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ANDREW V. SUTHERLAND

ABSTRACT. In these lecture notes we give an introduction to the theory of arithmetic equivalence, a notion
originally introduced in a number theoretic setting to refer to number fields with the same zeta function.
Gassmann established a direct relationship between arithmetic equivalence and a purely group theoretic
notion of equivalence that has since been exploited in several other areas of mathematics, most notably in
the spectral theory of Riemannian manifolds by Sunada. We will explicate these results and discuss some
applications and generalizations.

1. AN INTRODUCTION TO ARITHMETIC EQUIVALENCE AND ISOSPECTRALITY

Let K be a number field (a finite extension of Q), and let OK be its ring of integers (the integral closure
of Z in K). The Dedekind zeta function of K is defined by the Dirichlet series

ζK(s) :=
∑

I⊆OK

N(I)−s =
∏

p

(1− N(p)−s)−1

where the sum ranges over nonzero OK -ideals, the product ranges over nonzero prime ideals, and
N(I) := [OK : I] is the absolute norm. For K = Q the Dedekind zeta function ζQ(s) is simply the
Riemann zeta function ζ(s) :=

∑

n≥1 n−s. As with the Riemann zeta function, the Dirichlet series (and
corresponding Euler product) defining the Dedekind zeta function converges absolutely and uniformly
to a nonzero holomorphic function on Re(s) > 1, and ζK(s) extends to a meromorphic function on C
and satisfies a functional equation, as shown by Hecke [25].

The Dedekind zeta function encodes many features of the number field K: it has a simple pole at
s = 1 whose residue is intimately related to several invariants of K , including its class number, and as
with the Riemann zeta function, the zeros of ζK(s) are intimately related to the distribution of prime
ideals in OK . There is also a natural generalization of the Riemann hypothesis, which states that all
zeros of ζK(s) that are not on the real line lie on the vertical line Re(s) = 1/2 .

It is thus natural to ask the following question: to what extent does ζK(s) determine the field K?
Number fields with the same Dedekind zeta function are said to be arithmetically equivalent, and our
question amounts to asking whether arithmetically equivalent number fields are necessarily isomorphic,
and if not, how “non isomorphic” can they be?

Let us begin by considering two numbers fields K1 and K2. Let L/Q be a finite Galois extension
containing both K1 and K2 (the compositum of their Galois closures, for example). Let G := Gal(L/Q),
and let H1 := Gal(L/K1) ≤ G and H2 := Gal(L/K2) ≤ G, so that K1 = LH1 and K2 = LH2 . In 1925 Fritz
Gassmann [17] made the remarkable observation that the arithmetic equivalence of K1 and K2 (or lack
thereof) is completely determined by a simple relationship between H1, H2 ≤ G.

Definition 1.1. Let H1, H2 be subgroups of a finite group G. We say that H1 and H2 are Gassmann
equivalent (or almost conjugate) and call (G, H1, H2) a Gassmann triple if there is a bijection of set H1↔
H2 that preserves G-conjugacy. Equivalently, for all g ∈ G we have

#(H1 ∩ gG) = #(H2 ∩ gG),

where gG is the G-conjugacy class of g. This defines an equivalence relation on the subgroups of G.
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If H1, H2 ≤ G are conjugate then (G, H1, H2) is obviously a Gassmann triple; we are interested in
non-trivial Gassmann triples, those in which H1 and H2 are not G-conjugate.

Example 1.2. Let p be prime and consider the following subgroups of G := GL2(Fp):

H1 :=
��

1 ∗
0 ∗
�

∈ GL2(Fp)
	

H2 :=
�

( ∗ ∗0 1 ) ∈ GL2(Fp)
	

The bijection
�

a b
0 d

�

↔
�

d b
0 a

�

preserves G-conjugacy, so (G, H1, H2) is a Gassmann triple. For p > 2 the
subgroups H1 and H2 are not conjugate in G; the since the elements H1 have a common 1-eigenspace
(under the left-action of G on column vectors), but this is not true of H2.

In the previous example the Gassmann equivalent subgroups H1 and H2 are isomorphic, and in fact
one can embed G in a larger group G′ in which H1 and H2 are G′-conjugate. If (G, H1, H2) is a Gassmann
triple, then H1 and H2 necessarily have the same cardinality (there is a bijection between them). The
order of a group element is determined by its conjugacy class, so H1 and H2 must also have the same
order statistics, which for any finite group H we define as the integer function

φH : Z→ Z

e 7→ #{h ∈ H : |h|= e};

note that φH depends only on the isomorphism class of H as an abstract group. If H1 and H2 are
Gassmann equivalent (as subgroups of some G), then φH1

= φH2
. For any particular G the converse

need not hold, but if we work in the category of abstract groups, and give ourselves the freedom to
choose G, compatibility of order statistics is the only constraint.

Theorem 1.3. Let H1 and H2 be finite groups. There exists a Gassmann triple (G, H ′1, H ′2) with H ′1 ' H1

and H ′2 ' H2 if and only if H1 and H2 have the same order statistics φH1
= φH2

.

Proof. As noted above, the forward implication is immediate. For the reverse, assume φH1
= φH2

, let
n := #H1 = #H2, let G := Sn be the symmetric group on n-letters, and for i = 1,2 let H ′i ≤ G be the
left regular permutation representation of Hi . Each h ∈ H ′i is a permutation consisting of n/|h| cycles
of length |h|. Thus h1 ∈ H ′1 and h2 ∈ H ′2 are conjugate in G if and only if they have the same order.
Any bijection H1↔ H2 that preserves element orders thus preserves G-conjugacy, and since H ′1 and H ′2
have the same order statistics, such a bijection exists. �

Abelian groups with the same order statistics are necessarily isomorphic, but this is not true in general;
the smallest examples of group H1 6' H2 with the same order statistics have order 16 (the groups with
GAP [16] identifiers 〈16,10〉 and 〈16,13〉 are an example). The following example provides an infinite
family of non-isomorphic pairs of groups with the same order statistics from which we can construct
Gassmann triples via Theorem 1.3 above.

Example 1.4. Following [32], let p be an odd prime and let

H1 := (Z/pZ)3 and H2 :=
¦� 1 ∗ ∗

0 1 ∗
0 0 1

�

∈ SL3(Fp)
©

.

These groups are non-isomorphic, since H1 is abelian and the Heisenberg group H2 is not, but they both
contain p3 − 1 elements of order p and one element of order 1; thus φH1

= φH2
. As in the proof of

Theorem 1.3, we can embed H1 and H2 in G := Sp3 to obtain a Gassmann triple (G, H1, H2) (in fact, we
can embed them in a subgroup G ≤ Sp3 of order p6). We also note that n≥ 2, the products H i

1×Hn−i
2 for

0 < i < n are nonisomorphic and have the same order statistics (they are all p-groups of exponent p).
Thus for every integer n ≥ 2 and every odd prime p, the symmetric group Sp3n contains n pairwise
non-isomorphic Gassmann equivalent subgroups of order p3n.
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We now state Gassmann’s main result [17], which can also be found in [9, Ex. 6.4] and [40, Thm. 1].

Theorem 1.5 (Gassmann, 1925). Subfields K1 and K2 of a finite Galois extension L/Q are arithmetically
equivalent if and only if the subgroups Gal(L/K1) and Gal(L/K2) of Gal(L/Q) are Gassmann equivalent.

We will prove this theorem in the next lecture. Note the number fields K1, K2 ⊆ L in Gassmann’s the-
orem are isomorphic if and only if H1 := Gal(L/K1) and H2 := Gal(L/K2) conjugate in G := Gal(L/Q).
Thus given any non-trivial Gassmann triple (G, H1, H2), provided we can realize G as Gal(L/Q) for
some Galois extension L/Q, we can construct non-isomorphic arithmetically equivalent number fields
K1 := LH1 and K2 := LH2 , and every non-trivial example of arithmetically equivalent number fields arises
in this way. Every symmetric group can certainly be realized as the Galois group of a number field, so
Example 1.4 already provides many examples, but the degree of the number fields involved may be very
large. Below we give another example that involves extensions of lower degree.

Example 1.6. For G = GL2(Fp) we can explicitly construct L/Q with Gal(L/Q) = G using the p-torsion
field of an elliptic curve, as exploited in [12], for example. If E/Q is an elliptic curve (which we recall
is an abelian variety of dimension one), the field Q(E[p]) generated by the coordinates of its p-torsion
points in Q is a Galois extension of Q whose Galois group is isomorphic to a subgroup of

Aut(E[p])' Aut(Z/pZ× Z/pZ)' GL2(Fp)

By Serre’s open image theorem [44], for elliptic curves E/Q without complex multiplication we will
have Gal(Q(E[p])/Q) ' GL2(Fp) for all but finitely many primes p, and in fact for almost all E/Q this
will be true for every prime p, as shown in [28]. The elliptic curve y2 + y = x3 − x with Cremona
label 37a1 is an example; more than a million others can be found in the L-functions and modular
forms database. If we now take H1 and H2 as in Example 1.2, we obtain arithmetically equivalent non-
isomorphic number fields K1 := Q(E[p])H1 and K2 := Q(E[p])H2 of degree p2 − 1. For p = 3 we have
p2 − 1 = 8, which is nearly the best possible (the smallest degree in which one finds arithmetically
equivalent non-isomorphic number fields is 7, as shown in [3]).

1.1. Hearing the shape of a drum. One can attach zeta functions to many other mathematical objects.
Let us now consider the case of a Riemannian manifold M , a smooth manifold equipped with a Riemann-
ian metric g. Recall that a smooth manifold (of dimension n) is a second countable Hausdorff space
equipped with an atlas of charts ϕU : U → Rn indexed by an open cover U such that each chart defines
a homeomorphism and the transition maps ϕU ◦ϕ−1

V : ϕ(U ∩V )→ ϕV (U ∩V ) on overlapping charts are
(infinitely differentiable) diffeomorphisms. We use C∞(M) to denote the R-algebra of smooth functions
f : M → R, those for which f ◦ϕ−1

U is infinitely differentiable for all U ∈ U.
The Riemannian metric g is a symmetric positive definite (0,2)-tensor field,1 which we may view as

a smoothly varying inner product 〈·, ·〉g on the tangent spaces Tx ; here Tx is the n-dimensional R-vector
space of R-linear maps v : C∞(M)→ R that satisfy v( f g) = f (x)v(g)+ v( f )g(x) for all f , g ∈ C∞(M);
these are derivations of C∞(M) at x (the tangent space can also be defined using isomorphism classes
of curves through x). The disjoint union T (M) := tx∈M Tx is the tangent bundle of M ; it has a natural
structure as a smooth manifold of dimension 2n equipped with a smooth projection T (M)→ M whose
fibers are tangent spaces. The cotangent bundle T ∗(M) is similarly defined using the dual spaces T ∗x . We
now define the following:

1We follow the (mostly) standard convention that a (p, q)-tensor field is p-contravariant and q-covariant, meaning that its
elements can be viewed as smoothly-varying multi-linear functions (T ∗x )

p × (Tx )q → R, or as smoothly varying elements of
(Tx )⊗p ⊗ (T ∗x )

⊗q, where Tx is the tangent space at x ∈ M and T ∗x is the cotangent space.
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• T(M) is the C∞(M)-module of smooth sections of T (M).
Elements of T(M) are (1,0)-tensor fields (vector fields), equivalently, derivations of C∞(M),
which can be viewed as functions C∞(M)→ C∞(M) corresponding to directional derivatives.
• T∗(M) is the C∞(M)-module of smooth sections of T ∗(M).

Elements of T∗(M) are (0, 1)-tensor fields, also known as differential 1-forms, and can be viewed
as functions T(M)→ C∞(M); for any f ∈ C∞(M), the map d f : X 7→ X ( f ) lies in T∗(M).

The metric g can be viewed as a symmetric C∞(M)-bilinear map T(M)×T(M)→ C∞(M). It uniquely
determines an isomorphism [: T(M)→ T∗(M) via X [ := (Y 7→ 〈X , Y 〉g), which together with its inverse
]: T∗(M)→ T(M) is known as a musical isomorphism.

We also have the Levi-Civita connection ∇: T(M) × T(M) → T(M), the unique torsion-free affine
connection compatible with g. This means that for all f ∈ C∞(M) and X , Y, Z ∈ T(M) we have

• ∇( f X , Y ) = f∇(X , Y ) and ∇(X , f Y ) = X ( f )Y + f∇(X , Y ) (affine connection),
• ∇(X , Y )−∇(Y, X ) = X Y − Y X (torsion free),
• X (g(Y, Z)) = g(∇(X , Y ), Z) + g(Y,∇(X , Z)) (compatible with g).

Note that while∇ is R-bilinear, it is C∞(M)-linear only in the first argument. We can alternatively view
the Levi-Civita connection as a C∞(M)-linear map

T(M)→ (T(M)→ T(M))

X 7→ ∇X := (Y 7→ ∇(X , Y )).

We define the trace of a C∞(M)-linear map T(M)→ T(M) as the function in C∞(M) obtained by taking
the trace of the linear map on the tangent space at each point. We now define the R-linear operators

grad: C∞(M)→ T(M) div: T(M)→ C∞(M)

f 7→ d f ] X 7→ tr(∇X ),

and our main object of interest, the Laplace-Beltrami operator

∆M : C∞(M)→ C∞(M)

f 7→ −div grad f (note the sign).

All of the operators we have defined intrinsically depend on the metric g, even though we do not high-
light this dependence in our notation. Whenever we refer to a Riemannian manifold M we understand
that it is equipped with a Riemannian metric (some authors write (M , g) to emphasize the the metric,
but we view g is baked into the definition of M).

Theorem 1.7. Let M be a compact connected Riemannian manifold. The eigenspaces of ∆M all have
finite dimension, and the corresponding eigenvalues form a countable discrete sequence of non-negative real
numbers. If we enumerate the eigenvalues with multiplicity as

0= λ0 < λ1 ≤ λ2 ≤ · · ·

then there exists an orthonormal sequence of C∞(M) functions {1 = f0, f1, f2, . . .} with ∆M fi = λi fi that
contains a basis for every eigenspace and generates a dense subspace of L2(M) in the L2-norm topology.

Proof. See [2, pp. 54-55] for a sketch of the proof (with references to further details). �

The ordered sequence of nonzero eigenvalues of ∆M (listed with multiplicity) is the eigenvalue spec-
trum of M , denoted λ(M). Riemannian manifolds with the same spectrum are said to be isospectral.
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Definition 1.8. Let M be a compact connected Riemannian manifold of dimension n with eigenvalue
spectrum λ(M) = (λi)i≥1. The (Minakshisundaram-Pleijel) zeta function of M is defined by the gener-
alized Dirichlet series

ζM (s) =
∑

i≥1

λ−s
i ,

which converges absolutely and uniformly to a holomorphic function on some right half plane and has
a meromorphic continuation to C that is holomorphic except for simple poles at integers 1, . . . , n/2 if n
is even and half integers n/2, n/2− 1, . . . if n is odd [34].

Lemma 1.9. Let M1 and M2 be compact connected Riemannian manifolds. Then λ(M1) = λ(M2) if and
only if ζM1

(s) = ζM2
(s).

Proof. The forward implication is obvious. For the reverse, suppose ζM1
(s) = ζM2

(s) but λ(M1) 6= λ(M2).
Without loss of generality we may assume that there is a positive integer j such that λi(M1) = λi(M2)
for 1 ≤ i < j and λ j(M1) > λ j(M2). Note that this implies λ j(M1) > λi(M2) for all i ≥ j. Let n j be
the multiplicity of λ j(M1) in λ(M1) and let σ be the maximum of the abscissa of convergence for the
generalized Dirichlet series defining ζM1

(s) and ζM2
(s). We have

ζM1
(t)− ζM2

(t)∼ n jλ j(M1)
−t

as t ≥ σ tends to infinity along the real line, but this contradicts ζM1
(s) = ζM2

(s). �

Example 1.10. Let S1 be the unit circle in R2. Then λ(S1) = {n2 : n ≥ 1 with multiplicity 2 } and we
have ζS1(s) =

∑

n≥1 2n−2s = 2ζ(2s), where ζ(s) :=
∑

n≥1 n−s is the Riemann zeta function.

Definition 1.11. A (full) lattice Λ in Rn is the Z-span of a basis for Rn, the dual lattice is defined by

Λ∗ := {v ∈ Rn : 〈v, w〉 ∈ Z for all w ∈ Λ},

where 〈·, ·〉 is the Euclidean inner product (dot product). We say that Λ is

• integral if 〈v, w〉 ∈ Z for all v, w ∈ Λ (equivalently, Λ ⊆ Λ∗);
• even if 〈v, w〉 ∈ 2Z for all v, w ∈ Λ (implies integral);
• unimodular if Λ has covolume µ(Rn/Λ) = 1;
• self dual if Λ= Λ∗ (equivalently, Λ is integral and unimodular).

Two lattices in Rn are isomorphic if they are related by an orthogonal linear transformation.

Definition 1.12. Let Λ be a lattice in Rn. The theta series of Λ is defined by the formal q-series

ΘΛ(q) :=
∑

v∈Λ
q〈v,v〉/2,

If we substitute q = e−2πs we obtain a holomorphic function on Re(s)> 0. The zeta function of Λ is

ζΛ(s) :=
∑

v∈Λ−{0}

〈v, v〉−s,

which can be derived from ΘΛ by taking a Mellin transform:

ζΛ(s) = π
sΓ (s)−1

∫ ∞

0

ΘΛ(e
−2πt)− 1)ts−1d t.

This formula can be inverted using the inverse Mellin transform, thus ζΛ and ΘΛ determine each other.
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Example 1.13. Let M := Rn/Λ be the torus defined by a lattice Λ in Rn equipped with the flat metric
(here “flat” means zero curvature; this is not the metric induced by the standard embedding in Rn+1).
The eigenvalue spectrum of M is

λ(M) = {4π2〈v, v〉 : nonzero v ∈ Λ∗},

with corresponding eigenfunctions are {e2πi〈v,x〉 : nonzero v ∈ Λ∗}. If Λ is self-dual then

ζM (s) =
∑

v∈Λ−{0}

(4π2〈v, v〉)−s = ζ2πΛ(s),

which we note is determined by (and determines) ΘΛ(q), since Θ2πΛ(q) = ΘΛ(4π2q).

Example 1.14. For integers n≥ 3 the lattice Dn is defined by

Dn := {(a1, . . . , an) ∈ Zn : a1 + · · · an ≡ 0 mod 2};

it is an even lattice but is not self-dual. For even integers n≥ 4 we define the lattice

D+n := Dn ∪ (Dn + h),

where h= (1
2 , . . . , 1

2), which is even and self-dual for n divisible by 4 (in fact D+4 ' Z4).
The lattice D+8 is more commonly known as E8; up to isomorphism it is the unique even self-dual

lattice of dimension 8. In dimension 16 there are two even self-dual lattices (up to isomorphism):
E8 ⊕ E8 and D+16. As shown by Witt [55], these non-isomorphic lattices have the same theta series.
This follows from the fact that the theta series of even self-dual lattices of dimension n correspond to a
modular form of weight n/2. More precisely for any such lattice, the function

θΛ(τ) := ΘΛ(e
2πiτ)

satisfies:

• θΛ(τ) is holomorphic on the upper half plane Im(τ)> 0;
• θΛ(τ+ 1) = θΛ(τ) and θΛ(−1/τ) = τn/2θΛ(τ);
• θΛ(τ) remains bounded as Imτ→∞ in the strip 0≤ Re(τ)< 1.

This implies that θΛ(τ) is a modular form of weight n/2 for the full modular group SL2(Z). For n= 16
the space of (new) modular forms of weight n/2= 8 for SL2(Z) has dimension 1, so the q-series of any
two such modular forms differ only by a scalar; the q-series defining θΛ(τ) has constant coefficient 1,
so there is only one possible theta series for an even self-dual lattice of dimension 16. It follows that
the corresponding flat tori have the same zeta function

ζR16/E8⊕E8
(s) = ζR16/D+16

(s),

as observed by Milnor [36] in 1964.

In 1966 Mark Kac famously asked “Can one hear the shape of a drum?” [29]. Kac was asking whether
the eigenvalue spectrum of a compact Riemannian manifold M in the Euclidean plane determines M up
to isomorphism (for manifolds with boundary one restricts to functions with vanishing normal deriva-
tive at the boundary when considering the eigenvalue spectrum). It was already known that isospectral
manifolds need not be isomorphic in general, as noted in Example 1.14. Twenty-five years later Gor-
don, Webb, and Wolpert [21] negatively answered Kac’s question by extending a general method for
constructing non-isomorphic isospectral manifolds that was introduced by Sunada in the mid 1980s.
Sunada’s result makes essential use of Gassmann triples.
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1.2. Riemannian coverings. We now work in the category of smooth connected manifolds whose mor-
phisms are smooth maps (they induce C∞-maps of Euclidean spaces locally).

A smooth cover (or smooth covering) is a surjective morphism π: M → X of smooth connected man-
ifolds that is a local diffeomorphism: every point in X has an open neighborhood U such that each
connected component of π−1(U) is mapped diffeomorphically onto U by π. Smooth covers preserve
dimension and are unramified. The composition of smooth covers is a smooth cover, as is the identity
map, so for each n ≥ 1 we have a subcategory of smooth covers of smooth connected manifolds of
dimension n; if we fix the base X we obtain the category of smooth covering spaces of X .

A smooth cover π: M → X is called a universal cover if M is simply connected. It has the universal
property that every smooth cover ψ: N → X admits a smooth cover φ : M → N such that π = ψ ◦φ,
equivalently, the universal cover is an initial object in the category of covering spaces of X . Connected
manifolds are path connected, and this implies that every connected smooth manifold has a universal
cover, which is unique up to isomorphism.

The fibers of a smooth cover π: M → X all have the same cardinality, which we denote degπ. If this
cardinality is finite we say that π is finite, in which case M is compact if and only if X is.

Given a smooth cover π: M → X , a deck transformation (or covering transformation) is an automor-
phism of M that fixes π, in other words, a diffeomorphism φ : M → M such that π ◦ φ = π. The
deck transformations of π form a subgroup Deck(π) of the automorphism group Aut(M). If π is the
universal cover, then Deck(π) is isomorphic to the fundamental group π1(X ) (which is independent
of the base point because M is path connected). Every smooth cover π: M → X induces an embed-
ding π1(M) ,→ π1(X ) of fundamental groups via post-composition. The action of Deck(π) on M is
free and properly discontinuous, which means that every point in M has an open neighborhood whose
Deck(π)-translates are disjoint. This implies that the quotient space M/Deck(π) is a smooth manifold
(in particular, it is Hausdorff), and the projection map M → M/Deck(π) is a smooth cover. Similar
comments apply to any subgroup of Deck(π).

The group Deck(π) acts freely on the fibers of π, so # Deck(π) ≤ degπ, and if π is finite then so is
Deck(π). If the action of Deck(π) on the fibers of π is transitive (which need not hold in general) then
it is necessarily simply transitive (equivalently, regular), and the following equivalent conditions hold:

• each fiber of π is a Deck(π)-torsor;

• M is a homogeneous space for Deck(π);

• M/Deck(π)' X ;

• the embedding π1(M) ,→ π1(X ) induced by π has normal image in π1(X ).

Smooth covers that satisfy these equivalent conditions are said to be normal (or regular, or Galois).
Now suppose π: M → X is a normal smooth cover. For each subgroup H ≤ Deck(π), the projec-

tion map M → M/H is a normal smooth cover with Deck transformation group H. Associated to any
inclusion of subgroups H ≤ G ≤ Deck(π), we have a smooth cover πH,G : M/H → M/G that sends
each H-orbit in M to the G-orbit in which it lies. The projection map πG : M → M/G is equal to the
composition πH,G ◦πH , where πH = π1,H is the projection map M → M/H.

When G = Deck(π)we have M/G ' X , sinceπ is normal. We then viewπH,G : M/H → M/G = X as a
smooth cover of X that is an intermediate cover of π, meaning that π= πH,G◦πH ; the smooth cover πH,G

is normal if and only if H is a normal in G = Deck(π). If H1 and H2 are conjugate subgroups of Deck(π)
then the quotients M/H1 and M/H2 are diffeomorphic. We thus have a “Galois correspondence” that is
directly analogous to a Galois extension of fields.
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field extensions smooth covers
L/K π: M → X

Galois normal
finite finite
[L : K] degπ

Gal(L/K) Deck(π)
LH/K πH : M/H → X

LH1/LH2 πH1,H2
: M/H1→ M/H2

TABLE 1. Dictionary between Galois field extensions and normal smooth covers

For a Riemannian manifold X , a Riemannian covering of X is a smooth cover π: M → X that is also
a local isometry of Riemannian manifolds; this means that if g and h are the metrics on X and M
respectively then for every q ∈ M and every X , Y ∈ TqM we have

(1) hq(X , Y ) = gπ(q)(π∗X ,π∗Y ).

This condition uniquely determines h, and the metric π∗g defined by the RHS of (1) is a Riemannian
metric on M . It follows that any smooth covering π: M → X of a Riemannian manifold X can be viewed
as a Riemannian covering by equipping M with the metric π∗g, and this is the only possible choice. Note
that the metric π∗g is invariant under the action of Deck(π) (since π is), which ensures that every deck
transformation is an isometry. So Deck(M) ⊆ Aut(M), and for every subgroup H ≤ Deck(π) the quotient
M/H is a Riemannian manifold, and the projection M → M/H is a Riemannian covering.

1.3. Isospectral manifolds. We can now state the theorem of Sunada, which extends Theorem 1.5 to
the setting of Riemannian manifolds in one direction [47, Thm. 1].

Theorem 1.15 (Sunada, 1985). Let π: M → X be a finite normal Riemannian covering of a compact con-
nected Riemannian manifold X and let G := Deck(π). For any Gassmann triple (G, H1, H2) the Riemannian
manifolds M/H1 and M/H2 are isospectral.

In contrast to the situation with number fields, it may happen that non-conjugate subgroups H1

and H2 give rise to isomorphic (meaning isometric) Riemannian manifolds. In general M/H1 and M/H2

will be isometric if and only if H1 and H2 are conjugate as subgroups of the full isometry group Aut(M),
but this group may be much larger than G (and difficult to compute). One way to ensure that M/H1

and M/H2 are non-isometric is to use non-isomorphic subgroups H1 and H2. As noted by Sunada, every
finite group G arises as the fundamental group of a compact connected smooth manifold of dimension 4;
see [46, §9.4.2]. Theorem 1.3 implies that we can construct isospectral 4-manifolds using any two
non-isomorphic groups H1 and H2 with the same order statistics, such as H1 = (Z/pZ)3 and H2 the
Heisenberg group of order p3, as in Example 1.4.

Another family of Riemannian manifolds considered by Sunada are Riemann surfaces, which are con-
nected complex manifolds of dimension 1, hence real manifolds of dimension 2. Riemann surfaces are
smooth manifolds, so to make them Riemannian manifolds we must equip them with a metric; a stan-
dard choice is to give them constant negative curvature, and for Riemann surfaces that arise as quotients
of the hyperbolic upper half plane by a Fuchsian group, a discrete subgroup of SL2(R) acting on the up-
per half plane via fractional linear transformations, this is the natural choice. More generally, there is an
equivalence of categories between connected compact Riemann surfaces and smooth projective curves
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(algebraic varieties of dimension one) over C; given a smooth projective curve over a number field, we
can obtain a connected compact Riemann surface by embedding our number field in C.

Prasad and Rajan [41] consider the case of a smooth projective curve X over an arbitrary fields k
equipped with an action by a finite group G and prove a result directly analogous to Sunada’s theorem:
for any Gassmann triple (G, H, H ′) the curves X/H1 and X/H2 have isogenous Jacobians. When k is a
finite field or number field, this amounts to saying that X/H1 and X/H2 have the same zeta function
(or L-function); we will discuss this result further in a Lecture 3.

1.4. Isospectral graphs. There is a discrete analog of Sunada’s theorem for graphs. Let us consider the
case of a finite undirected graph Γ = (V, E), where E is a finite multiset of unordered pairs of elements of
V (multiple edges between vertices are allowed; when we enumerate edges we do so with multiplicity).
Let R(V ) and R(E) denote the R-vector spaces of real valued functions on V and the set of edges in E
(without multiplicity). The coboundary operator ∇ is the linear map ∇: R(V )→ R(E) defined by

(∇ f )({v, w}) := f (v)− f (w),

which can be viewed as a discrete analog of the gradient. Its transpose ∇ᵀ : R(E)→ R(V ) is defined by

(∇ᵀg)(v) :=
∑

{v,w}∈E

g({v, w}),

and can viewed as a discrete analog of divergence. The discrete Laplace operator ∆Γ : R(V )→ R(V ) is
the composition ∆Γ :=∇ᵀ∇, acting on f ∈ R(V ) via

(∆Γ f )(x) :=
∑

{v,w}∈E

( f (v)− f (w));

note that the sum enumerates edges with multiplicity, and that self-loops (edges of the form {x , x})
make no contribution. The eigenvalues of ∆Γ are the eigenvalues of the matrix D − A, where D is the
degree matrix of Γ , and A is its adjacency matrix. If we index the vertices as V = {v1, . . . , vn}, then D is
the diagonal matrix with Dii equal to the number of edges incident to vi (with multiplicity) and Ai j is
the symmetric matrix with Ai j equal to the multiplicity of {vi , v j} in E (zero if {vi , v j} 6∈ E).

The eigenvalues of ∆Γ are real and nonnegative; the eigenvalue 0 occurs with multiplicity equal to
the number of connected components of Γ . If we let 0< λ1 ≤ . . .≤ λr denote the nonzero eigenvalues
of ∆Γ (with multiplicity), the spectral zeta function of Γ is defined by

ζΓ (s) :=
∑

1≤i≤r

λ−s
i .

These definitions readily extend to countably infinite graphs of bounded degree (including lattices) by
replacing R(V ) with a suitable Hilbert space of functions (typically a reproducing kernel Hilbert space),
and can be generalized further to locally finite weighted directed graphs; see [48]. We should note that
there are many other zeta functions of graphs that one may define, and equality of one type of zeta
function does not always imply equality of another; see [11] for a survey if this topic.

An automorphism of Γ is a permutation ϕ : V → V that fixes E; this means that E = {{ϕ(x),ϕ(y)} :
{x , y} ∈ E}. The set of automorphisms of Γ form a subgroup Aut(Γ ) of the group of permutations of V .
For any subgroup H ≤ Aut(Γ ), the quotient graph Γ/H is the graph whose vertex set consists of H-orbits
[x] of x ∈ V with the multiset of edges {{[x], [y]} : {x , y} ∈ E}.

The following analog of Sunada’s theorem appears in [22].

Theorem 1.16. Let Γ be a finite connected graph and let H1 and H2 be subgroups of G := Aut(Γ ) whose
non-trivial elements have no fixed points. If (G, H1, H2) is a Gassmann triple then ζΓ/H1

(s) = ζΓ/H2
(s).
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The converse is not true in general, but for k-regular graphs one can obtain a biconditional by in-
troducing some additional structure; see [5, Cor. 0.1]. As with Sunada’s theorem, non-conjugate H1

and H2 may yield isomorphic Γ/H1 and Γ/H2. The assumption that the non-trivial elements of H1 and
H2 contain no fixed points is stronger than necessary. If Γ is a simple graph, the quotient graphs Γ/Hi

need not be simple. We can remove self-loops, since these do not impact the spectral zeta function, and
as explained in [22], one can modify Γ in a way that does not change its spectral zeta function or its
automorphism group so that the quotient graphs Γ/Hi will be simple and still have the same spectral
zeta functions.

2. ARITHMETICALLY EQUIVALENT NUMBER FIELDS

Let L/Q be a finite Galois extension with G := Gal(L/Q), let H1 and H2 be subgroups of L, and let
K1 := LH1 and K2 := LH2 be the corresponding fixed fields. Our main goal for this lecture is to prove
Gassmann’s theorem, which states that the fields K1 and K2 are arithmetically equivalent if and only
if H1 and H2 are Gassmann equivalent (as subgroups of G). We begin by reviewing some standard
facts about the decomposition of primes in number fields; for further background and proofs see any
standard reference for algebraic number theory (such as [39]), or these lecture notes.

2.1. Decomposition of primes. Let K be a number field of degree n := [K : Q]. Recall that the ring of
integers OK of a number field K is a Dedekind domain, an integrally closed noetherian domain of Krull
dimension one. This means that every nonzero ideal of OK can be uniquely factored into nonzero prime
ideals. In particular, for each prime number p we have a factorization of OK -ideals

pOK =
∏

p|pOK

pep ,

where ep ∈ Z>1 is the ramification index of p (note that p|p if and only if p = p∩ Z, so the ramification
index ep is uniquely determined by p). Henceforth we may use p|p as shorthand for p|pOK and say that p
lies above p whenever OK is clear from context. We also define the residue field degree (or inertia degree)
as the degree of the residue field Fp := OK/p as an extension of Fp ' Z/pZ. The ramification indices
and residue field degrees are related by the equation

n= [K : Q] = [OK/pOK : Z/pZ] =
∑

p|p

[OK/p
ep : Z/pZ] =

∑

p|p

ep[Fp : Fp] =
∑

p|p

ep fp.

For all but finitely many prime ideals p of OK we have ep = 1, in which case we say that p is unramified.
Indeed, we can have ep > 1 only when p lies above a prime p that divides the discriminant discOK , which
can be computed using any Z-basis e1, . . . en for OK via

discOK := disc(e1, . . . , en) = det[tr(eie j)]i j ∈ Z,

where tr: K → Q is defined on α ∈ K as the trace of the multiplication-by-α map (as a transformation
of the Q-vector space K ' Qn). The extension K/Q is separable, so by the primitive element theorem,
K = Q[x]/( f (x)) for some monic irreducible f ∈ Z[x], and we may write K = Q(α), where α is the
image of x in Q[x]/( f (x)). The discriminant of f is related to the discriminant of OK via

disc( f ) = [OK : Z[α]]2 discOK .

If one can choose f ∈ Z[x] so that |disc( f )|= |discOK | one says that K is monogenic; for most number
fields this is not possible. For primes that do not divide [OK : Z[α]], the following theorem allows us to
completely determine the factorization of pOK =

∏

p|p p
ep , as well as the residue field degrees fp. This

theorem has many applications, so we state it in greater generality than we need.
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Theorem 2.1 (DEDEKIND-KUMMER THEOREM). Let A be a Dedekind domain with fraction field K, let L/K
be a finite separable extension, and let B be the integral closure of A in L. Let L = K(α) with α ∈ B, let
f ∈ A[x] be the minimal polynomial of α, let p be a nonzero prime ideal of A such that the pA[α] is coprime
to {a ∈ A[α] : aB ⊆ A[α]}, let f̄ = f̄ e1

1 · · · f̄
er
r be the irreducible factorization of the reduction of f in

(A/p)[x], with f1, . . . , fr ∈ A[x] monic, and define the B-ideals qi := (p, fi(α)). Then

pB = q
e1
1 · · ·q

er
r

is the unique factorization of pB into prime ideals of B and [B/qi : A/p] = deg fi .

The ideal {a ∈ A[α] : aB ⊆ A[α]} in the Dedekind-Kummer theorem is the conductor of the order A[α]
in B; it is the largest B-ideal that is also an A-ideal. When A= Z this ideal divides the index [B : A[α]].
We now observe that primes p - disc( f ) are unramified and satisfy the hypothesis of the theorem. In this
case the reduction of f modulo p is squarefree and the degrees of the irreducible factors of f̄ are precisely
the residue field degrees fp of the primes p|p. Indeed, the étale algebra Fp[x]/( f̄ (x)) decomposes as

Fp[x]

( f̄ (x))
'

Fp[x]

( f̄1(x))
× · · · ×

Fp[x]

( f̄r(x))
' Fp1

× · · · × Fpr
.

We now want to consider the splitting field of f (x), which is a finite Galois extension L of Q that
contains K . For each prime ideal q of OL we have the decomposition group

Dq := {σ ∈ Gal(L/Q) : σ(q) = q} ⊆ Gal(L/Q),

and an exact sequence

1 −→ Iq −→ Dq
σ 7→σ̄
−→ Gal(Fq/Fp) −→ 1,

where p = q∩Z and the σ̄ ∈ Gal(Fq/Fp) is defined by ᾱ 7→ σ(α). If q is unramified the inertia subgroup Iq
is trivial and Dq ' Gal(Fq/Fp). In this case we define the Frobenius element σq ∈ Dq ⊆ Gal(L/Q) as the
unique element for which σ̄q is the p-power Frobenius a 7→ ap, which is a canonical generator for the
cyclic group Gal(Fq/Fp).

The Galois group Gal(L/Q) has a natural permutation representation of degree n given by its action
on the roots of f (x) (all of which lie in L). For unramified primes p, the Frobenius elements σq of
the primes q|pOL are conjugate permutations with cycle type ( fp1

, . . . fpr
), where pOK = p1 · · ·pr is the

prime factorization of pOK in OK . We can also realize this permutation representation as the action of
G := Gal(L/Q) on the coset space H\G := {H g : g ∈ G} (viewed as a G-set). If we let Cq := 〈σq〉 by
the cyclic subgroup of G generated by the Frobenius element σq, we can read off the cycle type of the
action of σq from the double coset decomposition

G = H g1Cq t · · · tH gr Cq.

For a suitable ordering of the gi we will have [H giCq : H gi] = fpi
, and we can view the double coset

decomposition as a partition of the right-coset space H\G into blocks of size fp1
, . . . , fpr

.
To sum up, given a number field K = Q[x]/( f (x)) with Galois closure L and H := Gal(L/K), for each

prime p - disc( f ) we can describe the decomposition of p in the extension K/Q in four equivalent ways:

• the factorization pOK = p1 · · ·pr in OK , with residue field degrees ( fp1
, . . . , fpr

);
• the factorization f̄ = f̄1 · · · f̄r of f in Fp[x], with degrees (deg f̄1, . . . , deg f̄r);
• for q|pOL , the permutation representation of σq in Sn, with cycle type (n1, . . . , nr);
• for q|pOL , the double coset partition of G with block sizes ([H g1Cq :H g1], . . . , [H gr Cq :H gr]).
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When suitably ordered these tuples of integers all coincide and sum to n= [K : Q]; we have

( fp1
, . . . , fpr

) = (deg f1, . . . , deg fr) = (n1, . . . , nr) = ([H g1Cq :H g1], . . . , [H gr Cq :H gr]).

For each p - disc( f ) we thus have a partition of the integer n that we call the decomposition type of p in
the extension K/Q. For p|disc( f ) we define the decomposition type to be the sequence of residue field
degrees in non-decreasing order (which will be a partition of n if p is unramified but not otherwise).

The decomposition type of every prime p - disc( f ) is the cycle type of some σ ∈ Gal(L/Q) acting
on the roots of f (x). One might ask whether every cycle type in the permutation representation of
Gal(L/Q) arises as the decomposition type of such a prime p. This follows from a theorem of Frobenius.

Theorem 2.2 (FROBENIUS DENSITY THEOREM). Let K = Q[x]/( f (x)) be a number field with Galois
closure L. For each tuple of integers (n1, . . . , nr), the density of primes p with this decomposition type is
equal to the proportion of elements of Gal(L/Q) that have this cycle type in the permutation representation
on the roots of f (x).

There are several ways to interpret the word “density” in Frobenius’ theorem, all of which imply that
every cycle type of an element of G arises as the decomposition type of infinitely many primes, which is
all that we will use. Frobenius originally proved his theorem using the notion of polar density, and the
generalization of his theorem by Chebotarev in his 1922 thesis used Dirichlet density; work of Hecke [25]
that actually predates Chebotarev’s result implies that in both cases one can use natural density. The
natural density of a set of primes S is defined as

δ(S) := lim
x→∞

#{p ≤ x : p ∈ S}
#{p ≤ x}

,

whenever this limit exists, where p ranges over primes.
We conclude this section by observing that replacing the Galois closure L of K with any finite Galois

extension L/Q that contains K changes none of the discussion above, and Theorem 2.2 still holds in
this context. The group G := Gal(L/Q) becomes larger, but so does H = Gal(L/K), and [G : H] is
unchanged. The right coset space H\G still has the same cardinality, and the corresponding permutation
representation of G does not change, other than having a larger kernel. In particular, double coset
decompositions still correspond to cycle types of permutations of roots of a defining polynomial for K .

2.2. The Dedekind zeta function. Recall that the Dedekind zeta function of a number field K is

ζK(x) :=
∑

I

N(I)−s =
∏

p

(1− N(p)−s)−1,

where I ranges over nonzero OK -ideals and p ranges over nonzero prime OK -ideals; the sum and product
converge absolutely on Re(s) > 1. Let DK := discOK be the discriminant of the number field K , and let
r1 and r2 denote the number of real and complex places of K; these correspond to equivalence classes
of archimedean absolute values on K and can be defined as the unique integers for which we have an
isomorphism of R-algebras

K ⊗Q R' Rr1 ⊗Cr2 ,

and we note that r1+2r2 = n := [K : Q], since the LHS is an R-vector space of dimension n. Associated
to the real and complex places of K we have Γ -factors

ΓR(s) := π−s/2Γ ( s
2) and ΓC(s) := 2(2π)−sΓ (s),

where Γ (s) :=
∫∞

0 ts−1e−sd t. We now define the completed Dedekind zeta function as

ZK(s) := |DK |s/2ΓR(s)r1ΓC(s)
r2ζK(s).
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One should think of the Γ -factors as Euler factors for the archimedean places that are missing from the
Euler product of ζK(x). As shown by Hecke [25], the completed Dedekind zeta function ZK(s) extends
to a meromorphic function on C that satisfies the functional equation

ZK(s) = ZK(1− s).

The existence of this functional equation imposes a certain rigidity on the Dedekind zeta function that
has several implications. For our purposes the most important of these is that ZK(s) and ζK(s) are both
completely determined by any partial product that includes all but finitely many of the factors in the
Euler product for ζK(s). To prove this we first note the following purely analytic result.

Lemma 2.3. Let 1< c1 ≤ c2 ≤ · · · cm and 1< d1 ≤ d2 · · · ≤ dn be real numbers, and define

f (s) :=
m
∏

i=1

(1− c−s
i ), g(s) :=

n
∏

j=1

(1− d−s
j ) h(s) =

f (s)
g(s)

Let φ(s) be a meromorphic function with no zeros or poles at any zero or pole of h(s). Suppose that

h(s) = φ(s)h(1− s).

Then f (s) = g(s) and φ(s) = 1.

Proof. The functions f and g have no poles. The zeros of f are {2πik/ log ci : k ∈ Z} and the zeros of
g are {2πik/ log d j : k ∈ Z}. Every zero of h must be a zero of f (since g has no poles) and not a zero
of φ (by hypothesis), and cannot be zero of h(1− s) because f (s) and f (1− s) have no common zeros
(the zeros of f (s) lies on Re(s) = 0 while those of f (1− s) lie on Re(s) = 1). But this contradicts the
hypothesis h(s) = φ(s)h(1− s), so h must not have any zeros.

Similarly, every pole of h must be a zero of g but not a pole of φ or of h(1− s), so h has no poles.
It follows that f and g have the same zeros, with the same multiplicities, and therefore the sequences
c1, . . . , cm and d1, . . . , dn coincide. It follows that f = g, which implies h= 1 and φ = 1. �

Corollary 2.4. Let K1 and K2 be number fields and suppose that for all but finitely many primes p we have
∏

p|pOK1

(1− N(p)−s) =
∏

p|pOK2

(1− N(p)−s).

Then ζK1
(s) = ζK2

(s) and ZK1
(s) = ZK2

(s), and the number fields K1 and K2 have the same degree, discrim-
inant, and numbers of real and complex places.

Proof. Let S be the finite set of primes for which the hypothesis of the corollary does not hold. For any
prime ideal p of either OK1

or OK2
, the norm N(p) is a power of the prime p := p ∩ Z (which is a real

number greater than 1), and the set of norms of prime ideals p that lie above a prime p ∈ X is disjoint
from the set of norms of prime ideals that lie above a prime p 6∈ S. We also note that the ratio ZK1

/ZK2

satisfies the functional equation, We may thus apply Lemma 2.3 with

f (s) :=
∏

p|pOK1
p∈S

(1− N(p)−s), g(s) :=
∏

p|pOK2
p∈S

(1− N(p)−s), φ(s) :=
ZK1
(s)ZK2

(1− s)ζK2
(s)ζK1

(1− s)

ZK2
(s)ZK1

(1− s)ζK1
(s)ζK2

(1− s)

shows that ζK1
(s) = ζK2

(s) and ZK1
(s)ZK1

(1 − s) = ZK2
(s)ZK2

(1 − s), which implies ZK1
(s)2 = ZK2

(s)2,
by the functional equation. Let r11 and r21 be the numbers of real and complex places of K1 and
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similarly define r21 and r22 as the numbers of real and complex places of K2. Noting that ΓR(1) = 1 and
ΓC(1) = π−1, evaluating ZK1

(s)2/ZK2
(s)2 as s→ 1+ yields

|DK1
|−1π−2r21 = |DK2

|−1π−2r22 ,

which implies r21 = r22 and |DK1
|= |DK2

|, since π is transcendental and the discriminants are integers.
Noting that ΓR(2) = π−1, if we now evaluate ZK1

(s)2/ZK2
(s)2 at s = 2 we obtain π−2r11 = π−2r21 and

therefore r21 = r22, which implies ZK1
(s) = ZK2

(s). Since K1 and K2 have the same number of real and
complex places, they have the same degree, and since the sign of the discriminant of a number field is
determined by the parity of the number of complex places (see [4]), we also have DK1

= DK2
. �

Corollary 2.4 is a very special case of what is known as a multiplicity one theorem: for L-functions
that satisfy a certain list of properties, including the existence of a functional equation and an Euler
product, if the Euler products agree at all but finitely many factors then the L-functions must coincide.

Definition 2.5. The polynomial Selberg class Sp consists of Dirichlet series L(s) :=
∑

n≥1 ann−s for which:

(1) the series converges absolutely on Re(s)> 1;
(2) (s− 1)m L(s) is holomorphic on C for some m ∈ Z, and |L(s)|= O(exp(|s|κ)) for some κ > 0;
(3) for some γ(s) :=Qs

∏r
i=1 Γ (λis+µi) and ε the completed L-function L̃(s) := γ(s)L(s) satisfies

L̃(s) = ε L̃(1− s̃),

with Q > 0, λi > 0, Re(µi)≥ 0, and |ε|= 1. Define deg L := 2
∑r

i=1λi;
(4) a1 = 1 and an = O(nε) for all ε > 0;
(5) we have an Euler product L(s) =

∏

p Lp(p−s)−1, with Lp(T ) ∈ 1+C[T] of degree at most deg L.

Provided one renormalizes as required to make Re(s) = 1/2 the axis of symmetry for the functional
equation, the polynomial Selberg class is known to include:

(1) Dirichlet L-functions L(s,χ) :=
∑

n≥1χ(n)n
−s of Dirichlet characters χ : Z→ C;

(2) Dedekind zeta functions ζK(s) of number fields K;
(3) Hecke L-functions L(s,χ) :=

∑

I χ(I)N(I)
−s associated to an idele class character χ;

(4) Artin L-functions L(s,ρ) =
∏

p det(I − N(p)−sρ|V Iq (Frobq))−1 associated to an Artin represen-
tation ρ : Gal(L/K)→ GL(V ) of a Galois extension of number fields L/K;

(5) Modular L-functions L( f , s) :=
∑

n≥1 ann−s associated to modular forms f ∈ Sk(Γ1(N));
(6) Elliptic curve L-functions L(E, s) :=

∏

p Lp(p−s) associated to an elliptic curve E/Q.

The last two examples are special cases of automorphic L-functions and motivic L-functions, respectively.
Under the Langlands program, all motivic L-functions are expected to arise as automorphic L-functions;
this is known for elliptic curve L-functions over Q thanks to the modularity theorem. Automorphic L-
functions are all conjectured to lie in the Selberg class S, which generalizes the polynomial Selberg
class Sp by allowing a more general notion of an “Euler product”. Motivic L-functions, which include
L-functions of abelian varieties over number fields and Hasse-Weil zeta functions of arithmetic schemes
are all conjectured to lie in Sp.

We can now state the strong multiplicity one theorem for Sp, due to Kaczorowski and Perelli [30].

Theorem 2.6 (Kaczorowski-Perelli, 2001). If A(s) :=
∑

n≥1 ann−s and B(s) :=
∑

n≥1 ann−s both lie in Sp

and ap = bp for all but finitely many primes p then A(s) = B(s).
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2.3. Proof of Gassmann’s theorem. For a subgroup H of a finite group G we use χH : G→ Z to denote
the character of the permutation representation given by the G-set H\G; in other words χH is the trace
of the induced representation 1G

H , and we have

χH(σ) := #{Hτ ∈ H\G : Hτσ = Hτ}.

Lemma 2.7. Subgroups H1 and H2 of a finite group G are Gassmann equivalent if and only if χH1
= χH2

.

Proof. Let σG := {τστ−1 : τ ∈ G} denote the conjugacy class of σ ∈ G, and for any subgroup H ≤ G
let ψH : G → Z be the class function ψH(σ) := #(H ∩ σG). By definition, H1 and H2 are Gassmann
equivalent if and only if ψH1

= ψH2
. It suffices to show that χH = φHψH for some class function

φH : G→ Q× (we then also have ψH = χH/φH). We now observe that for any σ ∈ G we have

ψH(σ)#Gσ = #{τ ∈ G : τστ−1 ∈ H}= #{τ ∈ G : Hτσ = Hτ}= χH(σ)#H,

where Gσ is the centralizer of σ in G. The first equality follows from the fact that Gσ is the stabilizer
of the G-action on σG (via conjugation), and the second follows from the fact that the map τ 7→ Hτ is
a #H-to-one. We now define φH(σ) := #Gσ/#H and the lemma follows. �

Theorem 2.8. Let K1 and K2 be number fields. Let L any Galois number field containing K1 and K2, let
G := Gal(L/Q), and define H2 := Gal(L/K1) and H2 := Gal(L/K2). The following are equivalent:

(i) K1 and K2 are arithmetically equivalent;
(ii) All but finitely many primes p have the same decomposition type in K1 and K2;

(iii) (G, H1, H2) is a Gassmann triple.

Proof. (i)⇒ (ii): For n≥ 1 let an be the number of OK1
-ideals of norm n, so that ζK1

(s) =
∑

n≥1 ann−s,
and similarly define bn so that ζK2

(s) =
∑

n≥1 bnn−s. By (i) we have
∑

n≥1

ann−s =
∑

n≥1

bnn−s

for all Re(s) > 1, and for s →∞ we obtain a1 = b1. After subtracting a1 = b1 from both sides and
multiplying by 2s we can similarly show a2 = b2. Continuing in this fashion we obtain an = bn for all
n≥ 1. For any prime ideal p in the ring of integers of a number field, for p := p∩ Z we have

N(p) = [OK : p] = #Fp = (#Fp)
[Fp:Fp] = p fp ,

where fp := [Fp : Fp] is the residue field degree. It follows that ap is the number of prime ideals p|pOK

with fp = 1. This implies that ap2 −
�ap

2

�

− ap is the number of prime ideals p|pOK with fp = 2, and
in general, the number of prime ideals p|pOK with fp = m is a polynomial in ap, ap2 , . . . , apm−1 with
coefficients in Q. Thus for every prime number p, the decomposition type of p in K1 is determined by
the integers an = bn and therefore coincides with its decomposition type in K2, and (ii) follows.

(ii) ⇒ (iii): By the Frobenius density theorem, the cycle type of every σ ∈ G in the permutation
representation [H1\G] is determined by the decomposition type of the infinitely many primes p for
which σ is the Frobenius element of some prime ideal q|pOL , and the same applies for the permutation
representation [H2\G]. By (ii), every σ ∈ G has the same cycle type in the permutation representations
[H1\G] and [H2\G]. In particular, each σ ∈ G fixes the same number of right cosets of H1 and H2. Thus
χH1
= χH2

, and (iii) follows from Lemma 2.7.
(iii) ⇒ (ii): By Lemma 2.7, (iii) implies χH1

= χH2
, so every σ ∈ G has the same cycle type in the

permutation representations [H1\G] and [H2\G] (note that the set {χH1
(σn) : n ∈ Z} determines the
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cycle type ofσ). All but finitely many primes p are unramified in both K1 and K2, and the decomposition
type of these primes is determined by the cycle type of σq for any q|pOL; thus (ii) holds.

(ii) ⇒ (i): By (ii), for all but finitely many primes p we have the same sequence of residue field
degrees ( fp1

, . . . , fpr
) for primes p1, . . . ,pr dividing pOK1

, and for primes p1, . . . ,pr dividing pOK2
(with

the same value of r in both cases). It follows that for all but finitely many primes p we have
∏

p|pOK1

(1− N(p)−s) =
∏

p|pOK2

(1− N(p)−s).

Corollary 2.4 implies (i). �

Recall that for a subgroup H ≤ G, the normal core of H is the intersection of its G-conjugates, equiv-
alently, the largest subgroup of H that is normal in G, and the normal closure of H is the union of its
G-conjugates, equivalently, the smallest normal subgroup of G containing H. For a number field K/Q,
the normal core of K is the largest subfield of K that is a normal extension of Q; if L/Q is a finite Galois
extension containing K with G := Gal(L/Q) and H := Gal(L/K), the normal core of K is the fixed field
of the normal closure of of H in G and the normal closure of K (its Galois closure) is the fixed field of
the normal core of H.

Corollary 2.9. Let K1 and K2 be arithmetically equivalent number fields. Then K1 and K2 have the same
normal closure, normal core, degree, discriminant, and numbers of real and complex places. Moreover, the
unit groups O×K1

and O×K2
are isomorphic as finitely generated abelian groups; in particular, they have the

same rank and contain the same roots of unity.

Proof. Let G be the Galois group of the compositum of the Galois closures of K1, K2, and let H1, H2 ≤ G
be the subgroups of G with fixed fields K1, K2 (resp.). The Galois closure L of K1 is the fixed field of the
normal core of H1 in G (the intersection of all its G-conjugates), and similarly for H2. By Theorem 2.8,
the subgroups H1 and H2 are Gassmann equivalent, and they thus intersect every conjugacy class of
elements of G with the same cardinality. But the normal cores of H1 and H2 are both stable under
G-conjugation, hence unions of conjugacy classes, so they and their fixed fields must coincide, so L is
also the Galois closure of K2. The normal closure of H1 is the union of all the G-conjugacy classes that
intersect H1, and similarly for H2, so H1 and H2 have the same normal closure and it follows that K1

and K2 have the same normal core.
The rest of the corollary follows immediately from Theorem 2.8 and Corollary 2.4 except for the

statement about roots of unity, since Dirichlet’s unit theorem (see below) implies that the rank of the
unit group is determined by the numbers of real and complex places. The roots of unity in K1 generate
a Galois extension of Q which must lie in the normal core of K1, and therefore also in the normal core
of K2. Similarly, every root of unity in K2 lies in the normal core of K1, and it follows that K1 and K2

contain exactly the same roots of unity. �

Let K be a number field with r1 real places and r2 complex places, so that

KR := K ⊗Q R' Rr1 ×Cr2 ,

and let K×R ' (R
×)r1 × (C×)r2 denote the unit group of the ring KR. We now define the map

Log: K×R → Rr1+r2

(xv) 7→ (log‖xv‖v),

where v ranges over the archimedean places of K and ‖ ‖v denotes the normalized absolute value on
Kv , the completion of K with respect to the (equivalence class of the) absolute value v. For Kv ' R the

16



normalized absolute value is just the usual absolute value on R, and for Kv ' C it is the square of the
usual absolute value on C (which is not an absolute value because the triangle inequality fails, but is a
multiplicative function C→ R). It follows from the product formula for K that elements of OK ,→ K×R
are mapped by Log into the trace zero hyperplane

Rr1+r2
0 := {x ∈ Rr+s :

∑

xi = 0} ' Rr1+r2−1.

The torsion subgroup of the unit group O×K consists of the roots of unity µK := {xn = 1: x ∈ K , n ∈ Z>0},
and we have an exact sequence of abelian groups

1 −→ µK −→ O×K
Log
−→ Rr1+r2

0 −→ Rr1+r2
0 /Log(O×K) −→ 1

Theorem 2.10 (DIRICHLET’S UNIT THEOREM). Let K be a number field with r1 real places and s1 complex
places. Then Log(O×K) is a lattice in Rr1+rs

0 and O×K ' µK × Zr1+r2−1.

Recall that ζK(s) has a simple pole at s = 1. The residue of this pole can be computed using the
analytic class number formula, which involves several of the arithmetic invariants of K that we have
already seen, along with the regulator RK and the class number hK . The regulator is the covolume of
Log(O×K) in Rr1+r2

0 , and the class number is the cardinality of the ideal class group of OK , the group
of nonzero fractional ideals of OK (finitely generated OK -submodules of K) modulo its subgroup of
principal fractional ideals.

Theorem 2.11 (ANALYTIC CLASS NUMBER FORMULA). Let K be a number field with r1 real places and r2

complex places. Then

lim
s→1+
(s− 1)ζK(s) =

2r1(2π)r2hKRK

#µK |DK |1/2
.

Corollary 2.9 implies that for arithmetically equivalent number fields K1 and K2, all of the invariants
in the analytic class number formula coincide, except possibly the class number and regulator, and in
any case we always have

hK1
RK1
= hK2

RK2
.

One might then ask whether hK1
= hK2

necessarily holds; the answer is no, as we will see in Lecture 4.
We also know that for arithmetically equivalent number fields K1 and K2, for every prime number p

the sequence of residue field degrees fp1
≤ · · · ≤ fpr

for the primes pi of OK1
that lie above p coincides

with the corresponding sequence of residue field degrees for primes pi of OK2
that lie above p. One

might then ask whether the same holds for the ramification indices epi
; here again the answer is no, and

we will see examples of this in Lecture 4.

3. ISOSPECTRAL RIEMANNIAN MANIFOLDS

We are now ready to prove Sunada’s theorem. The proof we give here is a simplification of Sunada’s
argument due to Buser [7, §11] (c.f. [19, Thm. 4.3A]). Sunada’s original argument is already quite
simple, but Buser observed that by considering each eigenspace individually one can work entirely with
finite dimensional linear representations, rather than working with a trace class operator on an (infinite
dimensional) Hilbert space as Sunada does.

Theorem 3.1 (SUNADA’S THEOREM). Let X be a compact connected Riemannian manifold, let π: M → X
be a finite normal Riemannian covering, let (G, H1, H2) be a Gassmann triple with G = Deck(π), and let
M1 := M/H1 and M2 := M/H2. Then ζM1

(s) = ζM2
(s).
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Proof. Let πi : M → Mi be the projection map. Suppose f ∈ C∞(Mi) is an eigenfunction for ∆Mi
, say

∆Mi
( f ) = λ f . Then f ◦πi is an Hi-invariant function in C∞(M) and

∆M ( f ◦πi) =∆Mi
( f ) ◦πi = (λ f ) ◦πi = λ( f ◦πi).

The first equality follows from the fact that every point P ∈ M has an open neighborhood U on which
πi : U → πi(U) is an isometry, which means that ∆M ( f (πi(P)) = ∆Mi

( f )(πi(P)) for all P ∈ U . Thus
every eigenfunction of∆Mi

pulls back to an Hi-invariant eigenfunction of∆M with the same eigenvalue.
Conversely, if f ∈ C∞(M) is an eigenfunction of∆M that is H-invariant, then it induces an eigenfunction
of ∆Mi

with the same eigenvalue (by the same argument).
Now let λ be any nonzero eigenvalue of ∆M and let Vλ be the corresponding eigenspace, which has

finite dimension equal to the multiplicity of λ in λ(M). The multiplicity of λ as an eigenvalue of ∆Mi
is

the dimension of the subspace V Hi
λ

of Hi-invariant functions (which may be zero).
The Laplace-Beltrami operator commutes with isometries, so the eigenspaces of ∆M are G-invariant

subspaces of C∞(M). For each eigenvalue λ of ∆M we thus have a linear representation

ρλ : G→ GL(Vλ)

given by the action of G on Vλ. The linear transformation φλ,i : Vλ→ Vλ defined by

φλ,i :=
1

#Hi

∑

σ∈Hi

ρλ(σ)

is idempotent (i.e., φ2
λ,i = φλ,i) with image V Hi

λ
. It defines a projection Vλ→ V Hi

λ
, and we have

dim V Hi = trφλ,i =
1

#Hi

∑

σ∈Hi

trρλ(σ).

We now observe that #H1 = #H2 and trρλ(σ) depends only on the conjugacy class of σ in G, so
dim V H1

λ
= dim V H2

λ
. This holds for every λ ∈ λ(M), so λ(M1) = λ(M2) and ζM1

(s) = ζM2
(s). �

We now want to describe an alternative method for constructing isospectral manifolds due to Vignéras
that uses quotients of Lie groups. Vignéras’ method predates Sunada’s and is not as general, but as we
shall see, there is a representation-theoretic thread that underlies them both. We begin by reviewing
some background material on arithmetic subgroups of Lie groups.

3.1. Lattices in locally compact groups. Recall that a (real) Lie group G is a smooth manifold that is
also a topological group (with smooth group operations). We include the case of finite groups, viewed as
0-dimensional manifolds with the discrete topology. Lie groups are locally compact groups (topological
groups that are locally compact Hausdorff spaces), and are thus equipped with left and right Haar
measures.

Definition 3.2. Let X be a locally compact Hausdorff space The Borel σ-algebra Σ(X ) is the collection of
subsets of X generated by open and closed sets under countable unions and intersections; its elements
are said to be measurable. A function f : X → Y is measurable if f −1(S) ∈ Σ(X ) for all S ∈ Σ(Y ). A Borel
measure on X is a countably additive function

µ: Σ→ R≥0 ∪ {∞}

A Radon measure on X is a Borel measure µ on X such that

• µ(S)<∞ if S is compact (locally finite, since X is locally compact);
• µ(S) = inf {µ(U) : S ⊆ U , U open} (outer regular);
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• µ(S) = sup {µ(C) : C ⊆ S, C compact} (inner regular).

A Radon measure µ is finite if µ(X )<∞.

In any topological group G, left multiplication, right multiplication, and conjugation by a fixed ele-
ment are homeomorphisms G → G, as is the map g 7→ g−1. Homeomorphisms preserve measurability
(which depends only on Σ(G)), but need not preserve measure (which depends on µ: Σ(G)→ R×>0).

Definition 3.3. Let G be a locally compact group with a nonzero Radon measure µ. We call µ a left (resp.
right) Haar measure if we have µ(gS) = µ(S) (resp. µ(Sg) = µ(S)) for all g ∈ G and S ∈ Σ(G). In other
words, a left/right Haar measure is a nonzero Radon measure invariant under left/right translation.

If µ is a Haar measure on G, so is cµ for any c ∈ R>0 (where c∞ :=∞).

Theorem 3.4 (Cartan, Weil). Let G be a locally compact group. Then G admits left and right Haar
measures, each of which is unique up to a constant factor.

Proof. See [8, 53] for the original proofs, or see [31] for a more modern treatment. �

Lemma 3.5. Let G be a locally compact group equipped with a left or right Haar measure. Every open set
in G has nonzero measure and every element of G has an open neighborhood with finite nonzero measure.

Proof. Let µ be a left (resp. right) Haar measure on G and let U ⊆ G be an open set. For any compact
C ⊆ G the left (resp. right) translates of U form an open cover of C , which implies that C lies in a finite
union of sets with measure µ(U). If µ(U) = 0 then µ(C) = 0 for all compact C ⊆ G, in which case
µ(S) = 0 for all S ∈ Σ(G), by inner regularity, which is a contradiction (Haar measures are nonzero
Radon measures), so µ(U) > 0. Every g ∈ G has a compact neighborhood C which contains an open
neighborhood U (since G is locally compact), and 0< µ(U)≤ µ(C)<∞, by local finiteness. �

Definition 3.6. Let G be a locally compact group with a left Haar measure µ and let S be an open set of
finite measure. The Haar modulus (or modular function) of G is the continuous group homomorphism2

δG : G→ R×>0

g 7→
µ(Sg)
µ(S)

.

Note that µ(•g) is a left Haar measure. The uniqueness of left Haar measures up to scaling implies
that δG is well-defined: µ(Sg)<∞ for all g ∈ G, and δG does not depend on the choice of S. It follows
that δG is a group homomorphism, since for any g, h ∈ G we have

δG(gh) =
µ(Sgh)
µ(S)

=
µ(Sgh)
µ(Sg)

µ(Sg)
µ(S)

=
µ(Sh)
µ(S)

µ(Sg)
µ(S)

= δG(g)δG(h),

since replacing S with Sg does not change δG . For any ε > 0, by inner and outer regularity we can
choose S′ ⊆ C ⊆ S with S′ open and C compact so that 1 − ε < µ(S′)/µ(S) ≤ µ(S)/µ(S′) < 1 + ε.
For each x ∈ C there is an open neighborhood Vx of the identity such that xVx ⊆ S. If we take V to
be the intersection of the Vx that arise in a finite subcover of the open cover {xVx : x ∈ C} of C , then
S′V ⊆ CV ⊆ S and S′ ⊆ C ⊆ SV−1. For all g in the open neighborhood V ∩ V−1 of the identity we have

(1− ε)<
µ(S′)
µ(S)

≤
µ(Sg)
µ(S)

= δG(g) =
µ(S′g)
µ(S′)

≤
µ(S)
µ(S′)

< (1+ ε).

2The function δG is usually denoted ∆G , but we want to avoid any potential confusion with the Laplace-Beltrami operator.
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Thus δG is continuous at the identity, and by continuity of the group operation, continuous everywhere.
The left and right Haar measures of G are equivalent if and only if δG = 1, in which case G is unimodular.
In general, for any S ∈ Σ(G) we have µ(Sg) =∆G(g)µ(S) (but note that both sides may be infinite).

The center of G clearly lies in the kernel of δG , as does its commutator subgroup and all torsion ele-
ments (since R×>0 is abelian and torsion free). This implies that SLn(R) and GLn(R) are unimodular, as
are all groups generated by torsion elements, including all finite groups. Compact groups are unimod-
ular, since δG is continuous and the only compact subgroup of R×>0 is the trivial group, as are countable
discrete groups (the counting measure is a left and right Haar measure), and abelian groups. For n> 1
the subgroup of upper triangular matrices in GLn(R) is an example of locally compact group that is not
unimodular.

If H is a closed subgroup of a locally compact group G then the left coset space G/H is a locally
compact Hausdorff space equipped with a continuous G-action given by left translation.

Definition 3.7. Let H be a closed subgroup of a locally compact group G. A left Haar measure µ on G/H
is a Radon measure with µ(gS) = µ(S) for g ∈ G and S ⊆ Σ(G/H); if µ(G/H)<∞ then µ is finite.

Recall that discrete subgroups of topological groups are closed.

Definition 3.8. A lattice in a locally compact group G is a discrete subgroup Γ for which G/Γ admits a
finite left Haar measure (note the finiteness condition).

We shall be interested in the case where G is a Lie group, in which case the topology on G is second
countable (we included this condition in our definition of a real manifold, but even without it, Lie groups
with countably many connected components are still second countable).

Lemma 3.9. Let Γ be a discrete subgroup of a second countable locally compact group G. Then Γ is countable
and G/Γ has a measurable set of unique coset representatives with nonzero measure.

Proof. Let π: G → G/Γ be the projection map. Let U be an open neighborhood of the identity 1 ∈ G
such that U ∩ Γ = {1}, let A× B be the inverse image of U under the multiplication map G × G → G,
with A, B ⊆ G open, and let V := (A∩ B)−1 ∩ (A∩ B). Then V is an open neighborhood of the identity
with V−1V ∩ Γ = {1}. For any g ∈ G the restriction of π to gV is injective, since for v1, v2 ∈ V , if
π(gv1) = π(gv2) then gv1γ1 = gv2γ2 for some γ1,γ2 ∈ Γ and then γ2γ

−1
1 = v−1

2 v1 ∈ V−1V ∩ Γ = {1}.
Let {Un}n≥1 be a countable subcover of {gV : g ∈ G} (second countable implies Lindelöf); then π

restricts to an injective map on each Un and Γ is countable. Now let F1 := U1 and for n> 1 define

Fn := Un − Un ∩π−1(π(U1 ∪ · · · ∪ Un−1)).

Then π restricts to an injective map on each Fn ⊆ Un and the images π(Fm) and π(Fn) are disjoint for
m 6= n, since π(Fn) = π(Un)−π(Un)∩ (π(F1)∪ · · · ∪π(Fn−1)). Now let F :=

⋃

n≥1 Fn. The restriction
of π to F is injective, and it also surjective, since π(F) = π(∪n≥1Un) = π(G). Thus F is a set of unique
representatives, and it is measurable, since each Fn is (note that π−1(π(U)) = UΓ is open for any open
U ⊆ G). The measure of F is clearly nonzero, since it contains the open set U1. �

A set of unique coset representatives for G/Γ is called a strict fundamental domain.

Lemma 3.10. Let Γ be a discrete subgroup of a second countable locally compact group G. Then G/Γ
admits a left Haar measure if and only if ∆G(Γ ) = {1}.
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Proof. Let π: G→ G/Γ be the quotient map, let F be a measurable strict fundamental domain for G/Γ
as in Lemma 3.9, and let ν be a left Haar measure on G. For S ∈ Σ(G/Γ ) we define

µ(S) := ν(F ∩π−1(S)).

For any g ∈ G, the left G-invariance of ν implies

µ(gS) = ν(F ∩π−1(gS)) = ν(F ∩ gπ−1(S)) = ν(g−1F ∩π−1(S)) = ν(F ′ ∩ T ),

where F ′ := g−1F and T := π−1(S). Now F ′ is also a measurable strict fundamental domain for G/Γ ,
thus G = F ′Γ = FΓ , and TΓ = T . If ∆G(Γ ) = {1} then ν is Γ -right invariant and

µ(gS) = ν(G ∩ F ′ ∩ T ) =
∑

γ∈Γ
ν(Fγ∩ F ′ ∩ T ) =

∑

γ∈Γ
ν(F ∩ F ′γ−1 ∩ T ) = ν(F ∩ G ∩ T ) = µ(S),

implying that µ is a left G-invariant. The function µ is a nonzero Radon measure on G/Γ , since ν
restricts to a nonzero Radon measure on F (because F is measurable and G is second countable, hence
σ-compact). It follows that µ is a left Haar measure on G/Γ .

Conversely, given a left Haar measure µ on G/Γ , for any S ∈ Σ(G) we may define

ν(S) :=
∑

γ∈Γ
µ(π(Fγ∩ S)).

The left Haar measure µ on G/Γ lifts to a nonzero Radon measure on each of the measurable strict
fundamental domains Fγ, which form a countable partition of G. It follows that ν is a nonzero Radon
measure on G. The left G-invariance of µ implies that ν is a left Haar measure, and we note that ν is
right Γ -invariant, since π is; it follows that ∆G(Γ ) = {1}. �

Corollary 3.11. Let Γ be a lattice in a second countable locally compact group G. Then G is unimodular

Proof. Let µ be a finite left Haar measure on G/Γ . By Lemma 3.10, the lattice Γ lies in the kernel of
∆G : G → R×>0, thus ∆G factors through the corresponding map G/Γ → R×>0 induced by µ. It follows
that ∆G(G) has bounded image in R×>0, since µ is finite, but the only bounded subgroup of R×>0 is {1}.
Therefore ∆G(G) = {1}, which means that G is unimodular. �

Lemma 3.12. Let G be a second countable locally compact group with a discrete cocompact subgroup Γ .
Then Γ is a lattice.

Proof. Let π: G → G/Γ be the projection map and let C be the closure of the measurable strict fun-
damental domain F for G/Γ given by Lemma 3.9. Then C is compact: if {Un} is an open cover of C ,
we can assume the sets π(Un) are distinct (if π(Ui) = π(U j) then Ui ∩ F = U j ∩ F and this implies
Ui ∩ C = U j ∩ C , in which case we can remove U j from our open cover); taking a finite subcover of the
open cover {π(Un)} of G/Γ then determines a finite subcover of the open cover {Un} of C .

Let ν be a left Haar measure on G. We have ν(F) ≤ ν(C) <∞, since C is compact, and we also
have ν(F−1) ≤ ν(C−1) <∞, since the homeomorphism g 7→ g−1 preserves compactness. The map
gΓ 7→ Γ g−1 is a homeomorphism of the left and right coset spaces G/Γ and Γ\G, thus Γ\G is compact
and F−1 is a measurable strict fundamental domain for Γ\G.

Let φ : G→ Γ\G be the projection map and define µ: Σ(Γ\G)→ R×>0 by µ(S) := ν(F−1 ∩φ−1(S); as
in the proof of Lemma 3.10, the Radon measure ν restricts to a radon measure on F−1 (because F−1 is
second countable and G is σ-compact), thus µ is a nonzero Radon measure. For any γ ∈ Γ we have

µ(S) = ν(F−1 ∩φ−1(S)) = ν(γ−1F−1 ∩ γ−1φ−1(S)) = ν((γF)−1 ∩φ−1(S)),
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since ν is left G-invariant and φ−1(S) is left Γ -invariant. It follows that replacing F with γF does not
change the definition of µ. For all γ ∈ Γ and S ∈ Σ(Γ\G) we have

µ(Sγ) = ν(F−1 ∩φ−1(Sγ)) = ν(F−1γ−1γ∩φ−1(S)γ) = ν((γF)−1 ∩φ−1(S))∆G(γ) = µ(S)∆G(γ).

For S = Γ\G we have Sγ= S, and therefore

ν(F−1) = ν(F−1 ∩ G) = ν(F−1 ∩φ−1(Γ\G)) = µ(Γ\G) = µ(Γ\Gγ) = µ(Γ\G)∆G(γ) = ν(F
−1)∆G(γ),

so ∆G(γ) = 1, since ν(F−1) is finite. Therefore ∆G(Γ ) = {1} and we may apply Lemma 3.10. �

Cocompact lattices are said to be uniform.

Example 3.13. Not all lattices are uniform; SL2(Z) ⊆ SL2(R) is an important example. The subgroup
SL2(Z) is clearly discrete, and SL2(R) is unimodular, so by Lemma 3.10, SL2(Z) is a lattice in SL2(R),
but it is not cocompact (the image of the diagonal subgroup of SL2(R) in the quotient is unbounded).

Remark 3.14. We defined the notion of a lattice in terms of left Haar measures and left coset spaces,
but we could have instead used right Haar measures and right coset spaces; Lemmas 3.9, 3.10, 3.12
still hold, and the proofs are the same (mutatis mutandi). As implied by Corollary 3.11, it makes no
difference whether we work with left or right Haar measures: in a locally compact group G that contains
a lattice Γ every left Haar measure is also a right Haar measure.3 In situations where we view Γ as acting
on G (rather than the other way around), it will be more natural to work with the right coset space Γ\G.

3.2. Representation equivalent subgroups. In this section we follow the treatment in [19, §4].
Let Γ be a uniform lattice in a Lie group G. The Lie group G is an orientable smooth manifold and thus

admits a Riemannian metric and an associated Riemannian volume form that defines a Haar measure;
we can use this volume form to integrate any compactly supported smooth function against the Haar
measure. The lattice Γ then acts on the Riemannian manifold G via isometries (freely and properly
discontinuously), and the quotient space Γ\G is a compact Riemannian manifold that is locally isometric
to G. We shall use dµ and µ to denote the Riemannian volume form and corresponding measure on
Γ\G; the measure µ is a nonzero Radon measure that is invariant under the right G-action Γ x 7→ Γ x g.
Note that we do not assume that G is connected; we allow G to be finite (and totally disconnected), in
which case we have a Riemannian manifold of dimension zero and µ is the counting measure.

For each α ∈ G we have a measure preserving right translation operator

RΓ ,α : Γ\G→ Γ\G

Γ x 7→ Γ xα.

Let L2(Γ\G) be the Hilbert space of measurable functions on the compact space Γ\G; it consists of all
functions f : Γ\G → C for which f −1(S) ∈ Σ(Γ\g) for all S ⊆ Σ(C). The space L2(Γ\G) is a complex
vector space equipped with the inner product

〈 f , g〉 :=

∫

Γ\G
f (x) ḡ(x)dµ(x),

and is complete with respect to the metric induced by the norm ‖ f ‖ :=
p

〈 f , f 〉 (this is what it means
to be a Hilbert space). We may now associate to Γ the linear representation

ρΓ : G→ GL(L2(Γ\G))

α 7→ ( f 7→ f ◦ RΓ ,α)

3We proved this only in the case that G is second countable, but it holds for all locally compact G; see [13, Thm. 9.16].

22



The representation ρΓ is unitary, meaning that each ρΓ (g) is an automorphism of L2(Γ\G), an invertible
linear transformation that preserves inner products. Indeed, for f , g ∈ L2(Γ\G) and α ∈ G we have

〈ρΓ (α)( f ), ρΓ (α)(g)〉= 〈 f ◦ RΓ ,α, g ◦ RΓ ,α〉=
∫

Γ\G
f (xα) ḡ(xα)dµ(x) =

∫

Γ\G
f (x) ḡ(x)dµ(x) = 〈 f , g〉,

where we have used dµ(x) = dµ(xα) (because µ is right G-invariant) to get the third equality.
If n := [G :Γ ] is finite (as when G is finite, for example), then L2(Γ\G) ' Cn, since a function Γ\G is

simply a list of n complex numbers (all functions are measurable under the counting measure). In this
finite setting if we represent ρΓ (α) in terms of the standard orthonormal basis for Cn, we get a permu-
tation matrix (which we note is unitary); in other words, ρΓ is the linear representation corresponding
to the permutation representation of G given by its action on the set of right cosets [Γ\G].

Definition 3.15. Let G be a Lie group. Two uniform lattices Γ1, Γ2 in G are representation equivalent if
there exists an isomorphism of Hilbert spaces T : L2(Γ1\G)

∼
−→ L2(Γ2\G) such that

T ◦ρΓ1(α) = ρΓ2(α) ◦ T

for all α ∈ G. The unitary isomorphism T is called an intertwining operator.

Proposition 3.16. Let Γ1, Γ2 be subgroups of a finite Lie group G. Then Γ1 and Γ2 are Gassmann equivalent
if and only if they are representation equivalent.

Proof. We can assume that Γ1 and Γ2 have the same index n in G (otherwise they are clearly neither
Gassmann equivalent nor representation equivalent). As noted above, if we take standard orthonormal
bases for L2(Γ1\G) ' Cn and L2(Γ2\G) ' Cn then the linear representations ρΓ1 and ρΓ2 coincide with
the permutation representations given by the action of G on the coset spaces [Γ1\G] and [Γ2\G]. By
Lemma 2.7, the subgroups Γ1 and Γ2 are Gassmann equivalent if and only if the permutation characters
χΓ1 and χΓ2 coincides, which occurs if and only if the corresponding linear representations ρΓ1 and
ρΓ2 are equivalent (see [45, p. 16], for example), in which case they must be unitarily equivalent, by
Lemma 3.17, in which case Γ1 and Γ2 are representation equivalent. �

Lemma 3.17. Let σ,τ: G → GLn(C) be unitary representations of a group G. If σ and τ are equivalent
then they are unitarily equivalent. More precisely if T ∈ GLn(C) satisfies Tσ(α) = τ(α)T for all α ∈ G
then so does the unitary operator U in its polar decomposition T = U P, with P hermitian positive definite.

Proof. For α ∈ G we have Tσ(α) = τ(α)T and σ(α−1)T ∗ = T ∗τ(α−1), since σ(α)∗ = σ(α)−1 = σ(α−1)
(and similarly for τ), and therefore σ(α)T ∗ = T ∗τ(α) for all α ∈ G. We then have

T ∗Tσ(α) = T ∗τ(α)T = σ(α)T ∗T,

thus T ∗T = (U P)∗U P = P2 commutes with σ(α) for all α ∈ G. The operator σ(α)P is normal, since

(σ(α)P)∗(σ(α)P) = Pσ(α)∗σ(α)P = P2 = P2σ(α)σ(α)∗ = σ(α)P2σ(α)∗ = (σ(α)P)(σ(α)P)∗,

which implies that the components of its unique polar decomposition (which are σ(α) and P) commute
with each other; see [43, 12.35], for example. So for all α ∈ G we have σ(α)P = Pσ(α), and therefore
Uσ(α)P = U Pσ(α) = τ(α)U P, so Uσ(α) = τ(α)U as desired. �

We now continue in our earlier setting: G is a Lie group containing a uniform lattice Γ equipped with
a G-invariant Riemannian metric whose volume form is a Haar measure (G is unimodular, so it is both
a left and a right Haar measure). For every α ∈ G the left translation map Lα : G→ defined by x 7→ αx
is an isometry, and the natural projection G→ Γ\G is a Riemannian covering (which need not be finite,
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since G is not necessarily compact, even though Γ\G is). Each of the isometries Lα of G induces a
local isometry of the compact Riemannian manifold Γ\G (but unlike the right translation operator RΓ ,α,
the local isometry induced by Lα need not be an isometry of Γ\G). This allows us to associate to any
left-invariant vector field in T(G) a corresponding vector field in T(Γ\G).

A key feature of Riemannian manifolds that are Lie groups with an invariant metric is that they
admit an orthonormal global frame, a set of left-invariant vector fields that provide a smoothly varying
orthonormal basis for each tangent space. Indeed, if we fix an orthonormal basis for the tangent space
of the identity we can use the left G-action to define a corresponding set of (smooth) vector fields (to
get an orthonormal basis for the tangent space at α ∈ G multiply each basis element on the left by α).
We can identify the space of left-invariant vector fields on G with its Lie algebra g, and the Lie-theoretic
exponential map exp: g→ G is the same as the exponential map exp: T (G)→ G on the tangent bundle
of the Riemannian manifold G (because we have a G-invariant metric).

Theorem 3.18. Let Γ1, Γ2 be uniform lattices in a Lie group G equipped with a G-invariant Riemannian
metric. If Γ1 and Γ2 are representation equivalent then the compact Riemannian manifolds Γ1\G and Γ2\G
are isospectral, equivalently, ζΓ1\G(s) = ζΓ2\G(s).

Proof. Let X1, . . . , Xn ∈ T(M) be an orthonormal global frame of left-invariant vector fields. We can
express the Laplace-Beltrami operator ∆G : C∞(G)→ C∞(G) as

∆G( f ) =
∑

1≤i, j≤n

ci jX iX j f ,

for some ci j ∈ C, where each X i : C∞(G)→ C∞(G) acts via derivations that can be expressed as

X i( f )(x) :=
d
d t

�

�

�

t=0
f (x exp(tX i)),

where exp(tX i) is the image of X i under the exponential map exp: g→ G. Observe that the action of
X i on f is defined via composition with right translation by exp(tX i). It follows that for k = 1,2 the
induced action of the Laplace-Beltrami operator on the Hilbert space L2(Γ\G) is given by

X i( f )(x) :=
d
d t

�

�

�

t=0
(ρΓk(exp(tX i))( f ))(x),

since ρΓk(exp(tX i)) acts on f via composition with the right translation operator RΓk ,exp(tX i). If Γ1 and Γ2
are representation equivalent then the intertwining operator that relates them intertwines the Laplace-
Beltrami operators of Γ1\G and Γ2\G which thus have the same eigenvalue spectrum and therefore the
same zeta function. �

3.3. Arithmetic Fuchsian groups. In [51] Vignéras constructs non-isomorphism isospectral Riemann
surfaces using the Lie group G = SL2(R) equipped with the G-invariant metric corresponding to its Haar
measure. If we let K := SO2(R), the quotient G/K is a (non-compact) Riemannian manifold isomorphic
to the hyperbolic plane h := {z ∈ C : Im z > 0} equipped with the hyperbolic metric

ds2 =
d x2 + d y2

y2
,

where z = x + i y and has constant negative curvature −1; the real manifold h has a natural complex
structure (given by its embedding in the complex plane) and is thus also a Riemann surface (a complex
manifold of dimension one). The Riemann surface h is not compact, but if we extend h to h∗ := h∪P1(R)
by including the real line and a point∞ at infinity, we obtain a compact Riemann surface isomorphic
to the closed unit disk in C. The automorphism group of h∗ as a Riemann surface (biholomorphic
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maps of complex manifolds) and the group of orientation-preserving isometries of h∗ as a Riemannian
manifold are both isomorphic to PSL2(R), which acts on h via linear fractional transformations: for
γ =

�

a b
c d

�

∈ SL2(R) the map z 7→ ax+b
cz+d is biholomorphic orientation-preserving isometry (note that

1/0 :=∞). The kernel of the SL2(R)-action is ±1 and the PSL2(R)-action is faithful and transitive. The
stabilizer of

p
−1 ∈ h is SO2(R), and we can thus identify the left coset space SL2(R)/SO2(R) with h

via the bijection γSO2(R) 7→ γ
p
−1, which is an isomorphism of left SL2(R)-sets, and of real manifolds,

which we can extend to an isomorphism of Riemannian manifolds equipped with the hyperbolic metric.
As noted above, the Lie group SL2(R) is unimodular (and second countable), so for any discrete

subgroup Γ ≤ SL2(R), the coset space G/Γ admits a left Haar measure, by Lemma 3.10, and Γ is a
lattice if and only if this Haar measure is finite, in which case we say that Γ is cofinite. As noted above,
the same applies to the right coset space Γ\SL2(R), since SL2(R) is unimodular. Discrete subgroups
Γ ≤ SL2(R) (or PSL2(R)) are known as Fuchsian groups, which act on h properly discontinuously via
orientation preserving isometries. The limit set Λ(Γ ) of a Fuchsian group Γ is the set of points x ∈ h∗

such that x = limn→∞ γn x0 for some x0 ∈ h and infinite sequence of distinct γn ∈ Γ ; because Γ is
discrete, its limit set Λ(Γ ) lies in h∗ − h = P1(R). Fuchsian groups Γ for which Λ(Γ ) = P1(R) are said to
be of the first kind (or of the first type).

Lattices Γ ≤ SL2(R) are discrete subgroups, hence Fuchsian groups. The fact that lattices are cofinite
(meaning that SL2(R)/Γ has finite measure) implies that lattices are Fuchsian groups of the first kind;
in fact, they are precisely the Fuchsian groups of the first kind that are finitely generated (we won’t
need this so we won’t prove it). Note that SO2(R) is compact, so if Γ is a uniform lattice in SL2(R) then
Γ\h ' Γ\SL2(R)/SO2(R) is a compact Riemann surface and also a compact Riemannian manifold with
constant negative curvature −1.

To explicitly construct uniform lattices in SL2(R) we shall use arithmetic subgroups of SL2(R). Recall
that an (affine) K-algebraic group is a group object in the category of affine varieties over the field K . The
set of R-points on a Q-algebraic group form a Lie group (the group operations are given by Q-morphisms
that induce smooth maps on R-points). The matrix groups SLn and GLn are Q-algebraic groups.

Definition 3.19. Let G be a Lie group. A subgroup Γ ≤ G is arithmetic if there is a Q-algebraic group H
and a morphism of Lie groups φ : H(R)→ G with compact kernel and finite cokernel such that φ(H(Z))
is commensurable with Γ , meaning that φ(H(Z))∩ Γ has finite index in both φ(H(Z)) and Γ .

Arithmetic groups are discrete (since Z is discrete in R), and they are also cofinite, which implies
that they are lattices (this follows from Lemma 3.12 in the cocompact case, which is all we shall use).
Not every discrete cofinite subgroup of a Lie group is an arithmetic group; in particular, SL2(R) contains
lattices that are nonarithmetic.4 The simplest examples of nonarithmetic lattices arise as triangle groups;
see [49] for details. Nevertheless, there are many arithmetic lattices in SL2(R), including infinitely many
nonconjugate uniform and nonuniform lattices.

For G = SL2(R), if we take H to be the Q-algebraic group SL2 and let φ : SL2(R) → SL2(R) be the
identity map, then any subgroup of SL2(R) that is commensurable with SL2(Z) is an arithmetic group,
and also a lattice (since SL2(Z) is). But these arithmetic groups are not uniform lattices, because SL2(Z)
is not a cocompact subgroup of SL2(R), as noted in Example 3.13. For finite index Γ ∈ SL2(Z) the
quotient Γ\h is not compact (the quotient SL2(Z)\h∗ is, but we want to be able to use the isomorphism
Γ\h ' Γ\SL2(R)/SO2(R)). To obtain uniform lattices Γ ≤ SL2(R) that give rise to compact Riemann
surfaces Γ\h we want H to be an order in a division algebra over a number field.

4For semisimple Lie groups of higher rank every irreducible lattice is an arithmetic subgroup, as shown by Margulis [33].
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3.4. Quaternion algebras and arithmetic lattices.

Definition 3.20. Let K be a field whose characteristic is not 2. A quaternion algebra B over K is a
K-algebra with a basis 1, i, j, k satisfying

i2 = a, j2 = b, k = i j = − ji,

with a, b ∈ K×. We use
� a,b

K

�

to denote this quaternion algebra, which depends only on the square
classes of a and b in k× (their images in k/k×2, where k×2 := {x2 : x ∈ k×}), and we note that

� a,b
K

�

=
� b,a

K

�

=
� a,−ab

K

�

=
� b,−ab

K

�

,

via a suitable change of basis. The standard involution α 7→ ᾱ of a quaternion algebra is defined by

w+ x i + y j + zk 7→ w− x i − y j − zk.

The (reduced) norm and trace of α ∈ B are n(α) := αᾱ and t(α) := α+ ᾱ, respectively, both of which
are elements of K , and we have α2 − t(α)α+ n(α) = 0 for all α. A quaternion algebra can always be
viewed as a subalgebra of the matrix algebra M2(K(

p
a)) via the injective K-algebra homomorphism

φ : B→M2(K(
p

a) defined by

(2) w+ x i + y j + zk 7→
�

w+ x
p

a b(y + z
p

a)
y − z

p
a w− x

p
a

�

.

A quaternion algebra is either a division algebra (every nonzero element is invertible), or isomorphic to
the matrix algebra M2(K). The latter case occurs if and only if ax2+b y2 = 1 has a solution x , y ∈ K2, in
which case we say that B is a split quaternion algebra. This necessarily holds if either a or b is a square
(and by swapping i and j we can assume it is a), in which case the injective K-algebra homomorphism
above is an isomorphism to M2(K) = M2(K(

p
a)). The Hilbert symbol (a, b)K is defined to be 1 if the

corresponding quaternion algebra is split and −1 otherwise.

The unit group B× is a noncommutative multiplicative group that we may embed in GL2(K(
p

a) by
restricting the map φ defined in (2). This allows us to view B× a K-algebraic group as follows. The
determinant ofφ(w+x i+ yzk) is the quadratic form f (w, x , y, z) := w2−ax2−b y2+abz2 ∈ K[w, x , y, z].
If we take the affine variety with coordinate ring K[u, w, x , y, z]/(uf (w, x , y, z)− 1) and equip it with
morphisms corresponding to the group operations for the algebraic group GL2 over K , we obtain an
algebraic group GB×/K with the property that GB×(L) ' (B ⊗K L)× for any étale K-algebra L.5 The
group of norm one elements B1 := {α ∈ B : n(α) = 1} is a subgroup of B×, and we can similarly
construct a K-algebraic group GB1 such that GB1(L)' (B ⊗K L)1 for any étale K-algebra L.

Recall that a place v of a number field K is the equivalence class of a nontrivial absolute value | |v
on K; we use Kv to denote the completion of K with respect to the absolute value | |v . As a topological
field, the completion Kv is locally compact, hence a local field. The place v and the local field Kv are
nonarchimedean if v satisfies the nonarchimedean triangle inequality |x + y|v ≤max(x , y) for all x , y ∈
K , and v and Kv are archimedean otherwise. There is a one-to-one correspondence between prime ideals
p of OK and nonarchimedean places v in which the corresponding local fields Kv are finite extensions
of the p-adic field Qp, where (p) = p ∩ Z. Each archimedean place corresponds to an embedding of K
into R (in which case Kv ' R and v is a real place), or a conjugate pair of distinct embeddings into C (in
which case Kv ' C and v is a complex place).

5This holds for any K-algebra, but we shall only be interested in étale K-algebras, K-algebras that are isomorphic to a finite
product of separable field extensions of K; these naturally arise as base changes of separable extensions of K .
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A quaternion algebra B :=
� a,b

K

�

over a number field K splits at a place v if the quaternion algebra

Bv := B ⊗K Kv =
� a,b

Kv

�

is split, meaning that Bv ' M2(Kv), and otherwise it is ramified at v, meaning
that Bv is a division algebra. If p is a prime ideal of OK then we say that B splits or is ramified at
p according to whether it splits or is ramified at the corresponding nonarchimedean place of K . The
product formula for Hilbert symbols implies that B is ramified at only finitely many places, and that the
number of ramified places is even; see [52, Cor 14.6.2]. Note that B cannot be ramified at any complex
places (every quaternion algebra over C splits because every element of C× is a square), thus the set
Σ(B) of ramified places is a finite subset of the noncomplex places of K that has even cardinality. The set
Σ(B) determines B up to isomorphism [52, Thm. 14.6.1]. We record this fact in the following theorem.

Theorem 3.21. Let K be a number field. The map B 7→ Σ(B) defines a bijection between isomorphism
classes of quaternion algebras over K and finite subsets of noncomplex places of K with even cardinality.

We say that B is indefinite if it splits at some archimedean place of K (this is automatic if K has any
complex places). There are two square classes in R×, represented by 1 and −1, and it follows that
there are two quaternion algebras over R: the split quaternion algebra M2(R) =

�1,1
R

�

=
�1,−1

R

�

=
�−1,1

R

�

and the Hamiltonian division algebra H :=
�−1,−1

R

�

. There is one square class in C× and thus only one
quaternion algebra M2(C) =

�1,1
C

�

over C It follows that if K has r real places c complex places and B
splits at exactly t of the real places then

(3) BR := B ⊗Q R'
∏

v|∞

Bv 'M2(R)
t ×Hr−t ×M2(C)

c ,

where we write v|∞ to indicate that v ranges over the archimedean places of K . For t = 1, r = 1, c = 0
(which occurs when B is an indefinite quaternion algebra over a real quadratic field), composing the
natural inclusion B ,→ BR with the isomorphism in (3) yields an injective ring homomorphism that we
may restrict to embed the unit group B× in the matrix group GL2(R). If we further restrict to the group
of norm one elements of B× we obtain a subgroup of SL2(R). To obtain lattices Γ ≤ SL2(R) we will
further restrict to orders in B.

Definition 3.22. Let R be a Dedekind domain with fraction field K . An R-lattice in a K-vector space V
is a finitely generated R-submodule of V that contains a K-basis for V (equivalently, A⊗R K ' V ). An
order O in a quaternion algebra B over K is an R-lattice that is a subring of B (in particular, 1 ∈ O).

For any nonzero a, b ∈ R the ring R〈i, j〉 := R ⊕ Ri ⊕ Rj ⊕ Rk is an order in the quaternion algebra
B =

� a,b
K

�

(where i2 = a, j2 = b, k = i j). Moreover, every order O in B contains a suborder of this form:
if we write i and j in terms of K-basis for B contained in O and multiply by a suitable c ∈ R to clear
denominators then ci and c j are elements of O, as are (ci)2 = c2a and (c j)2 = c2 b, and B =

� c2a,c2 b
K

�

,
so if we replace a with c2a and b with c2 b and then R〈i, j〉 is a suborder of O.

An order is maximal if it is not properly contained in another order; the order R〈i, j〉 need not be
maximal, in general. Zorn’s lemma implies that every order lies in a maximal order, in which it neces-
sarily has finite index (and the same finite index in every maximal order that contains it). In general a
quaternion algebras may have infinitely many distinct maximal orders; indeed, if O is an order then so
is αOα−1, which may be distinct from O if α 6∈ K .

We say that an element of a quaternion algebra over the fraction field of a Dedekind domain is
integral if its norm and trace lie in R. Every integral element of B is contained in an order, and orders
in B can contain only integral elements; see [52, Cor. 10.3.3]. One might suppose that the set of integral
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elements of B forms a unique maximal order, but this is not true because the set of integral elements is
not a ring. Indeed, consider

α :=
�

1/2 −3
1/4 1/2

�

, β :=
�

0 1/5
5 0

�

in the split quaternion algebra
�1,1

Q

�

'M2(Q); both α and β are integral but neither α+ β nor αβ are
(this example is taken from [10]).

If O is an order in a quaternion algebra B then its set of norm one elements

O1 := O∩ B1 = {α ∈ O : n(α) = 1}

forms a multiplicative subgroup of B1. Now suppose that B is a quaternion algebra over a totally real
number field K of degree n that is split at exactly one real place, and let ι : B→M2(R) be the map

B ,→ BR 'M2(R)×Hn−1→M2(R),

where the first map is the natural injection B ,→ BR = B⊗K R and the last map is the natural projection.
Restricting to the group of norm one elements B1 := {α ∈ B : n(α) = 1} yields a map ι : B1 → SL2(R).
We now want to consider

Γ 1(O) := ι(O1) ⊆ SL2(R),

which we claim is an arithmetic Fuchsian subgroup. The number field K is a Q-algebra, and its mul-
tiplicative group K× is a Q-algebraic group. This allows us to view the K-algebraic group GB1 as a Q-
algebraic group H with the property that H(R) ' SL2(R)× (H1)n−1. The Lie group H1 = {(w, x , y, z) ∈
R4 : w2 + x2 + y2 + z2 = 1} is compact, as is (H1)n−1, so the projection map φ : H(R) → SL2(R) has
compact kernel, and it is obviously surjective. Integral elements of B1 correspond to points in H(Z); this
applies in particular to elements of O1 ⊆ B1, and we note that Γ 1(O) is commensurable with φ(H(Z))
(this follows from the fact that the order O has finite index in any maximal order that contains it).
Therefore Γ 1(O) is an arithmetic subgroup of SL2(R), hence a Fuchsian group of the first kind, since
arithmetic subgroups are discrete and cofinite, and it follows that Γ 1(O) is a lattice in SL2(R). Moreover,
if B is a division algebra then Γ 1(O) is cocompact and therefore a uniform lattice [52, Thm. 38.4,3].6

Thus given any order O in a non-split quaternion algebra over a totally real number field that is split
at exactly one real place we can construct a uniform arithmetic lattice Γ 1(O)≤ SL2(R). It turns out that
every uniform arithmetic lattice in SL2(R) arises in this way, as shown by Weil [54].

3.5. Vignéras’ construction. To construct non-isomorphic isospectral Riemann surfaces Vignéras uses
a quaternion algebra B over a totally real number field K with the following properties:

(1) B is split at exactly one real place of K;
(2) B contains no roots of unity other than ±1;
(3) B is not split over K;
(4) B contains maximal orders O1, O2 that are non-conjugate by any Q-automorphism of B;
(5) B is ramified at a prime ideal (a) of OK with v(a)> 0 for all real places v of K ramified in B

(if K is quadratic this is equivalent to requiring B to be ramified at some principal prime ideal).

Properties (1) and (3) ensure that for any order O of B we have an associated uniform arithmetic
lattice Γ 1(O) ≤ SL2(R), as described in the previous section. Properties (2) and (5) ensure that for
any two maximal orders O1 and O2 the subgroups Γ1 := Γ 1(O1) and Γ2 := Γ 1(O2) of SL2(R) are repre-
sentation equivalent (see [51, Thm. 7] and the remarks following). Property (4) ensures that we can
construct non-isometric compact Riemannian manifolds as compact Riemann surfaces X1 := Γ 1(O1)\h

6This is sometimes known as Hey’s Theorem, after Käte Hey who proved this for K = Q in her 1929 PhD thesis [26].

28



and X2 := Γ 1(O2)\h, where O1 and O2 are non-conjugate maximal orders of B; see [51, Thm. 3]. As
explained in §3.3, the hyperbolic metric on h induces a Riemannian metric on X1 and X2.

To ensure (2) we can apply the following proposition.

Proposition 3.23. Let B be a quaternion algebra over a number field K and let ζn be a primitive nth root
of unity with n> 2. The group B×/K× contains a cyclic subgroup of order n if and only ζn + ζ−1

n ∈ K and
the quaternion algebra B ⊗K K(ζn) splits.

Proof. See [52, Prop. 32.5.1]. �

The simplest way to achieve (4) is to first ensure that any Q-automorphism of B is an inner automor-
phism (conjugation by an element of B); this will necessarily be the case if there are Gal(K/Q)-conjugate
prime ideals p1 and p2 of OK such that B is ramified at p1 but not at p2. The type number TB of a quater-
nion algebra B is the number of conjugacy classes of maximal orders; in order to achieve 4 we must
have tB > 1. When B is a quaternion algebra over a totally real field split that is split at exactly on real
place we can compute its type number using the formula

tB = [IK : I2
K DB PB],

where IK is the ideal group of OK (the group of nonzero fractional ideals), DB is the subgroup of IK

generated by prime ideals that are ramified in B, and PB is the subgroup of the group PK of principal
fractional ideals (a) of OK for which v(a) is positive for all ramified real places of K; see [51, §5]. In
order to achieve tH > 1 the class number [IK : PK] of K must be even. When the class number of K is
even, we will have tB = 2 if and only if DB, PB ≤ PK , since in this case I2

K = PK . This means that we
want B to be ramified only at principal prime ideals, so that DH ≤ PK

Thus to obtain non-isometric isospectral compact Riemannian surfaces via Vignéras’ method it suffices
to pick a real quadratic field K of class number 2 and a quaternion algebra B over K containing no roots
of unity other than ±1 that is ramified at exactly one infinite place and at an odd number of principal
prime ideals, one of which has a distinct Galois conjugate that is not ramified in B.

The field K = Q(
p

10) with class number 2 and the quaternion algebra B ramified at one real place K
and at the principal prime ideals (3), (7), (11+ 3

p
10) satisfies these criteria. To verify that B has no

roots of unity other than ±1 we apply Proposition 3.23. The only integers n> 2 for which ζn+ζ−1
n ∈ K

are n= 3,4, 6, and it is enough to check n= 3, 4. The prime ideal (7) of OK which is ramified in B splits
in K(ζn) for n= 3,4, and this implies that B×K K(ζn) does not split for n= 3,4 (see [52, Prop. 14.6.7]),
and therefore B does contains no roots of unity other than ±1. We have tB = 2, so if let O1 and O2 be
maximal orders in B representing the two distinct conjugacy classes of maximal orders then the groups
Γ 1(O1), Γ 1(O2) ≤ SL2(R) are representation equivalent and the Riemann surfaces X1 := Γ 1(O1)\h and
X2 := Γ 1(O2)\h are isospectral Riemannian manifolds that are not isometric.

3.6. A common generalization. In [14] DeTurck and Gordon prove a generalization of Theorems 3.1
and 3.18 that provides a common framework for the results of both Sunada and Vignéras.

Theorem 3.24. Let M be a connected Riemannian manifold on which a Lie group G acts via isometries.
Let Γ1 and Γ2 be representation equivalent uniform lattices in G that act freely and properly discontinuously
on M such that M1 := Γ1\M and M2 := Γ2\M are compact Riemannian manifolds. Then ζM1

(s) = ζM2
(s).

Proof. As noted in Remark 4.3B (iii) of [19], this follows from Theorem 1.16 in [14]. �
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Corollary 3.25 (Sunada’s theorem). Let G be a finite group that acting on a compact Riemannian mani-
fold M freely and properly discontinuously via isometries. If Γ1 and Γ2 are Gassmann equivalent subgroups
of G then the compact Riemannian manifolds M1 := Γ1\M and M2 := Γ2\M are isospectral.

Corollary 3.26 (Vignéras theorem for Riemann surfaces). If Γ1 and Γ2 are representation equivalent
uniform arithmetic lattices in SL2(R) then the compact Riemann surfaces M1 := Γ1\h and M2 := Γ2\h are
isospectral Riemannian manifolds (with the induced hyperbolic metric).

4. JACOBIANS OF ISOSPECTRAL SURFACES

In [41] Prasad and Rajan prove an analog of Sunada’s theorem in the setting of algebraic geometry.
An abelian variety is a connected projective variety that is also an algebraic group (being projective
forces the group operation to be commutative, whence the term abelian variety). An isogeny ϕ : A→ B
of abelian varieties over k is a surjective morphism (defined over k) whose kernel is finite (over k̄).
Two abelian varieties are said to be isogenous if they are related by an isogeny, in which case they
necessarily have the same dimension. Associated to any smooth projective curve X/k of genus g there is
g-dimensional abelian variety Jac(X )/k known as the Jacobian of X ; see [35, §III] for a precise definition
of Jac(X ) over arbitrary fields k (we give a concrete description for k = C in terms of tori below). The
map X → Jac(X ) is canonical and defines a functor from the category of smooth projective curves to the
category of abelian varieties.7

Recall that if G is a finite group of automorphisms of a smooth projective curve X , then there is
a smooth projective curve X/G whose points correspond to G-orbits of points of X , equipped with a
canonical projection map πG : X → X/G that is a surjective morphism. We use Aut(X ) to denote the
automorphism group of X ; these are invertible morphisms X → X that are defined over k.

Theorem 4.1 (Prasad-Rajan). Let X be a smooth projective curve over a field k and let G be a finite subgroup
of Aut(X ). If H1, H2 ≤ G are Gassmann equivalent then X/H1 and X/H2 have isogenous Jacobians.

Before proving the theorem, let us explain how it implies an equivalence of zeta functions when k is
a finite field or a number field.

Definition 4.2. Let X be a smooth projective curve over a finite field Fq of cardinality q. The zeta function
of X is defined as the formal power series

ZX (T ) := exp

�

∑

r≥1

#X (Fqr )
T r

r

�

=
Lq(T )

(1− T )(1− qT )
;

as shown by Artin [1], it is a rational function with numerator Lq ∈ Z[T] of degree 2g. One also defines
the local zeta function ζX (s) = ZX (q−s). As proved by Tate [50], smooth projective curves over finite
fields have the same zeta function if and only if their Jacobians are isogenous; this result is known as
Tate’s isogeny theorem.

Now Let X be a smooth projective geometrically irreducible curve of genus g over a number field K
given by an OK -integral model. The Hasse-Weil zeta function of X is defined as a product of local zeta
functions

ζX (s) :=
∏

p

ζXp
(S) = ζ(s)ζ(s− 1)

∏

p

Lp(N(p)
−s),

7The Jacobian can be defined as the unique abelian variety (up to isomorphism) that is birationally equivalent to the gth
symmetric power of genus g smooth projective curve X (when X has a k-rational point one can take Jac(X ) = Pic0(X )).
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where ζ(s) =
∑

n≥1 n−s is the Riemann zeta function, p varies over prime ideals of OK , and Xp is the
reduction of Xp to the residue field OK/p. Each Lp(T ) is an integer polynomial of degree at most 2g.
For all but finitely many primes p the curve Xp is a smooth projective curve of genus g (in which case
we say that X has good reduction at p), and then Lp(T ) is the numerator of the zeta function ZX (T )
defined above. The definition of Lp(T ) at bad primes is slightly more complicated and will not concern
us here. The key point is that, as proved by Faltings [15], Tate’s isogeny theorem also applies to number
fields: two smooth projective curves over a number field have the same zeta function if and only if their
Jacobians are isogenous.8

Thus when k is a finite field or a number field, Theorem 4.24 can be viewed as a direct analog of
Sunada’s theorem: we have a geometric object X (now an algebraic curve rather than a Riemannian
manifold) that is equipped with an action by a finite group G, and Gassmann equivalent subgroups
H1, H2 ≤ G give rise to quotients X/H1 and X/H2 with the same zeta function.

4.1. Permutation modules. In order to prove the theorem of Prasad and Rajan we need to recall a few
facts about permutation representations. For a commutative ring R and a group G we use R[G] to denote
the group ring formed by the free R-module with basis G with multiplication of basis elements defined
by the group operation of G. Elements of R[G] are formal sums α :=

∑

g∈G ng g with only finitely many
ng ∈ R nonzero, and we define ordg(α) := ng so that α=

∑

g∈G ordg(α)g always holds.

Definition 4.3. Let R be a commutative ring and let X be a left G-set. The permutation module R[X ] is
the left R[G]-module given by the free R-module with basis X with multiplication defined by the group
action; in other words, we have

�∑

g∈G

rg g
��∑

x∈X

rx x
�

:=
∑

g∈G

∑

x∈X

rg rx g x ,

where all the sums are finite (only finitely many rg and rx can be nonzero). When X is a right G-set the
permutation module R[X ] is similarly defined as a right R[G]-module.

For any subgroup H ≤ G, multiplication on the left by G makes left coset space G/H a left G-set and
we have a corresponding permutation module R[G/H], and we similarly have a permutation module
R[H\G] given by the right coset space H\G equipped with the natural right action by G. We have natural
projections πG/H : R[G] → R[G/H] and πH\G : R[G] → R[H\G] defined by g 7→ gH and g 7→ H g,
respectively. The map πG/H (resp. πH\G) is a surjective left (resp. right) R[G]-module homomorphism
whose kernel is the left (resp. right) R[G]-ideal IH := 〈h− 1 : h ∈ H〉.

Recall that for subgroups H1, H2 of a finite group G we use H1 ∼ H2 to denote Gassmann equivalence,
and χHi

: G→ Z is the character of the permutation representation given by the right G-set H\G.

Lemma 4.4. For subgroups H1, H2 of a finite group G the following are equivalent:

(a) H1 ∼ H2; (b) χH1
= χH2

; (c) Q[H1\G]' Q[H2\G]; (d) Q[G/H1]' Q[G/H2].

Moreover, the equivalence of (b), (c), (d) holds for finite index subgroups H1, H2 of an infinite group G.

Proof. The equivalence of (a) and (b) was proved in Lemma 2.7. The equivalence of (b) and (c) follows
from the equalities

dimQ(Q[Hi\G]g) = χHi
(σ) = dimC(C[Hi\G]g),

8In number theory the L-function L(X , s) := ζ(s)ζ(s− 1)/ζX (S) is often used instead of the Hasse-Weil zeta function (as in
the conjecture of Birch and Swinnerton-Dyer, for example); the two functions obviously determine each other.
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valid hold for all g ∈ G and i = 1,2. The equivalence of (c) and (d) is given by applying the same
equalities with χHi

replaced by the character χ̃Hi
(g) of the permutation representation given by the left

G-set G/H and noting that χ̃Hi
(g) = χHi

(g−1) for all g ∈ G. The last statement in the lemma is clear,
since G-sets that arise in (b), (c), (d) are still finite, even if G is not. �

For subgroups H1, H2 of a group G and commutative ring R we use RH1\G/H2 to denote the R-module
of R-valued functions on the set of double cosets H1\G/H2.

Lemma 4.5. Let H1, H2 be finite index subgroups of a group G and let R be a commutative ring. We have
an R-module isomorphism Φ(H1, H2): RH1\G/H2 → HomR[G](R[H1\G], R[H2\G]) defined by

f 7→
�

H1 g1 7→
∑

H2 g2∈H2\G

f (H1 g1 g−1
2 H2)H2 g2

�

and an R-module isomorphism Ψ(H1, H2): RH2\G/H1 → HomR[G](R[G/H1], R[G/H2]) defined by

f 7→
�

g1H1 7→
∑

g2H2∈G/H2

f (H2 g−1
2 g1H1)g2H2

�

.

Proof. We first show Φ := Φ(H1, H2) is well defined. Clearly Φ( f ) is an R-module homomorphism, but
we need to verify that it is a right R[G]-module homomorphism. For g, g1 ∈ G and f ∈ RH1\G/H2 we
have

Φ( f )(H1 g1 g) =
∑

H2 g2∈H2\G

f (H1 g1 g g−1
2 H2)H2 g2 =

∑

H2 g2∈H2\G

f (H1 g1 g−1
2 H1)H2 g2 g = Φ( f )(H1 g1)g,

so Φ( f ) is compatible with the right G-action as required. It is clear that Φ is an R-module homomor-
phism, we just need to show that it is bijective. If Φ( f ) = 0 then f (H1σH2) = 0 for all σ ∈ G (take
τ ∈ H2), and therefore f = 0, so Φ is injective.

To show that Φ is surjective, let σ1, . . . ,σm ∈ G be a complete set of H1 right coset representatives, let
τ1, . . . ,τn ∈ G be a complete set of H2 right coset representatives, and let π1 : G→ Sm and π2 : G→ Sn

be the corresponding permutation representations on the index sets 1 ≤ i ≤ m and 1 ≤ j ≤ n. Given a
right R[G]-module homomorphism φ : R[H1\G]→ R[H2\G] there is a unique matrix [ri j] ∈ Rm×n for
which φ(H1σi) =

∑

j ri jH2τ j , and for all γ ∈ G and 1≤ i ≤ m we have

φ(H1σπ1(γ)(i)) = φ(H1σiγ) = φ(H1σi)γ=
∑

1≤ j≤n

ri jH2τ jγ=
∑

1≤ j≤n

ri jH2τπ2(γ)( j),

thus rπ1(γ)(i)π2(γ)( j) = ri j for all i and j. Now suppose that H1σiτ
−1
j H2 = H1σkτ

−1
l H2 for some i, j, k, l.

If we put γ := σ−1
k σi , so that H1σkγ= H1σi , then

H1σiτ
−1
j H2 = H1σkτ

−1
l H2 = H1σkγγ

−1τ−1
l H2 = H1σi(τlγ)

−1H2,

which implies that τ−1
j H2 = (τlγ)−1H2 and H2τ j = H2τlγ. We then have rkl = rπ1(γ)(k)π2(γ)(l) = ri j . It

follows that the map H1σiτ
−1
j H2 7→ ri j is a well-defined function f : H1\G/H2→ R for which Φ( f ) = φ,

thus Φ is surjective as claimed.
The proof for Ψ(H1, H2) is essentially the same (replace right actions with left actions). �

Remark 4.6. There is a canonical bijection of double coset spaces H1\G/H2↔ H2\G/H1 given by the
map H1 gH2 7→ H2 g−1H1. We can pre-compose the corresponding bijection RH1\G/H2 ↔ RH2\G/H1 with
the isomorphisms Φ(H1, H2) and Ψ(H1, H2) in Lemma 4.5 whenever it is convenient to do so.
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Let H1, H2 ≤ G be finite and let ϕ : R[G]→ R[G] be a right R[G]-module homomorphism such that

(4) ϕ(h1 g) = ϕ(g), h2ϕ(g) = ϕ(g) (h1 ∈ H1, h2 ∈ H2, g ∈ G).

Then ϕ is constant on right H1-cosets, and for every α ∈ imϕ the function g 7→ ordg(α) is constant
on right H2-cosets. The homomorphism ϕ thus corresponds to a right R[G]-module homomorphism
ϕ̄ : R[H1\G]→ R[H2\G] that is uniquely determined by the identity

(5) ordH2 g2
(ϕ̄(H1 g1)) = ordg2

(ϕ(g1)) (g1, g2 ∈ G).

Conversely, for every right R[G]-module homomorphism ϕ̄ : R[H1\G] → R[H2\G] there is a unique
right R[G]-module homomorphism ϕ for which (5) holds, and this ϕ also satisfies (4). The map ϕ 7→ ϕ̄
defines an R-module isomorphism M(H1, H2)→ HomR[G](R[H1\G], R[H2\G]), where M(H1, H2) is the
R-subalgebra of EndR[G](R[G]) whose elements satisfy (4). For any g1 ∈ G and ϕ ∈ M(H1, H2) we have

(6) ϕ̄(H1 g1) =
∑

H2 g2∈H2\G

ordg2
(ϕ(g1))H2 g2, and ϕ(g1) =

∑

g2∈G

ordH2 g2
(ϕ̄(H1 g1))g2

This also applies to left R[G]-module homomorphisms ϕ : R[G]→ R[G] and ϕ̄ : R[G/H1]→ R[G/H2]
with appropriate modifications to (4) and (5) (multiply on the right in (4) and use left cosets in (5)).

Corollary 4.7. Let (G, H1, H2) be a Gassmann triple, R a commutative ring, and ϕ̄ : R[H1\G]
∼
→ R[H2\G]

a right R[G]-module isomorphism with inverse ψ̄: R[H2\G]
∼
→ R[H1\G]. Let f1 := Φ(H1, H2)(ϕ̄) and

f2 := Φ(H2, H1)(ψ̄) be the corresponding functions on double cosets given by Lemma 4.5. The following
identity holds in the ring R[G]:

(7)
�∑

g∈G

f1(H1 gH2)g
��∑

g∈G

f2(H2 gH1)g
�

= #H2

∑

h∈H1

h.

Similarly, if ϕ̄ and ψ̄ are inverse left R[G]-module isomorphisms between R[G/H1] and R[G/H2] with
f1 := Ψ(H1, H2)(ϕ̄) and f2 := Ψ(H2, H1)(ψ̄) then

(8)
�∑

g∈G

f1(H2 gH1)g
��∑

g∈G

f2(H1 gH2)g
�

= #H1

∑

h∈H2

h.

Proof. Let ϕ,ψ: R[G]→ R[G] be the unique right R[G]-module homomorphisms corresponding to ϕ̄, ψ̄
as determined by (5). We have ψ̄(ϕ̄(H1)) = H1, since ψ̄ is the inverse of φ̄, thus

H1 =
∑

H2 g2∈H2\G

ordH2 g2
(ϕ̄(H1))ψ̄(H2 g2) =

∑

H1 g1∈H1\G

∑

H2 g2∈H2\G

ordH2 g2
(ϕ̄(H1))ordH1 g1

(ψ̄(H2 g2))H1 g1

and therefore

∑

H2 g2∈H2\G

ordH2 g2
(ϕ̄(H1))ordH1 g1

ψ̄(H2 g2)) =

¨

1 if H1 g1 = H1,

0 otherwise.
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Combining this with (5) yields

ψ(ϕ(1)) =
∑

g2∈G

ordg2
(ϕ(1))ψ(g2)

=
∑

g1∈G

∑

g2∈G

ordg2
(ϕ(1))ordg1

(ψ(g2))g1

=
∑

g1∈G

∑

g2∈G

ordH2 g2
(ϕ̄(H1))ordH1 g1

(ψ̄(H2 g2))g1

= #H2

∑

h∈H1

h

which is the RHS of (7). Notice that this implies ordg(ψϕ(1))) = ordg−1(ψϕ(1)) for all g ∈ G.
To establish the LHS of (7), Lemma 4.5 implies that for any g1, g2 ∈ G we have

ordH2 g2
(ϕ̄(H1)) = f1(H1 g−1

2 H2) and ordH1 g1
(ψ̄(H2 g2)) = f2(H2 g2 g−1

1 H1),

and therefore

ψ(ϕ(1)) =
∑

g1∈G

∑

g2∈G

f1(H1 g−1
2 H2) f2(H2 g2 g−1

1 H1)g1

=
∑

g1∈G

∑

g2∈G

f1(H1 g−1
2 H2) f2(H2 g−1

1 H1)g1 g2

=
∑

g1∈G

∑

g2∈G

f1(H1 g−1
2 H2) f2(H2 g−1

1 H1)(g1 g2)
−1

=
�∑

g∈G

f1(H1 gH2)g
��∑

g∈G

f2(H2 gH1)g
�

,

where the third equality is justified by the identity ordg(ψϕ(1))) = ordg−1(ψϕ(1)) noted above. If ϕ̄
and ψ̄ are inverse left R[G]-module isomorphisms the identity (8) is proved similarly. �

We note that Corollary 4.7 is not very useful when #H2 is divisible by the characteristic of R; we will
apply it in characteristic zero, so this will not be a concern for us.

4.2. Endomorphism rings. An endomorphism of an abelian variety A over k is a morphism ϕ : A→ A
of k-algebraic groups; this means that if m: A×A→ A is the morphism defining the group operation then
ϕ ◦m = m ◦ (ϕ ×ϕ) (as morphisms). The endomorphisms of A form a ring End(A) under composition
and point-wise addition. There is a natural embedding of Z into End(A) that identifies n ∈ Z with the
multiplication-by-n map [n]: A → A defined by P 7→ nP := P + · · · + P (notice that this a morphism
of k-algebraic groups; it can be expressed as a rational map of projective varieties by composing the
diagonal morphism A→ A× A with the morphism defining the group operation appropriately).

Every isogeny A→ A is an endomorphism, but only endomorphisms with finite kernel are isogenies;
this includes the multiplication-by-n maps [n] for all n 6= 0, since the n-torsion subgroup A[n] is finite
(it is isomorphic to (Z/nZ)2g when n is prime to the characteristic of k and is never larger than this).

If G is a group of automorphisms (invertible endomorphisms) of an abelian variety A, then we can
naturally embed the group ring Z[G] in End(A) via

∑

ng g 7→
∑

[ng]g and view A as a Z[G]-module.
When A is the Jacobian of a smooth projective curve X , automorphisms of X induce corresponding
automorphism of A, so if G is a subgroup of Aut(X ) we can also view it as a subgroup of Aut(Jac(X )).
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4.3. Proof of the Prasad-Rajan isogeny theorem. We are now ready to prove Theorem 4.24, which
states that for a smooth projective curve X/k and a finite group G ≤ Aut(X ), if (G, H1, H2) is a Gassmann
triple then the Jacobians of the quotient curves X/H1 and X/H2 are isogenous.

Proof of Theorem 4.24. We have Q[G/H1] ' Q[G/H2], by Lemma 4.4, so let ϕ̄ : Q[G/H1]
∼
→ Q[G/H2]

and ψ̄: : Q[G/H1]
∼
→ Q[G/H2] be inverse left Q[G]-module isomorphisms, and let f1 : Ψ(H1, H2)(ϕ̄)

and f2 :− Ψ(H2, H1)(ψ̄) as in Corollary 4.7, so that
�∑

g∈G

f1(H2 gH1)g
��∑

g∈G

f2(H1 gH2)g
�

= #H2

∑

h∈H1

h.

The images of f1 and f2 in Q are finite, so there exist positive integers n1, n2 ∈ Z such that the functions
n1 f1 and n2 f2 have images in Z. Now define φ1 ∈ Z[G] by φ1 := n1

∑

g∈G f1(H2 gH1)g and φ2 ∈ Z[G]
by φ2 := n2

∑

g∈G f2(H1 gH2)g so that

φ1φ2 = n1n2#H2

∑

h∈H1

h.

As noted above, we may embed Z[G] in End(Jac(X )) and view φ1,φ2 as endomorphisms of Jac(X ),
and we view each g ∈ G ⊆ Aut(X ) as an element of Aut(Jac(X )). The endomorphism φ1End(Jac(X )) is
constant on H1-orbits and its image is H2-invariant. Indeed for P ∈ Jac(X ) and h1 ∈ H1,

φ(h1P) = n1

∑

g∈G

f1(H2 gH1)gh1P = n1

∑

g∈G

f1(H2 gh1H1)gh1P = n1

∑

g∈G

f1(H2 gH1)gP = φ(P),

and for h2 ∈ H2,

h2φ(P) = n1

∑

g∈G

f1(H2 gH1)h2 gP = n1

∑

g∈G

f1(H2h2 gH1)gh1P = n1

∑

g∈G

f1(H2 gH1)gP = φ(P),

Similarly, the endomorphism φ2 ∈ End(Jac(X )) is constant on H2-orbits and its image is H1-invariant.
For i = 1, 2 let Ji denote the abelian subvariety of Jac(X ) given by taking the connected component of
the identity in the subvariety of Jac(X ) fixed by every element of Hi; the abelian variety Ji is isogenous
to the Jacobian Jac(X/Hi), as shown in [41, Lemma 2], and the endomorphisms φ1,φ2 ∈ End(Jac(X ))
induce morphisms of abelian varieties φ̄1 : J1→ J2 and φ̄2 : J2→ J1. The endomorphism of J1 induced
by
∑

h∈H1
h ∈ Z[G] ⊆ End(Jac(X )) is the multiplication-by-#H1 map [#H1], since each h ∈ H1 acts as

the identity on J1. It follows that

φ̄1 ◦ φ̄2 = [n1n2#H2#H1],

and therefore the kernel of φ̄1 is finite. Thus φ̄1 is an isogeny (as is φ̄2), so the abelian varieties J1 and
J2 are isogenous, as are the Jacobians Jac(X/H1) and Jac(X/H2). �

4.4. Isospectral Riemann surfaces with isogenous Jacobians. Let X be a compact Riemann surface.
The field C(X ) of meromorphic functions on X is a finitely generated extension of C of transcendence
degree 1 (a function field over C); conversely, every such field arises from a compact Riemann surface and
we have a contravariant equivalence (or anti-equivalence) of categories between the category of compact
Riemann surfaces (whose morphisms are nonconstant holomorphic maps) and the category of function
fields over C (whose morphisms are field embeddings). We also have a contravariant equivalence of
categories between function fields over a field k and smooth projective curves over k (whose morphisms
are non-constant morphisms of curves), and in the case k = C this yields an equivalence between the
category of Riemann surfaces and the category of smooth projective curves over C; see [23] or [37] for
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proofs of these equivalences. Note that if we start with a smooth projective curve over a number field k,
we can always extend the field of definition to C and thereby obtain a corresponding Riemann surface.

Any compact Riemann surface X is a smooth manifold which can be naturally be endowed with a
Riemannian metric of constant negative curvature −1, making it a compact Riemannian manifold that
we can also view as a smooth projective curve over C. This naturally leads to the following question.
Suppose G is a finite group of automorphisms of X acting via isometries and (G, H1, H2) is a Gassmann
triple such that X/H1 and X/H2 are compact Riemann surfaces (and compact Riemannian manifolds
with the induced metric). Sunada’s theorem implies that X/H1 and X/H2 are isospectral, and we can
also ask whether the corresponding Jacobians are isogenous. The answer is yes. This follows from the
work of Prasad and Rajan in [41]. Gordon, Makover, and Webb [20] give an elegant proof of this result
using a general technique they call algebraic transplantation which is interesting in its own right and
presented in the sections that follow.

Remark 4.8. More generally one can ask whether isospectral compact Riemann surfaces necessarily
have isogenous Jacobians, independent of whether their isospectrality arises from a Gassmann triple.
Prasad and Rajan make a precise conjecture to this effect at the end of [41] that remains open.

4.5. Jacobians or Riemann surfaces. Let X be a compact Riemann surface of positive genus g. As
with smooth manifolds, we have tangent and cotangent spaces that are C-vector spaces of dimension 1,
and tangent and cotangent bundles that are complex manifolds of dimension 2 equipped with projection
maps to X . The C-vector space of holomorphic sections of the cotangent bundle is denoted Ω(X ) (or
Ω1(X )); its elements are holomorphic differentials (or regular differentials or holomorphic 1-forms). The
dimension of Ω(X ) as a C-vector space is equal to the genus g of X (in fact this is often used to define
the genus).

If ω is holomorphic differential, and φi : Ui → Vi ⊆ C is a chart, there is a holomorphic function
fi : Vi → C such that for any derivation D ∈ T(X ) and point x ∈ U we haveω(D)(x) = fi(φi(x))Dx(φi);
the shorthand ωi = fi(zi)dzi is used to denote this, where zi := φi(x) is the local coordinate for φi .
If φ j : U j → Vj ⊆ C is an overlapping chart with local coordinate z j := φ j(x) and T := φi ◦ φ−1

j is
the transition map then for x ∈ Ui ∩ U j then f j(z j) = fi(T (z j))T ′(z j), where T ′ denotes the complex
derivative of the holomorphic function T : Vj → Vi . Alternatively, one can simply define a holomorphic
differential as a family {ωi} = { fi(zi)dzi} that satisfies these compatibility constraints; this uniquely
determines a holomorphic differential ω that does not depend on the choice of atlas.

A path on a Riemann surface X is a continuous piecewise C∞ function γ: [a, b]→ X , where [a, b] ⊆ R
is a closed interval. The path γ is closed if γ(a) = γ(b). If γ([a, b]) ⊆ U lies in the domain of a chart
φ : U → V with local coordinate z := φ(x) and ω= f (z)dz on φ, we put z(t) := φ ◦ γ and define

∫

γ

ω :=

∫

γ

f (z)dz =

∫ b

a
f (z(t))z′(t)d t ∈ C.

If the image of γ does not lie in the domain of a single chart we subdivide γ into a finite sequence
of paths γi whose images each lie in the domain of a single chart (this is always possible) and define
∫

γ
ω :=

∑

i

∫

γi
ω. This integral has standard properties of contour integrals: it is C-linear in ω, obeys

the fundamental theorem of calculus, changes sign when the direction of a path is reversed, and de-
pends only on the homotopy class of the path γ; in particular, if γ corresponds to the boundary of the
homeomorphic image in X of a circle or polygon in C then

∫

γ
ω= 0 for all ω ∈ Ω(X ).

The group of chains C(X ) is the free abelian group generated by paths on X ; its elements are finite
formal sums of paths with integer coefficients. There is a natural map from C(X ) to the divisor group
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of X (the free abelian group generated by the points of X ) that sends each chain to the sum of the
difference of its end points. Chains that lie in the kernel of this map are called closed chains (or 1-
cycles); we use Z(X ) to denote this free abelian group. The subgroup of Z(X ) generated by boundaries
of triangles (homeomorphic images of oriented triangles in C) is denoted B(X ); these are the boundary
chains of X . The quotient H1(X ) := Z(X )/B(X ) is the first homology group of X .

We now define the Z-linear map

Z(X )→ Ω(X )∗

γ 7→ (ω 7→
∫

γ
ω)

which induces a homomorphism of abelian groups H1(X ) → Ω(X )∗ called the period map, since (as
noted above) the integral

∫

γ
ω vanishes whenever γ is a boundary. The image of the period map ΛX is

the period lattice of X ; it is a free Z-module of rank 2g that we may view as a lattice inΩ(X )∗ ' Cg ' R2g .

Definition 4.9. Let X be a compact Riemann surface of genus g > 0. The Jacobian of X is the torus
J(X ) := Ω(X )∗/ΛX ; it is a complex Lie group of dimension g (and a real Lie group of dimension 2g).

If X is a smooth projective curve defined over a field k ⊆ C and XC denotes the Riemann surface
corresponding to the base change of X to C, then Jac(X )(C) ' J(XC) (as complex Lie groups). Recall
that we have an equivalence of categories between smooth projective curves X/C and compact Riemann
surfaces X ; this equivalence identifies the abelian variety Jac(X ) with the complex Lie group J(X ) via
the isomorphism Jac(X )(C)' J(X ).

If ϕ : X → Y is a morphism of Riemann surfaces (a nonconstant holomorphic map), then it induces
a contravariant pullback map ϕ∗ : Ω(Y )→ Ω(X ) on differentials which is locally defined by

ϕ∗( f j(z j)dz j) := f (ϕ(zi))ϕ
′
i(zi))dzi ,

whereϕi : Ui → U j is the holomorphic map induced byϕ from the chart Ui → Vi of X to the chart U j → Vj

of Y . We then have obtain a forward map ϕ∗ : Ω(X )∗ → Ω(Y )∗ defined by ϕ∗( f ) = (ω 7→ f (ϕ∗(ω)))
which is compatible with the period maps (ϕ sends path on X to paths on Y via composition and this
induces a morphism of homology groups ϕ∗ : H1(X )→ H1(Y )), and we thus obtain a pushforward map
J(X ) → J(Y ) on Jacobians (a morphism of complex Lie groups). In particular, automorphisms of X
induce automorphisms of J(X ).

4.6. More on permutation modules. In order to present the algebraic transplantation result of Gordon-
Makover-Webb we need to recall a bit more background on permutation modules, following [20, §3].
Throughout this section G is an arbitrary group and R is a commutative ring. For any right R[G]-
module W we define the R[G]-submodule of G-invariants

W G := {w ∈W : wg = w for all g ∈ G};

it is the largest submodule of W on which G acts trivially. For any left R[G]-module V we define the
quotient R[G]-module of G-coinvariants by

VG := V/IGV,

where IG := 〈g − 1 : g ∈ G〉 is the augmentation ideal, the kernel of the map R[G] → R defined by
∑

rg g 7→
∑

rg ; it is the largest quotient module of V on which G acts trivially.
For any subgroup Γ ≤ G we may naturally view W and V as R[Γ ]-modules; these are typically denoted

ResG
Γ W and ResG

Γ V , but we will not use this notation when it is clear from context that we are viewing
W and/or V as R[Γ [-modules. We may then consider the corresponding modules of Γ -invariants and
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Γ -coinvariants. The Γ -invariant module W Γ is a right R[G]-module on which Γ acts trivially and thus
has a natural structure as a right R[Γ\G]-module via

wΓ g := wg (w ∈W Γ , g ∈ G).

Similarly the Γ -coinvariant module VΓ is a left R[G]-module on which Γ acts trivially and thus has a
natural structure as a left R[G/Γ ]-module via

Γ gv := gv (v ∈ VΓ , g ∈ G).

4.6.1. Transplantation of invariants. In this subsection we treat right R[G]-modules W and their sub-
modules of invariants W Γ , for Γ ≤ G.

Definition 4.10. Let G be a group, Γ ≤ G a subgroup, R a commutative ring, and W a right R[Γ ]-module.
We define the coinduced right R[G]-module

CoIndG
Γ W := HomR[Γ ](R[G], W ),

with the right G-action given by f g := (h 7→ f (gh)), for f ∈ HomR[Γ ](R[G], W ) and g ∈ G.

Lemma 4.11. Let G be a group, Γ ≤ G a subgroup, R a commutative ring, and W a right R[Γ ]-module.
We have an isomorphism of (trivial) right R[Γ ]-modules

W Γ ∼
−→ (CoIndG

Γ W )G

w 7→ (g 7→ w)

f (1)← [ f

Proof. The isomorphism of abelian groups is a special case of Shapiro’s Lemma [6, Prop. III.6.2], and it
is clearly R-linear and therefore R[Γ ]-linear, since Γ acts trivially on both sides. �

Let Γ be a subgroup of G, and let W be a right R[G]-module. The R-module HomR(R[Γ\G], W )
becomes a right R[G]-module when equipped with the diagonal right G-action

f g := (Γh 7→ f (Γhg−1)g) ( f ∈ HomR(R[Γ\G], W ), g ∈ G).

Proposition 4.12. Let G be a group, Γ ≤ G a subgroup, R a commutative ring, and W a right R[G]-module.
We have a right R[G]-module isomorphism

HomR[Γ ](R[G], W )
∼
−→ HomR(R[Γ\G], W )

f 7→ (Γ g 7→ f (g−1)g)

(g 7→ f (Γ g−1)g)← [ f

and a corresponding right R[G]-module isomorphism

φΓ : W Γ ∼
−→ HomR(R[Γ\G], W )G

w 7→ (Γ g 7→ wg)

f (Γ )← [ f

Proof. This is straight-forward verification; the second isomorphism (which is all we shall use) is the
composition of the first with the isomorphism in Lemma 4.11 and very easy to check it directly. �
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Theorem 4.13 (Transplantation of invariants). Let Γ1, Γ2 be subgroups of a group G, let R be a commutative
ring, and let ϕ : R[Γ1\G]→ R[Γ2\G] a right R[G]-module homomorphism. For any right R[G]-module W
we have a right R[G]-module homomorphism

ϕ#
W : W Γ2

∼
−→W Γ1

w 7→ wϕ(Γ1).

The map ϕ 7→ ϕ#
W is contravariantly functorial in the sense that for any right R[G]-module homomorphism

ψ: R[Γ2\G]→ R[Γ3\G] we have (ψ ◦ϕ)#W = ϕ
#
W ◦ψ

#
W .

Proof. We have an induced homomorphism of right R[G]-modules

ϕ∗ : HomR(R[Γ2\G], W )→ HomR(R[Γ1\G], W )

f 7→ f ◦ϕ,

which restricts to a homomorphism on G-invariants. Composing with the isomorphisms φΓ1 ,φΓ2 given
by Proposition 4.12, the map ϕ#

W := (φΓ1)−1 ◦ϕ∗ ◦φΓ2 : W Γ2 →W Γ1 is defined by

w 7→ (Γ2 g 7→ wg) 7→ (Γ1 g 7→ wϕ(Γ1 g)) 7→ wϕ(Γ1),

as claimed (wϕ(Γ1 g)) is well defined because w ∈W Γ
2 and ϕ(Γ1 g) is an R-sum of right Γ2-cosets). The

map ϕ 7→ ϕ#
W is contravariantly functorial because the map R[Γ\G] 7→ HomR(R[Γ\G], W ) is. �

Corollary 4.14. Let Γ1, Γ2 be subgroups of a group G, R be a commutative ring, andϕ : R[Γ1\G]→ R[Γ2\G]
a right R[G]-module homomorphism. For any right R[G]-module homomorphism ψ: X → Y we have a
commutative diagram of right R[G]-modules:

X Γ2 X Γ1

Y Γ2 Y Γ1 .

ϕ#
X

ψ ψ

ϕ#
Y

Proof. For any x ∈ X Γ2 we have ψ(ϕ#
X (x)) =ψ(xϕ(Γ1)) =ψ(x)ϕ(Γ1) = ϕ

#
Y (ψ(x)); the middle equality

follows from the fact that ψ is a right R[G]-module homomorphism and ψ(x) ∈ Y Γ2 . �

Example 4.15. Corollary 4.14 provides another proof of Sunada’s theorem. If M is a compact Rie-
mannian manifold equipped with an isometric G-action and (G, Γ1, Γ2) is a Gassmann triple, then Γ1 and
Γ2 are representation equivalent, by Lemma 4.4, and if we endow the C-vector spaces C[Γi/\G] with a
Hermitian inner product by declaring the natural basis of right cosets to be orthonormal, Lemma 3.17
implies that we have a unitary isomorphism of right C[G]-modules ϕ : C[Γ1\G]→ C[Γ2\G]. For i = 1,2
let Mi := Γi\M , and note that C∞(Mi) = C∞(Γi\M) ' C∞(M)Γi (a smooth function on Γi-orbits of
M is the same thing as a Γi-invariant smooth function on M). If we now put X = Y = C∞(M) and
let ψ: C∞(M) → C∞(M) be the Laplace-Beltrami operator ∆M , which commutes with the G-action
(since G acts via isometries) and therefore induces the Laplace-Beltrami operator ∆Mi

via its action on
C∞(M)Γi , for i = 1, 2. Corollary 4.14 then yields the commutative diagram

C∞(M2) C∞(M1)

C∞(M2) C∞(M1)

ϕ#
X

∆M2
∆M1

ϕ#
Y

whose rows are unitary isomorphisms; this implies that M1 and M2 are isospectral.
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4.6.2. Transplantation of coinvariants. We now consider left R[G]-modules V and their quotient mod-
ules of coinvariants VΓ , for Γ ≤ G.

Definition 4.16. Let G be a group, Γ ≤ G a subgroup, R a commutative ring, and V a left R[Γ ]-module.
We define the induced left R[G]-module

IndG
Γ V := R[G]⊗R[Γ ] V

with the left G-action given by g(h⊗ v) := (gh)⊗ v, for h ∈ G, v ∈ V , and g ∈ G.

Lemma 4.17. Let G be a group, Γ ≤ G a subgroup, R a commutative ring, and V a left R[Γ ]-module. We
have an isomorphism of (trivial) left R[Γ ]-modules

VΓ
∼
−→ (IndG

Γ W )G

v̄ 7→ 1⊗ v

v̄← [ g ⊗ v

Proof. The isomorphism of abelian groups is a special case of Shapiro’s Lemma [6, Prop. III.6.2], and it
is clearly R-linear and therefore R[Γ ]-linear, since Γ acts trivially on both sides. �

Let Γ be a subgroup of G, and let V be a left R[G]-module. The R-module R[Γ\G]⊗R V becomes a
left R[G]-module when equipped with the diagonal left G-action

g(Γh⊗ v) := (Γhg−1 ⊗ gv) (g, h ∈ G, v ∈ V ).

Proposition 4.18. Let G be a group, Γ ≤ G a subgroup, R a commutative ring, and V a left R[G]-module.
We have a left R[G]-module isomorphism

R[G]⊗R[Γ ] V
∼
−→ R[Γ\G]⊗R V

g ⊗ v 7→ Γ g−1 ⊗ gv

g−1 ⊗ gv← [ Γ g ⊗ v

and a corresponding left R[G]-module isomorphism

φΓ : VΓ
∼
−→ (R[Γ\G]⊗R V )G

v̄ 7→ Γ ⊗ v

gv← [ Γ g ⊗ v

Proof. This is straight-forward verification; the second isomorphism (which is all we shall use) is the
composition of the first with the isomorphism in Lemma 4.17 and very easy to check it directly. �

Theorem 4.19 (Transplantation of invariants). Let Γ1, Γ2 be subgroups of a group G, let R be a commutative
ring, and let ϕ : R[Γ1\G]→ R[Γ2\G] a right R[G]-module homomorphism. For any left R[G]-module V we
have a left R[G]-module homomorphism

ϕV
# : VΓ1

∼
−→ VΓ2

v̄ 7→ ϕ(Γ1)v

The map ϕ 7→ ϕV
# is covariantly functorial in the sense that for any left R[G]-module homomorphism

ψ: R[Γ2\G]→ R[Γ3\G] we have (ψ ◦ϕ)V# =ψ
V
# ◦ϕ

V
# .
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Proof. We have an induced homomorphism of left R[G]-modules

ϕ∗ : R[Γ1\G]⊗R V → R[Γ2\G]⊗R V

Γ1 g ⊗ v 7→ ϕ(Γ1 g)⊗ v.

which induces a homomorphism on G-coinvariants. Composing with the isomorphisms φΓ1 ,φΓ2 given
by Proposition 4.18, the map ϕV

# := φ−1
Γ2
◦ϕ∗ ◦φΓ1 : VΓ1 → VΓ2 is defined by

v̄ 7→ Γ1 ⊗ v 7→ ϕ(Γ1)⊗ v 7→ ϕ(Γ1)v

The map ϕ 7→ ϕV
# is covariantly functorial because the map R[Γ\G] 7→ R[Γ\G]⊗R V is. �

Corollary 4.20. Let Γ1, Γ2 be subgroups of a group G, R be a commutative ring, andϕ : R[Γ1\G]→ R[Γ2\G]
a right R[G]-module homomorphism. For any left R[G]-module homomorphism ψ: X → Y we have a
commutative diagram of left R[G]-modules:

XΓ1 XΓ2

YΓ1 YΓ2 .

ϕX
#

ψ ψ

ϕY
#

Proof. For any x̄ ∈ XΓ1 we have ψ(ϕX
#( x̄)) =ψ(ϕ(Γ1)x) = ϕ(Γ1)ψ(x) = ϕ

Y
#(ψ(x)); the middle equality

follows from the fact that ψ is a right R[G]-module homomorphism and ψ( x̄) ∈ YΓ1 . �

4.7. The pairing lemma.

Definition 4.21. Let G be a group, let W be a right C[G]-module, and let V be a left Z[G]-module. A Z-
bilinear pairing 〈·, ·〉: W ×V → C is G-balanced if for all w ∈W , v ∈ V , g ∈ G we have 〈w, gv〉= 〈wg, v〉.

Example 4.22. Let X be a compact Riemann surface on which G acts on the left via automorphisms;
this means that for each g ∈ G the map x 7→ g x is a holomorphic map X → X (with a holomorphic
inverse). Let W = Ω(X ) be the right C[G]-module of holomorphic differentials on X , equipped with the
pullback action ω 7→ g∗ω, and let V = C(X ) be the left Z[G]-module of chains on X , equipped with the
pushforward action γ 7→ ϕ ◦ γ, and let 〈·, ·〉: W × V → C be the integration pairing 〈ω,γ〉 7→

∫

γ
ω. The

integration pairing is G-balanced:
∫

gγω=
∫

γ
g∗ω for all γ ∈ C(X ) and ω ∈ Ω(X ).

Given a G-balanced pairing W × V → C, for any subgroup Γ ≤ G we have an induced G-balanced
pairing

〈·, ·〉Γ : W Γ × VΓ → C

(w, v̄) 7→ 〈w, v〉.

It is well defined because for any γ ∈ Γ we have 〈w,γv〉= 〈wγ, v〉= 〈w, v〉, since w ∈W Γ is Γ -invariant,
and this implies that 〈w, v̄〉Γ depends only on the image v̄ ∈ VΓ = V/IΓV of v ∈ V .

The pairing 〈·, ·〉Γ induces a homomorphism of left Z[G]-modules

πΓ : VΓ → (W Γ )∗

v̄ 7→ (w 7→ 〈w, v̄〉Γ ),

where the left G-action on (W Γ )∗ is given by g f := (w 7→ f (wg)); note that πΓ depends on the pairing.
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Lemma 4.23 (Pairing lemma). Let G be a group with subgroups Γ1, Γ2 ≤ G, and letϕ : Z[Γ1\G]→ Z[Γ2\G]
be a right Z[G]-module homomorphism. For any G-balanced pairing 〈·, ·〉: W × V → C the following
diagram commutes

VΓ1 (W Γ1)∗

VΓ2 (W Γ2)∗.

πΓ1

ϕV
#

(ϕ#
W )
∗

πΓ2

where (ϕ#
W )
∗ : (W Γ1)∗→ (W Γ2)∗ is defined by f 7→ f ◦ϕ#

W .

Proof. For any v̄ ∈ VΓ1 we have

(ϕ#
W )
∗(πΓ1(v̄)) = (ϕ

#
W )
∗(w1 7→ 〈w1, v̄〉Γ1) = (w2 7→ 〈ϕ#

W (w2), v̄〉Γ1)

= (w2 7→ 〈w2ϕ(Γ1), v̄〉Γ1) = (w2 7→ 〈w2ϕ(Γ1), v〉)

= (w2 7→ 〈w2,ϕ(Γ1)v〉) = (w2 7→ 〈w2,ϕ(Γ1)v〉Γ2)

= πΓ2(ϕ(Γ1)v) = πΓ2(ϕ
V
#(v̄)),

where we used the fact that 〈·, ·〉 is G-balanced to go from the second line to the third. �

4.8. Isospectral Riemann surfaces with isogenous Jacobians. As an application of the pairing lemma,
let us prove that Riemann surfaces constructed from Gassmann triples (which are necessarily isospec-
tral) have isogenous Jacobians. This result appears as Theorem 4.2 in [20]; as noted therein, it was
originally proved in [41].

Theorem 4.24. Let X be a compact Riemann surface, let G ≤ Aut(X ) be a finite group, let (G, Γ1, Γ2) be a
Gassmann triple, and let X1 := Γ1\X and X2 := Γ2\X . Then J(X1) and J(X2) are isogenous.

Proof. We have Q[Γ1\G ' Q[Γ2\G], by Lemma 4.4, and after clearing denominators we obtain Z[G]-
module homomorphisms ϕ : Z[Γ1\G]→ Z[Γ2\G] andψ: Z[Γ1\G]→ Z[Γ1\G] for which ϕ ◦ψ andψ◦ϕ
both correspond to multiplication by an integer. The right Z[G]-module homomorphism

ϕ∗ : HomZ(Z[Γ2\G],Ω(X ))→ HomZ(Z[Γ1\G],Ω(X ))

is an isomorphism of C[G]-modules, and this implies that ϕ#
Ω(X ) = (φ

Γ1)−1 ◦ϕ∗φΓ2 : Ω(X )Γ2 → Ω(X )Γ1
is an isomorphism of C[G]-modules (see the proof of Theorem 4.13). Similarly, the left Z[G]-module
homomorphism

ϕ∗ : Z[Γ1\G]⊗Z C(X )→ Z[Γ2\G]⊗Z C(X )

corresponds to an isomorphism of Q[G]-modules, and thereforeϕC(X )
# = φ−1

Γ2
◦ϕ∗◦φΓ1 : C(X )Γ1 → C(X )Γ2

can be viewed as an isomorphism of Q[G]-modules after tensoring with Q.
We have Ω(X )Γi ' Ω(X i) and C(X )Γi ' C(X i), and applying the pairing lemma to the G-balanced

integration pairing 〈·, ·〉: Ω(X )× C(X )→ C yields the commutative diagram

C(X1) Ω(X1)∗

C(X2) Ω(X2)∗,

πΓ1

ϕ
C(X )
#

(ϕ#
Ω(X ))

∗

πΓ2
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where the left vertical map is a rational isomorphism of Z-module and the right vertical map is an
isomorphism of C-vector spaces. We can replace C(Mi) by H1(Mi), because the transplantation map
ϕ

C(M)
# carries cycles to cycles and boundaries to boundaries; this induces maps πΓi : H1(X i) → Ω(X i)∗

that are precisely the period maps for X i (the maps πΓi are defined by the integration pairing). Recalling
that the Jacobian is the cokernel of the period map, we obtain a commutative diagram of exact sequences

0 H1(X1) Ω(X1) J(X1) 0

0 H1(X2) Ω(X2) J(X2) 0

ϕ
C(X )
#

πΓ1

ϕ#
Ω(X ) ∃φ

πΓ2

where the left vertical map ϕC(X )
# is a rational isomorphism, hence has finite kernel and cokernel as

Z-linear map. The homology groups H1(X1) and H1(X2) are torsion free Z-modules and therefore must
have the same rank (so X1 and X2 have the same genus), and this implies that ϕC(X )

# is injective. The
snake lemma then implies that φ must be a surjective map with finite kernel, hence an isogeny. �
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