entry for T
J(0)	$x^{0} - 5x^{2} + 10x^{2} - 5x^{2} + 2x - 1$	Q	see entry for 0
C _{2,1}	x + 1	Q Q(I)	$\mathbb{Q}(\sqrt{-3})$
C _{4.1}	$x^2 + 2x$	$\mathbb{Q}(i)$	$\mathbb{Q}(i,\sqrt{2})$
C _{6,1}	$x^{*} + 6x^{*} - 30x^{*} + 20x^{*} + 15x^{*} - 12x + 1$	Q	$\mathbb{Q}(\sqrt{-3}, a); a^* - 3a + 1 = 0$
$D_{2,1}$	x' + x	Q	$\mathbb{Q}(i,\sqrt{2})$
$D_{4,1}$	$x^{3} + 2x$	Q	$\mathbb{Q}(i, \sqrt{2})$
$D_{6,1}$	$x^{6} + 6x^{5} - 30x^{4} - 40x^{3} + 60x^{2} + 24x - 8$	Q	$\mathbb{Q}(\sqrt{-2}, \sqrt{-3}, a); a^3 - 9a + 6 = 0$
$D_{3,2}$	$x^{6} + 4$	Q	$\mathbb{Q}(\sqrt{-3},\sqrt[3]{2})$
$D_{4,2}$	$x^{6} + x^{5} + 10x^{3} + 5x^{2} + x - 2$	Q	$\mathbb{Q}(\sqrt{-2}, a); a^4 - 14a^2 + 28a - 14 = 0$
$D_{6,2}$	$x^{6} + 2$	Q	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{2})$
O_1	$x^{6} + 7x^{5} + 10x^{4} + 10x^{3} + 15x^{2} + 17x + 4$	Q	$\mathbb{Q}(\sqrt{-2}, a, b);$
			$a^{3} + 5a + 10 = b^{4} + 4b^{2} + 8b + 2 = 0$

Group	Curve $y^2 = f(x)$	k	Κ
F	$x^6 + 3x^4 + x^2 - 1$	$\mathbb{Q}(i,\sqrt{2})$	$\mathbb{Q}(i,\sqrt{2})$
F_a	$x^6 + 3x^4 + x^2 - 1$	$\mathbb{Q}(i)$	$\mathbb{Q}(i,\sqrt{2})$
Fab	$x^{6} + 3x^{4} + x^{2} - 1$	$\mathbb{Q}(\sqrt{2})$	$\mathbb{Q}(i,\sqrt{2})$
Fac	$x^{5} + 1$	Q	$\mathbb{Q}(a); a^4 + 5a^2 + 5 = 0$
$F_{a,b}$	$x^6 + 3x^4 + x^2 - 1$	Q	$\mathbb{Q}(i,\sqrt{2})$
E_1	$x^{6} + x^{4} + x^{2} + 1$	Q	Q
E_2	$x^6 + x^5 + 3x^4 + 3x^2 - x + 1$	Q	$\mathbb{Q}(\sqrt{2})$
E_3	$x^5 + x^4 - 3x^3 - 4x^2 - x$	Q	$\mathbb{Q}(a); a^3 - 3a + 1 = 0$
E_4	$x^5 + x^4 + x^2 - x$	Q	$\mathbb{Q}(a); a^4 - 5a^2 + 5 = 0$
E_6	$x^5 + 2x^4 - x^3 - 3x^2 - x$	Q	$\mathbb{Q}(\sqrt{7}, a); a^3 - 7a - 7 = 0$
$J(E_1)$	$x^{5} + x^{3} + x$	Q	$\mathbb{Q}(i)$
$J(E_2)$	$x^{5} + x^{3} - x$	Q	$\mathbb{Q}(i,\sqrt{2})$
$J(E_3)$	$x^6 + x^3 + 4$	Q	$\mathbb{Q}(\sqrt{-3}, \sqrt[3]{2})$
$J(E_4)$	$x^5 + x^3 + 2x$	Q	$\mathbb{Q}(i, \sqrt[4]{2})$
$J(E_6)$	$x^6 + x^3 - 2$	Q	$\mathbb{Q}(\sqrt{-3}, \sqrt[6]{-2})$
$G_{1,3}$	$x^6 + 3x^4 - 2$	$\mathbb{Q}(i)$	$\mathbb{Q}(i)$
$N(G_{1,3})$	$x^6 + 3x^4 - 2$	Q	$\mathbb{Q}(i)$
G _{3,3}	$x^6 + x^2 + 1$	Q	Q
$N(G_{3,3})$	$x^6 + x^5 + x - 1$	Q	$\mathbb{Q}(i)$
USp(4)	$x^5 - x + 1$	Q	Q

Genus 2 curves realizing Sato-Tate groups with ${\it G}^0 \neq {\rm U}(1)$

Searching for curves

We surveyed the \bar{L} -polynomial distributions of genus 2 curves

$$y^2 = x^5 + c_4 x^4 + c_3 x^3 + c_2 x^2 + c_1 x + c_0,$$

$$y^{2} = x^{6} + c_{5}x^{5} + c_{4}x^{4} + c_{3}x^{3} + c_{2}x^{2} + c_{1}x + c_{0},$$

with integer coefficients $|c_i| \leq 128$, over 2^{48} curves.

We specifically searched for curves with zero trace density $z_1 \ge 1/2$, which accounts for all cases not already addressed in [KS09].

Searching for curves

We surveyed the \bar{L} -polynomial distributions of genus 2 curves

$$y^2 = x^5 + c_4 x^4 + c_3 x^3 + c_2 x^2 + c_1 x + c_0,$$

 $y^{2} = x^{6} + c_{5}x^{5} + c_{4}x^{4} + c_{3}x^{3} + c_{2}x^{2} + c_{1}x + c_{0},$

with integer coefficients $|c_i| \leq 128$, over 2^{48} curves.

We specifically searched for curves with zero trace density $z_1 \ge 1/2$, which accounts for all cases not already addressed in [KS09].

We found over 10 million non-isogenous curves with exceptional distributions, including at least 3 apparent matches for each of our target Sato-Tate groups.

Representative examples were computed to high precision $N = 2^{30}$.

Searching for curves

We surveyed the \bar{L} -polynomial distributions of genus 2 curves

$$y^2 = x^5 + c_4 x^4 + c_3 x^3 + c_2 x^2 + c_1 x + c_0,$$

 $y^{2} = x^{6} + c_{5}x^{5} + c_{4}x^{4} + c_{3}x^{3} + c_{2}x^{2} + c_{1}x + c_{0},$

with integer coefficients $|c_i| \leq 128$, over 2^{48} curves.

We specifically searched for curves with zero trace density $z_1 \ge 1/2$, which accounts for all cases not already addressed in [KS09].

We found over 10 million non-isogenous curves with exceptional distributions, including at least 3 apparent matches for each of our target Sato-Tate groups.

Representative examples were computed to high precision $N = 2^{30}$.

For each example the field *K* was then determined, allowing the Galois type, and therefore the Sato-Tate group, to be **provably** identified.

Sato-Tate distributions in genus 2

Andrew V. Sutherland Massachusetts Institute of Technology

November 28, 2011

http://math.mit.edu/~drew