Fast Jacobian arithmetic for hyperelliptic curves of genus 3

Andrew V. Sutherland ${ }^{1}$

Massachusetts Institute of Technology

ANTS XIII — July 18, 2018

[^0]
Background

Let X be a nice (smooth, projective, geom. irred.) curve of genus g over a field k. Its Jacobian $\operatorname{Jac}(X)$ is an abelian variety of dimension g.

Suppose $X(k) \neq \emptyset$. Then there is a natural isomorphism

$$
\operatorname{Jac}(X) \simeq \operatorname{Pic}^{0}(X)
$$

where $\operatorname{Pic}^{0}(X):=\operatorname{Div}^{0}(X) / \operatorname{Princ}(X)$, and for any $O \in X(k)$ the map

$$
\begin{aligned}
X & \rightarrow \operatorname{Pic}^{0}(X) \\
P & \mapsto[P-O]
\end{aligned}
$$

is an injective morphism (an isomorphism when $g=1$).

- When k is a number field $\operatorname{Jac}(X)$ is finitely generated.
- When k is a finite field $\operatorname{Jac}(X)$ is a finite abelian group.

Top ten reasons to care about $\operatorname{Jac}(X)$

(1) Computing L-functions!
(2) Computing zeta functions.
(3) BSD conjecture for abelian varieties.
(c) Galois representations.
(0) Finding rational points with the Mordell-Weil sieve.
(0) Cohen-Lenstra for function fields.
(3) Lang-Trotter type questions.
(3) Torsion subgroups.

- Cryptographic applications.
(1) Groups are more interesting than sets.

Computing L-functions.

Let X / \mathbb{Q} be a nice curve of genus g.

$$
L(X, s):=\prod_{p} L_{p}\left(p^{-s}\right)^{-1},
$$

For primes p of good reduction, $L_{p} \in \mathbb{Z}[T]$ is defined by

$$
Z(X, T):=\exp \left(\sum_{n \geq 1} \# X\left(\mathbb{F}_{p^{n}}\right) \frac{T^{n}}{n}\right)=\frac{L_{p}(T)}{(1-T)(1-p T)}
$$

For hyperelliptic X one can compute $L_{p}(T) \bmod p$ for all $p \leq B$ in $O\left(g^{3} B(\log B)^{3+o(1)}\right)$ time [Harvey 14, Harvey-S 14, Harvey-S 16].

For $g=3$, one can lift $L_{p}(T) \bmod p$ to $L_{p}(T)$ in $O\left(p^{1 / 4+o(1)}\right)$ time using computations in $\operatorname{Jac}(X)\left(\mathbb{F}_{p}\right)$ and $\operatorname{Jac}(\tilde{X})\left(\mathbb{F}_{p}\right)$ (assume $p \gg 1$).

For feasible B this is negligible, provided Jacobian arithmetic is fast.

Hyperelliptic curves

A hyperelliptic curve is a nice curve X / k of genus $g \geq 2$ that admits a degree-2 map $\phi: X \rightarrow \mathbf{P}^{1}$ (which we shall assume is defined over k). The hyperelliptic involution $P \mapsto \bar{P}$ interchanges points in each fiber.

Assume k is a perfect field of characteristic not 2 . Then X has an affine model $y^{2}=f(x)$, where $f \in k[x]$ is squarefree of degree $2 g+2$ with roots corresponding to the Weierstrass points of X.

If X has a rational Weierstrass point P then by moving P to infinity we can obtain a model $y^{2}=f(x)$ with f monic of degree $2 g+1$.

This is typically not possible, in which case we are stuck with an even degree model $y^{2}=f(x)$ which has either 0 or 2 points at infinity.

If X has a rational non-Weierstrass point, moving it to infinity will ensure that we are in the latter case (2 points at infinity).

Uniquely representing elements of $\operatorname{Pic}^{0}(X)$

A divisor is a finite formal sum $D:=\sum n_{P} P$ of points $P \in X(\bar{k})$. It is rational if it is fixed by $\operatorname{Gal}(\bar{k} / k)$ and effective if $n_{P} \geq 0$ for all P. We may write effective divisors as $P_{1}+\cdots+P_{n}$ (multiplicity allowed).
$P_{1}+\cdots+P_{n}$ is semi-reduced if $P_{i} \neq \bar{P}_{j}$ for $i \neq j$, and reduced if $n \leq g$.

Theorem (Paulus-Ruck 99)

Let X be a hyperelliptic curve of genus g with an effective divisor D_{∞} of degree g supported on rational points at infinity. Each element of $\operatorname{Pic}^{0}(X)$ can be written as $\left[D_{0}-D_{\infty}\right]$, for a unique rational reduced divisor D_{0} supported on affine points.

The Mumford representation $\operatorname{div}[u, v]$ of a rational semi-reduced affine divisor $D:=P_{1}+\cdots+P_{n}$ is the unique pair $u, v \in k[x]$ satisfying

$$
u(x):=\prod\left(x-x\left(P_{i}\right)\right), \quad u \mid\left(f-v^{2}\right), \quad \operatorname{deg} v<\operatorname{deg} u
$$

The balanced divisor approach

We now recall the method of [GHM, ANTS VIII].
Let $X: y^{2}=f(x)$ be a hyperelliptic curve of genus g with rational points $P_{\infty}:=(1: 1: 0), \bar{P}_{\infty}:=(1:-1: 0)$ at infinity; f monic, degree $2 g+2$. Let $D_{\infty}:=\left\lceil\frac{g}{2}\right\rceil P_{\infty}+\left\lfloor\frac{g}{2}\right\rfloor \bar{P}_{\infty}$.

For $0 \leq n \leq g-\operatorname{deg}(u)$ define

$$
\operatorname{div}[u, v, n]:=\operatorname{div}[u, v]+n P_{\infty}+(g-\operatorname{deg}(u)-n) \bar{P}_{\infty}-D_{\infty} .
$$

Each divisor class in $\operatorname{Pic}^{0}(X)$ is uniquely represented by $\operatorname{div}[u, v, n]$ for some monic $u \mid\left(f-v^{2}\right)$ with $\operatorname{deg}(v)<\operatorname{deg}(u) \leq G$ and $0 \leq n \leq g-\operatorname{deg}(u)$. The trivial element of $\operatorname{Pic}^{0}(X)$ is represented by $\operatorname{div}\left[1,0,\left\lceil\frac{g}{2}\right]\right]=0$.

As shown by Mireles Morales, this representation yields efficient addition formulas when g is even, and in particular, when $g=2$.

Composing balanced divisors

Define $\operatorname{div}[u, v, n]^{*}:=\operatorname{div}[u, v]+n P_{\infty}+(2 g-\operatorname{deg}(u)-n) \bar{P}_{\infty}-2 D_{\infty}$.
Compose. Given $D_{1}:=\operatorname{div}\left[u_{1}, v_{1}, n_{1}\right]$ and $D_{2}:=\operatorname{div}\left[u_{2}, v_{2}, n_{2}\right]$:
(1) Use the Euclidean algorithm to compute $w, c_{1}, c_{2}, c_{3} \in k[x]$ so that

$$
w=c_{1} u_{1}+c_{2} u_{2}+c_{3}\left(v_{1}+v_{2}\right)=\operatorname{gcd}\left(u_{1}, u_{2}, v_{1}+v_{2}\right)
$$

(2) Compute $u_{3}:=u_{1} u_{2} / w^{2}, n_{3}:=n_{1}+n_{2}+\operatorname{deg}(w)$, and

$$
v_{3}:=\left(c_{1} u_{1} v_{2}+c_{2} u_{2} v_{1}+c_{3}\left(v_{1} v_{2}+f\right)\right) / w \bmod u_{3} .
$$

(3) Output $D_{3}:=\operatorname{div}\left[u_{3}, v_{3}, n_{3}\right]^{*} \sim D_{1}+D_{2}$.

Note that D_{3} is not the canonical representative for $\left[D_{1}+D_{2}\right]$.

Reducing and adjusting divisors

Reduce. Given $\operatorname{div}\left[u_{1}, v_{1}, n_{1}\right]^{*}$ with $\operatorname{deg}\left(u_{1}\right)>g+1$:
(1) Let $u_{2}:=\left(f-v_{1}^{2}\right) / u_{1}$ made monic and $v_{2}:=-v_{1} \bmod u_{2}$.
(2) If $\operatorname{deg}\left(v_{1}\right)=g+1$ and $\operatorname{lc}\left(v_{1}\right)= \pm 1$ then let $\delta:=\mp\left(g+1-\operatorname{deg}\left(u_{2}\right)\right)$, otherwise let $\delta:=\left(\operatorname{deg}\left(u_{1}\right)-\operatorname{deg}\left(u_{2}\right)\right) / 2$.
(3) Output $\operatorname{div}\left[u_{2}, v_{2}, n_{1}+\delta\right]^{*} \sim \operatorname{div}\left[u_{1}, v_{1}, n_{1}\right]^{*}$.

Adjust. Given $\operatorname{div}\left[u_{1}, v_{1}, n_{1}\right]^{*}$ with $\operatorname{deg}\left(u_{1}\right) \leq g+1$:
(1) If $\left\lceil\frac{g}{2}\right\rceil \leq n_{1} \leq\left\lceil\frac{3 g}{2}\right\rceil-\operatorname{deg}\left(u_{1}\right)$ output $\operatorname{div}\left\lceil u_{1}, v_{1}, n_{1}-\left\lceil\frac{g}{2}\right\rceil\right]$ and stop.
(2) If $n_{1}<\left\lceil\frac{g}{2}\right\rceil$ let $\delta=-1$, otherwise, let $\delta=+1$.
(3) Let $\hat{v}_{1}:=v_{1}+\delta\left(V-\left(V \bmod u_{1}\right)\right)$ and $u_{2}:=\left(f-\hat{v}_{1}^{2}\right) / u_{1}$ made monic, and $v_{2}:=-\hat{v}_{1} \bmod u_{s}$ (using precomputed V with $\operatorname{deg}\left(f-V^{2}\right) \leq g$).
(4) Let $n_{2}:=n_{1}+\delta\left(\operatorname{deg}\left(u_{i}\right)-(g+1)\right)$, where $i=(3-\delta) / 2$.
(5) Output Adjust($\left.\operatorname{div}\left[u_{2}, v_{2}, n_{2}\right]^{*}\right)$

Addition and negation

Addition. Given $D_{1}:=\operatorname{div}\left[u_{1}, v_{1}, n_{1}\right]$ and $D_{2}:=\operatorname{div}\left[u_{2}, v_{2}, n_{2}\right]$:
(1) Set $\operatorname{div}[u, v, n]^{*} \leftarrow \operatorname{Compose}\left(\operatorname{div}\left[u_{1}, v_{1}, n_{1}\right], \operatorname{div}\left[u_{2}, v_{2}, n_{2}\right]\right)$.
(2) While $\operatorname{deg}(u)>g+1$ set $[u, v, n]^{*} \leftarrow$ Reduce $\left(\operatorname{div}[u, v, n]^{*}\right)$.
(3) Output $D_{3}:=\boldsymbol{A d j u s t}\left(\operatorname{div}[u, v, n]^{*}\right) \sim D_{1}+D_{2}$.

The output divisor D_{3} is the canonical representative for $\left[D_{1}+D_{2}\right]$.
Negation. Given $D_{1}:=\operatorname{div}\left[u_{1}, v_{1}, n_{1}\right]$:
(1) If g is even output $\operatorname{div}\left[u_{1},-v_{1}, g-\operatorname{deg}\left(u_{1}\right)-n_{1}\right]$ and stop.
(2) If $n_{1}>0$ output $\operatorname{div}\left[u_{1},-v_{1}, g-\operatorname{deg}\left(u_{1}\right)-n_{1}+1\right]$ and stop.
(3) Output $D_{2}:=\boldsymbol{A d j u s t}\left(\operatorname{div}\left[u_{1},-v_{1},\left\lceil\frac{3 g}{2}\right\rceil-\operatorname{deg}\left(u_{1}\right)+1\right]^{*}\right) \sim-D_{1}$.

The output divisor D_{2} is the canonical representative for $\left[-D_{1}\right]$.
For even g this is essentially Cantor's algorithm, except $\operatorname{deg}(f)=2 g+2$.

Addition in the typical case.

Generically, we expect the following to hold when adding divisors:

- $\operatorname{deg}\left(u_{1}\right)=\operatorname{deg}\left(u_{2}\right)=g, \operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{2}\right)=g-1$, and $n_{1}=n_{2}=0$;
- After Compose, $\operatorname{deg}(u)=2 g, \operatorname{deg}(v)=2 g-1$, and $n=0$.
- Each call to Reduce decreases $\operatorname{deg}(u)$ by 2 and increases n by 1 . When g is even we will have $\operatorname{deg}(u)=g$ after $g / 2$ calls to Reduce. When g is odd we will have $\operatorname{deg}(u)=g+1$ after $(g-1) / 2$ calls.
- When g is even Adjust simply sets $n=0$ and returns. When g is odd, Adjust first makes $\operatorname{deg}(u)=g$ and $n=(g+1) / 2$, then simply sets $n=0$ and returns.

When $g=3$, one call to Reduce and one nontrivial call to Adjust.

Straight-line program for the typical case

Standard optimizations (following [Gaudry-Harley, Harley 00]):

- Use the CRT to avoid computing GCDs (for $u_{1} \perp u_{2}$ or $u_{1} \perp v_{1}$).
- Combine composition and one reduction into a single step.

Optimization specific to balanced divisor approach:

- Combine composition, reduction, adjustment into a single step.

TypicalAddition. Given $\operatorname{div}\left[u_{i}, v_{i}, 0\right]$, with $\operatorname{deg}\left(u_{i}\right)=3$ and $u_{1} \perp u_{2}$:
(1) $w:=\left(f-v_{1}^{2}\right) / u$ and $\tilde{s}:=\left(v_{2}-v_{1}\right) / u_{1} \bmod u_{2}$.
(2) $c:=1 / \operatorname{lc}(\tilde{s})$ and $s=c \tilde{s}$ and $z:=s u_{1}$ (require $\operatorname{deg}(s)=2$).
(3) $u_{4}:=\left(s\left(z+2 c v_{1}\right)-c^{2} w\right) / u_{2}$ and $\tilde{v}_{4}:=v_{1}+u_{4}+\left(z \bmod u_{4}\right) / c$.
(1) $u_{5}:=\left(\tilde{v}_{4}^{2}-f\right) /\left(2 \tilde{v}_{43} u_{4}\right)$ and $v_{5}:=\tilde{v}_{4} \bmod u_{5}$ and $n_{5}:=3-\operatorname{deg}\left(u_{5}\right)$.

We then have $\operatorname{div}\left[u_{1}, v_{1}, 0\right]+\operatorname{div}\left[u_{2}, v_{2}, 0\right] \sim \operatorname{div}\left[u_{5}, v_{5}, n_{5}\right]$. $\operatorname{div}\left[u_{5}, v_{5}, n_{5}\right]$ is the canonical representative of its divisor class.

Optimizations and results

Standard tricks that can be used to optimize the algorithm:
(1) Karatsuba and Toom style polynomial multiplication;
(2) Fast algorithms for exact division of polynomials;
(Bezout's matrix for computing resultants;
(9) Montgomery's trick for combining field inversions;
(Maximize parallelism and minimize modular reductions.
After applying these optimizations (and other minor tweaks):

- Typical addition: $\mathbf{I}+79 \mathbf{M}+127 \mathbf{A}$ (vs $5 \mathbf{I}+275 \mathbf{M}+246 \mathbf{A}$).
- Typical doubling: $\mathbf{I}+82 \mathbf{M}+127 \mathbf{A}$ (vs $5 \mathbf{I}+285 \mathbf{M}+258 \mathbf{A}$).
- Typical negation: $\mathbf{I}+14 \mathbf{M}+24 \mathbf{A}$.

Note that (5) has no impact on the field operation counts.

Caveat: field operation counts can be misleading

For an odd prime p, consider the following computations in \mathbb{F}_{p} :
(1) $z \leftarrow x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}$
($4 \mathrm{M}+3 \mathrm{~A}$)
(2) $z \leftarrow\left(\left(\left(x^{2}\right)^{2}\right)^{2}\right)^{2}$
(4M, in fact 4S)

Which is faster?
In almost any implementation (1) will take much less time than (2). For word-sized operands on a Haswell core, (2) is $4 \times$ slower than (1).

How about
(1) $z \leftarrow x_{1} y_{1}+x_{1} y_{2}+x_{2} y_{1}+x_{2} y_{2}$
$(4 \mathrm{M}+3 \mathrm{~A})$
(2) $z \leftarrow\left(x_{1}+x_{2}\right)\left(y_{1}+y_{2}\right)$
($1 \mathbf{M}+2 \mathrm{~A}$)

Which is faster?

Comparing operation counts (with caveats)

Operation counts for Jacobian arithmetic on hyperelliptic curves over fields of odd characteristic using affine coordinates:

	Addition	Doubling	Source
Genus 2 odd degree	$\mathbf{I}+24 \mathbf{M}$	$\mathbf{I}+28 \mathbf{M}$	[Lange 05]
Genus 2 even degree	$\mathbf{I}+28 \mathbf{M}$	$\mathbf{I}+32 \mathbf{M}$	[GHM 08]
Genus 3 odd degree	$\mathbf{I}+67 \mathbf{M}$	$\mathbf{I}+68 \mathbf{M}$	[NMCT 06]
Genus 3 even degree	$\mathbf{I}+79 \mathbf{M}$	$\mathbf{I}+82 \mathbf{M}$	[this work]
Genus 3 even degree	$\mathbf{I}+75 \mathbf{M}$	$\mathbf{I}+86 \mathbf{M}$	[Rezai Rad 16]

[^0]: ${ }^{1}$ Supported by NSF grant DMS-1522526 and Simons Foundation grant 550033.

