Fast Jacobian arithmetic for hyperelliptic curves of genus 3

Andrew V. Sutherland¹

Massachusetts Institute of Technology

ANTS XIII - July 18, 2018

¹Supported by NSF grant DMS-1522526 and Simons Foundation grant 550033.

Background

Let X be a nice (smooth, projective, geom. irred.) curve of genus g over a field k. Its Jacobian Jac(X) is an abelian variety of dimension g.

Suppose $X(k) \neq \emptyset$. Then there is a natural isomorphism

$$\operatorname{Jac}(X) \simeq \operatorname{Pic}^0(X),$$

where $\operatorname{Pic}^0(X) := \operatorname{Div}^0(X)/\operatorname{Princ}(X)$, and for any $O \in X(k)$ the map

$$X \to \operatorname{Pic}^0(X)$$

$$P\mapsto [P-O]$$

is an injective morphism (an isomorphism when g = 1).

- When k is a number field Jac(X) is finitely generated.
- When k is a finite field Jac(X) is a finite abelian group.

Top ten reasons to care about Jac(X)

- Computing L-functions!
- Computing zeta functions.
- 3 BSD conjecture for abelian varieties.
- Galois representations.
- Finding rational points with the Mordell-Weil sieve.
- Ohen-Lenstra for function fields.
- Lang-Trotter type questions.
- Torsion subgroups.
- Oryptographic applications.
- Groups are more interesting than sets.

Computing *L*-functions.

Let X/\mathbb{Q} be a nice curve of genus g.

$$L(X,s) := \prod_{p} L_{p}(p^{-s})^{-1},$$

For primes p of good reduction, $L_p \in \mathbb{Z}[T]$ is defined by

$$Z(X,T) := \exp\left(\sum_{n\geq 1} \#X(\mathbb{F}_{p^n}) \frac{T^n}{n}\right) = \frac{L_p(T)}{(1-T)(1-pT)}.$$

For hyperelliptic X one can compute $L_p(T) \mod p$ for all $p \leq B$ in $O(g^3B(\log B)^{3+o(1)})$ time [Harvey 14, Harvey-S 14, Harvey-S 16].

For g=3, one can lift $L_p(T) \mod p$ to $L_p(T)$ in $O(p^{1/4+o(1)})$ time using computations in $\operatorname{Jac}(X)(\mathbb{F}_p)$ and $\operatorname{Jac}(\tilde{X})(\mathbb{F}_p)$ (assume $p\gg 1$).

For feasible ${\it B}$ this is negligible, provided Jacobian arithmetic is fast.

Hyperelliptic curves

A hyperelliptic curve is a nice curve X/k of genus $g \ge 2$ that admits a degree-2 map $\phi \colon X \to \mathbf{P}^1$ (which we shall assume is defined over k). The hyperelliptic involution $P \mapsto \bar{P}$ interchanges points in each fiber.

Assume k is a perfect field of characteristic not 2. Then X has an affine model $y^2 = f(x)$, where $f \in k[x]$ is squarefree of degree 2g + 2 with roots corresponding to the Weierstrass points of X.

If X has a rational Weierstrass point P then by moving P to infinity we can obtain a model $y^2 = f(x)$ with f monic of degree 2g + 1.

This is typically not possible, in which case we are stuck with an even degree model $y^2 = f(x)$ which has either 0 or 2 points at infinity.

If X has a rational non-Weierstrass point, moving it to infinity will ensure that we are in the latter case (2 points at infinity).

Uniquely representing elements of $Pic^0(X)$

A divisor is a finite formal sum $D:=\sum n_P P$ of points $P\in X(\bar{k})$. It is rational if it is fixed by $\mathrm{Gal}(\bar{k}/k)$ and effective if $n_P\geq 0$ for all P. We may write effective divisors as $P_1+\cdots+P_n$ (multiplicity allowed).

 $P_1 + \cdots + P_n$ is semi-reduced if $P_i \neq \overline{P}_j$ for $i \neq j$, and reduced if $n \leq g$.

Theorem (Paulus-Ruck 99)

Let X be a hyperelliptic curve of genus g with an effective divisor D_{∞} of degree g supported on rational points at infinity. Each element of $\mathrm{Pic}^0(X)$ can be written as $[D_0-D_{\infty}]$, for a unique rational reduced divisor D_0 supported on affine points.

The Mumford representation $\operatorname{div}[u, v]$ of a rational semi-reduced affine divisor $D := P_1 + \cdots + P_n$ is the unique pair $u, v \in k[x]$ satisfying

$$u(x) := \prod (x - x(P_i)), \quad u|(f - v^2), \quad \deg v < \deg u.$$

The balanced divisor approach

We now recall the method of [GHM, ANTS VIII].

Let $X\colon y^2=f(x)$ be a hyperelliptic curve of genus g with rational points $P_\infty:=(1:1:0), \overline{P}_\infty:=(1:-1:0)$ at infinity; f monic, degree 2g+2. Let $D_\infty:=\lceil \frac{g}{2}\rceil P_\infty+\lfloor \frac{g}{2}\rfloor \overline{P}_\infty$.

For $0 \le n \le g - \deg(u)$ define

$$\operatorname{div}[u,v,n] := \operatorname{div}[u,v] + nP_{\infty} + (g - \operatorname{deg}(u) - n)\overline{P}_{\infty} - D_{\infty}.$$

Each divisor class in $\operatorname{Pic}^0(X)$ is uniquely represented by $\operatorname{div}[u,v,n]$ for some monic $u|(f-v^2)$ with $\operatorname{deg}(v)<\operatorname{deg}(u)\leq G$ and $0\leq n\leq g-\operatorname{deg}(u)$. The trivial element of $\operatorname{Pic}^0(X)$ is represented by $\operatorname{div}[1,0,\lceil\frac{g}{2}\rceil]=0$.

As shown by Mireles Morales, this representation yields efficient addition formulas when g is even, and in particular, when g = 2.

Composing balanced divisors

Define $\operatorname{div}[u, v, n]^* := \operatorname{div}[u, v] + nP_{\infty} + (2g - \operatorname{deg}(u) - n)\overline{P}_{\infty} - 2D_{\infty}$.

Compose. Given $D_1 := \text{div}[u_1, v_1, n_1]$ and $D_2 := \text{div}[u_2, v_2, n_2]$:

① Use the Euclidean algorithm to compute $w, c_1, c_2, c_3 \in k[x]$ so that

$$w = c_1 u_1 + c_2 u_2 + c_3 (v_1 + v_2) = \gcd(u_1, u_2, v_1 + v_2).$$

② Compute $u_3 := u_1 u_2 / w^2$, $n_3 := n_1 + n_2 + \deg(w)$, and

$$v_3 := (c_1u_1v_2 + c_2u_2v_1 + c_3(v_1v_2 + f))/w \mod u_3.$$

3 Output $D_3 := \operatorname{div}[u_3, v_3, n_3]^* \sim D_1 + D_2$.

Note that D_3 is not the canonical representative for $[D_1 + D_2]$.

Reducing and adjusting divisors

Reduce. Given $\operatorname{div}[u_1, v_1, n_1]^*$ with $\operatorname{deg}(u_1) > g + 1$:

- **1** Let $u_2 := (f v_1^2)/u_1$ made monic and $v_2 := -v_1 \mod u_2$.
- If $\deg(v_1) = g + 1$ and $\operatorname{lc}(v_1) = \pm 1$ then let $\delta := \mp (g + 1 \deg(u_2))$, otherwise let $\delta := (\deg(u_1) \deg(u_2))/2$.
- **3** Output div $[u_2, v_2, n_1 + \delta]^* \sim \text{div}[u_1, v_1, n_1]^*$.

Adjust. Given $\operatorname{div}[u_1, v_1, n_1]^*$ with $\operatorname{deg}(u_1) \leq g + 1$:

- If $\lceil \frac{g}{2} \rceil \le n_1 \le \lceil \frac{3g}{2} \rceil \deg(u_1)$ output $\operatorname{div}[u_1, v_1, n_1 \lceil \frac{g}{2} \rceil]$ and stop.
- ② If $n_1 < \lceil \frac{g}{2} \rceil$ let $\delta = -1$, otherwise, let $\delta = +1$.
- Let $\hat{v}_1 := v_1 + \delta(V (V \mod u_1))$ and $u_2 := (f \hat{v}_1^2)/u_1$ made monic, and $v_2 := -\hat{v}_1 \mod u_s$ (using precomputed V with deg $(f V^2) \le g$).
- Let $n_2 := n_1 + \delta(\deg(u_i) (g+1))$, where $i = (3-\delta)/2$.
- **5** Output **Adjust**(div[u_2, v_2, n_2]*)

Addition and negation

Addition. Given $D_1 := \text{div}[u_1, v_1, n_1]$ and $D_2 := \text{div}[u_2, v_2, n_2]$:

- **1** Set $\operatorname{div}[u, v, n]^* \leftarrow \mathbf{Compose}(\operatorname{div}[u_1, v_1, n_1], \operatorname{div}[u_2, v_2, n_2])$.
- **②** While deg(u) > g + 1 set $[u, v, n]^* \leftarrow \textbf{Reduce}(div[u, v, n]^*)$.
- **3** Output $D_3 := Adjust(div[u, v, n]^*) \sim D_1 + D_2$.

The output divisor D_3 is the canonical representative for $[D_1 + D_2]$.

Negation. Given $D_1 := \operatorname{div}[u_1, v_1, n_1]$:

- If g is even output $\operatorname{div}[u_1, -v_1, g \deg(u_1) n_1]$ and stop.
- ② If $n_1 > 0$ output $div[u_1, -v_1, g deg(u_1) n_1 + 1]$ and stop.
- **3** Output $D_2 := Adjust(div[u_1, -v_1, \lceil \frac{3g}{2} \rceil deg(u_1) + 1]^*) \sim -D_1$.

The output divisor D_2 is the canonical representative for $[-D_1]$.

For even g this is essentially Cantor's algorithm, except deg(f) = 2g + 2.

Addition in the typical case.

Generically, we expect the following to hold when adding divisors:

- $\deg(u_1) = \deg(u_2) = g$, $\deg(v_1) = \deg(v_2) = g 1$, and $n_1 = n_2 = 0$;
- After Compose, deg(u) = 2g, deg(v) = 2g 1, and n = 0.
- Each call to **Reduce** decreases $\deg(u)$ by 2 and increases n by 1. When g is even we will have $\deg(u) = g$ after g/2 calls to **Reduce**. When g is odd we will have $\deg(u) = g + 1$ after (g 1)/2 calls.
- When g is even **Adjust** simply sets n=0 and returns. When g is odd, **Adjust** first makes deg(u)=g and n=(g+1)/2, then simply sets n=0 and returns.

When g = 3, one call to **Reduce** and one nontrivial call to **Adjust**.

Straight-line program for the typical case

Standard optimizations (following [Gaudry-Harley, Harley 00]):

- Use the CRT to avoid computing GCDs (for $u_1 \perp u_2$ or $u_1 \perp v_1$).
- Combine composition and one reduction into a single step.

Optimization specific to balanced divisor approach:

Combine composition, reduction, adjustment into a single step.

TypicalAddition. Given $\operatorname{div}[u_i, v_i, 0]$, with $\operatorname{deg}(u_i) = 3$ and $u_1 \perp u_2$:

- $\mathbf{0} \ w := (f v_1^2)/u \text{ and } \tilde{s} := (v_2 v_1)/u_1 \text{ mod } u_2.$
 - ② $c := 1/lc(\tilde{s})$ and $s = c\tilde{s}$ and $z := su_1$ (require deg(s) = 2).

We then have $\operatorname{div}[u_1, v_1, 0] + \operatorname{div}[u_2, v_2, 0] \sim \operatorname{div}[u_5, v_5, n_5]$. $\operatorname{div}[u_5, v_5, n_5]$ is the canonical representative of its divisor class.

Optimizations and results

Standard tricks that can be used to optimize the algorithm:

- Karatsuba and Toom style polynomial multiplication;
- Fast algorithms for exact division of polynomials;
- Bezout's matrix for computing resultants;
- Montgomery's trick for combining field inversions;
- Maximize parallelism and minimize modular reductions.

After applying these optimizations (and other minor tweaks):

- Typical addition: I + 79M + 127A (vs 5I + 275M + 246A).
- Typical doubling: I + 82M + 127A (vs 5I + 285M + 258A).
- Typical negation: $\mathbf{I} + 14\mathbf{M} + 24\mathbf{A}$.

Note that (5) has no impact on the field operation counts.

Caveat: field operation counts can be misleading

For an odd prime p, consider the following computations in \mathbb{F}_p :

2
$$z \leftarrow (((x^2)^2)^2)^2$$
 (4**M**, in fact 4**S**)

Which is faster?

In almost any implementation (1) will take much less time than (2). For word-sized operands on a Haswell core, (2) is $4\times$ slower than (1).

How about

②
$$z \leftarrow (x_1 + x_2)(y_1 + y_2)$$
 (1M+2A)

Which is faster?

Comparing operation counts (with caveats)

Operation counts for Jacobian arithmetic on hyperelliptic curves over fields of odd characteristic using affine coordinates:

	Addition	Doubling	Source
Genus 2 odd degree	I + 24M	I + 28M	[Lange 05]
Genus 2 even degree	I + 28M	I + 32M	[GHM 08]
Genus 3 odd degree	I + 67M	I + 68M	[NMCT 06]
Genus 3 even degree	I + 79M	I + 82M	[this work]
Genus 3 even degree	I + 75M	I + 86M	[Rezai Rad 16]