Computing zeta functions in average polynomial time

Andrew V. Sutherland

Massachusetts Institute of Technology
Applied Mathematics, Modeling, and Computational Science AMMCS 2017

Joint work with David Harvey

Algebraic curves

In arithmetic geometry we study solutions of polynomial equations over arithmetically interesting fields (and rings), such as \mathbb{Q}, \mathbb{Z}, and \mathbb{F}_{p}.

The simplest examples are plane algebraic curves:

$$
\begin{array}{cc}
x^{2}+y^{2}=1 & y^{2}=x^{3}+x+1 \\
y^{2}=x^{5}+3 x^{3}-5 x+4 & x^{4}+4 y^{3}-x y^{3}+2 x y+3=0
\end{array}
$$

The most basic question we might ask is this:

How many solutions are there?

Counting points modulo p

Let's count points on the curve $x^{2}+y^{2}=1 \bmod p$:

$$
\begin{array}{ccccccccccc}
p & 3 & 5 & 7 & 11 & 13 & 17 & 19 & 23 & 29 & \ldots \\
\hline & 4 & 4 & 8 & 12 & 12 & 16 & 20 & 24 & 28 & p \pm 1
\end{array}
$$

The variation with p in this example is actually misleading.
For more consistent results we should count projective solutions $(x, y, z) \sim(c x, c y, c z)$ to the homogeneous equation $x^{2}+y^{2}=z^{2} \bmod p$.

$$
\begin{array}{ccccccccccc}
p & 3 & 5 & 7 & 11 & 13 & 17 & 19 & 23 & 29 & \ldots \\
\hline & 4 & 6 & 8 & 12 & 14 & 18 & 20 & 24 & 30 & p+1
\end{array}
$$

The same pattern holds for all (smooth) curves of genus zero.

Elliptic curves

Smooth curves of genus one with a rational point are elliptic curves. Provided the field characteristic is not 2 or 3 they can be written as

$$
E: y^{2}=f(x)=x^{3}+A x+B .
$$

Over a finite field \mathbb{F}_{p} the number of projective solutions is:

$$
\# E\left(\mathbb{F}_{p}\right)=1+\sum_{x_{0} \in \mathbb{F}_{p}}\left(1+\left(\frac{x_{0}^{3}+A x_{0}+B}{p}\right)\right)=p+1-a_{p} .
$$

The integer $a_{p}:=p+1-\# E\left(\mathbb{F}_{p}\right)$ is the trace of Frobenius.
This definition applies to any smooth curve X / \mathbb{F}_{p}. The trace of Frobenius a_{p} always satisfies the Hasse-Weil bound

$$
\left|a_{p}\right| \leq 2 g \sqrt{p},
$$

where g is the genus of X.

Traces of Frobenius

If we fix an integral model $y^{2}=x^{3}+A x+B$ for an elliptic curve E / \mathbb{Q}, we get Frobenius traces a_{p} for each prime p of good reduction (those for which reduction $\bmod p$ gives an elliptic curve E_{p} / \mathbb{F}_{p}).

The integers a_{p} appear in the L-function of the elliptic curve

$$
L(E, s):=\prod_{p} L_{p}\left(p^{-s}\right)^{-1},
$$

where $L_{p} \in \mathbb{Z}[T]$, with $L_{p}(T)=p^{2} T-a_{p} T+1$ at good primes.
The sequence of Frobenius traces a_{p} lies at the heart of several important questions in number theory, including:

- the Birch and Swinnerton-Dyer conjecture
- the Lang-Trotter conjecture
- the Sato-Tate conjecture (recently proved by Taylor et al.)

al histogram of $y^{\wedge} 2+x y+y=x^{\wedge} 3-x^{\wedge} 2-20067762415575526585033208209338542750930230312178956502 x$
+34481611795030556467032985690390720374855944359319180361266008296291939448732243429 for $p<=2^{\wedge} 10$ 172 data points in 13 buckets, $z 1=0.023$, out of range data has area 0.250

click histogram to animate (requires adobe reader)

click histogram to animate (requires adobe reader)

click histogram to animate (requires adobe reader)

Exceptional trace distributions for genus 2 curves:

Zeta functions and L-functions

Let X / \mathbb{Q} be a nice (smooth, projective, geometrically integral) curve of genus g. For primes p of good reduction (for X) we have a zeta function

$$
Z\left(X_{p} ; s\right):=\exp \left(\sum_{r \geq 1} \# X\left(\mathbb{F}_{p^{r}}\right) \frac{T^{r}}{r}\right)=\frac{L_{p}(T)}{(1-T)(1-p T)},
$$

in which the L-polynomial $L_{p} \in \mathbb{Z}[T]$ in the numerator satisfies

$$
L_{p}(T)=T^{2 g} \chi_{p}(1 / T)=1-a_{p} T+\cdots+p^{g} T^{2 g},
$$

where $\chi_{p}(T)$ is the charpoly of the Frobenius endomorphism of $\operatorname{Jac}\left(X_{p}\right)$ (this implies $\# \operatorname{Jac}\left(X_{p}\right)=L_{p}(1)$, for example). The L-function of X is

$$
L(X, s)=L(\operatorname{Jac}(X), s):=\sum_{n \geq 1} a_{n} n^{-s}:=\prod_{p} L_{p}\left(p^{-s}\right)^{-1},
$$

with Dirichlet coefficients $a_{n} \in \mathbb{Z}$ determined by the $L_{p}(T)$.

The Selberg class with polynomial Euler factors

The Selberg class $S^{\text {poly }}$ consists of Dirichlet series $L(s)=\sum_{n \geq 1} a_{n} n^{-s}$:
(1) $L(s)$ has an analytic continuation that is holomorphic at $s \neq 1$;
(2) For some $\gamma(s)=Q^{s} \prod_{i=1}^{r} \Gamma\left(\lambda_{i} s+\mu_{i}\right)$ and ε, the completed L-function $\Lambda(s):=\gamma(s) L(s)$ satisfies the functional equation

$$
\Lambda(s)=\varepsilon \overline{\Lambda(1-\bar{s})},
$$

where $Q>0, \lambda_{i}>0, \operatorname{Re}\left(\mu_{i}\right) \geq 0,|\varepsilon|=1$. Define $\operatorname{deg} L:=2 \sum_{i}^{r} \lambda_{i}$.
(3) $a_{1}=1$ and $a_{n}=O\left(n^{\epsilon}\right)$ for all $\epsilon>0$ (Ramanujan conjecture).
(4) $L(s)=\prod_{p} L_{p}\left(p^{-s}\right)^{-1}$ for some $L_{p} \in \mathbb{Z}[T]$ with $\operatorname{deg} L_{p} \leq \operatorname{deg} L$ (has an Euler product).

The Dirichlet series $L_{\mathrm{an}}(s, X):=L\left(X, s+\frac{1}{2}\right)$ satisfies (3) and (4), and conjecturally lies in $S^{\text {poly }}$; for $g=1$ this is known (via modularity).

Strong multiplicity one

Theorem (Kaczorowski-Perelli 2001)

If $A(s)=\sum_{n \geq 1} a_{n} n^{-s}$ and $B(s)=\sum_{n \geq 1} b_{n} n^{-s}$ lie in $S^{\text {poly }}$ and $a_{p}=b_{p}$ for all but finitely many primes p, then $A(s)=B(s)$.

Corollary

If $L_{\mathrm{an}}(s, X)$ lies in $S^{\text {poly }}$ then it is determined by (any choice of) all but finitely many coefficients a_{p}. In particular, the integers a_{p} at bad primes are determined by the Frobenius traces a_{p} at good primes.

Henceforth we assume that $L_{\text {an }}(s, X) \in S^{\text {poly }}$.
Let $\Gamma_{\mathbb{C}}(s)=2(2 \pi)^{s} \Gamma(s)$ and define $\Lambda(X, s):=\Gamma_{\mathbb{C}}(s)^{g} L(X, s)$. Then

$$
\Lambda(X, s)=\varepsilon N^{1-s} \Lambda(X, 2-s)
$$

where the root number $\varepsilon= \pm 1$ and the analytic conductor $N \in \mathbb{Z}_{\geq 1}$ are also determined by the Frobenius traces a_{p}.

Algorithms to compute zeta functions

Given X / \mathbb{Q} of genus g, we want to compute $L_{p}(T)$ for all $\operatorname{good} p \leq B$.

complexity per prime

(ignoring $(\log \log p)^{O(1)}$ factors

algorithm
point enumeration
group computation p-adic cohomology
CRT (Schoof-Pila) average poly-time
$g=1 \quad g=2 \quad g=3$

$p \log p$	$p^{2} \log p$	$p^{3}(\log p)^{2}$
$p^{1 / 4} \log p$	$p^{3 / 4} \log p$	$p(\log p)^{2}$
$p^{1 / 2}(\log p)^{2}$	$p^{1 / 2}(\log p)^{2}$	$p^{1 / 2}(\log p)^{2}$
$(\log p)^{5}$	$(\log p)^{8}$	$(\log p)^{12 ?}$
$(\log p)^{4}$	$(\log p)^{4}$	$(\log p)^{4}$

For $L(X, s)=\sum a_{n} n^{-s}$, we only need $a_{p^{2}}$ for $p^{2} \leq B$, and $a_{p^{3}}$ for $p^{3} \leq B$. For $1<r \leq g$ we can easily compute $a_{p^{r}}$ for $p^{r} \leq B$ in time $O(B \log B)$.

Bottom line: it all comes down to computing Frobenius traces.

Warmup: average polynomial-time in genus 1

Let $X: y^{2}=f(x)$ with $\operatorname{deg} f=3,4$ and $f(0) \neq 0$, and let f_{k}^{n} denote the coefficient of x^{k} in f^{n}. For each prime p of good reduction we have

$$
a_{p}=-\sum_{x_{0} \in \mathbb{F}_{p}}\left(\frac{f\left(x_{0}\right)}{p}\right) \equiv f_{p-1}^{(p-1) / 2} \bmod p .
$$

(recall that $\left|a_{p}\right| \leq 2 \sqrt{p}$, so this determines $a_{p} \in \mathbb{Z}$ for $p \geq 17$).
The relations $f^{n+1}=f \cdot f^{n}$ and $\left(f^{n+1}\right)^{\prime}=(n+1) f^{\prime} \cdot f^{n}$ yield the identity

$$
\left.k f_{0} f_{k}^{n}=\sum_{1 \leq i \leq d}(n+1)-k\right) f_{i} f_{k-i}^{n},
$$

valid for all $k, n \geq 0$. Suppose for simplicity $\operatorname{deg} f=3$, and define

$$
v_{k}^{n}:=\left[f_{k-2}^{n}, f_{k-1}^{n}, f_{k}^{n}\right], \quad M_{k}^{n}:=\left[\begin{array}{ccc}
0 & 0 & (3 n+3-k) f_{3} \\
k f_{0} & 0 & (2 n+2-k) f_{2} \\
0 & k f_{0} & (n+1-k) f_{1}
\end{array}\right] .
$$

Warmup: average polynomial-time in genus 1

For any integers $k, n \geq 0$ we then have

$$
v_{k}^{n}=\frac{1}{k f_{0}} v_{k-1}^{n} M_{k}^{n}=\frac{1}{\left(f_{0}\right)^{k} k!} v_{0}^{n} M_{1}^{n} \cdots M_{k}^{n}
$$

We want to compute $a_{p} \equiv f_{2 n}^{n} \bmod p$ with $n:=(p-1) / 2$. This is the last entry of the vector $v_{2 n}^{n}$ reduced modulo $p=2 n+1$.

Observe that $2(n+1) \equiv 1 \bmod p$, so $2 M_{k}^{n} \equiv M_{k} \bmod p$, where

$$
M_{k}:=\left[\begin{array}{ccc}
0 & 0 & (3-2 k) f_{3} \\
k f_{0} & 0 & (2-2 k) f_{2} \\
0 & k f_{0} & (1-2 k) f_{1}
\end{array}\right]
$$

is an integer matrix that is independent of p. For each odd p we have

$$
v_{2 n}^{n} \equiv-\left(\frac{f_{0}}{p}\right) V_{0} M_{1} \cdots M_{p-1} \bmod p \quad\left(\text { where } V_{0}=[0,0,1]\right)
$$

Accumulating remainder tree

Given matrices M_{0}, \ldots, M_{n-1} and moduli m_{1}, \ldots, m_{n}, to compute

$$
\begin{array}{r}
M_{0} \bmod m_{1} \\
M_{0} M_{1} \bmod m_{2} \\
M_{0} M_{1} M_{2} \bmod m_{3} \\
M_{0} M_{1} M_{2} M_{3} \bmod m_{4} \\
\cdots \\
M_{0} M_{1} \cdots M_{n-2} M_{n-1} \bmod m_{n}
\end{array}
$$

multiply adjacent pairs and recursively compute

$$
\begin{array}{r}
\left(M_{0} M_{1}\right) \bmod m_{2} m_{3} \\
\left(M_{0} M_{1}\right)\left(M_{2} M_{3}\right) \bmod m_{4} m_{5}
\end{array}
$$

$$
\left(M_{0} M_{1}\right) \cdots\left(M_{n-2} M_{n-1}\right) \bmod m_{n}
$$

and adjust the results as required (for better results, use a forest).

Complexity analysis

Assume $\log \left|f_{i}\right|=O(\log B)$. The recursion has depth $O(\log B)$ and in each recursive step we multiply and reduce 3×3 matrices with integer entries whose total bitsize is $O(B \log B)$.

We can do all the multiplications/reductions at any given level of the recursion in $O(\mathrm{M}(B \log B))=B(\log B)^{2+o(1)}$.

Total complexity is $B(\log B)^{3+o(1)}$, or $(\log p)^{4+o(1)}$ per prime $p \leq B$.
For a single prime p we do not have a polynomial-time algorithm, but we can give an $O\left(p^{1 / 2}(\log p)^{1+o(1)}\right)$ algorithm using the same matrices.

This is a silly way to compute a single a_{p} in genus 1 , but its generalization to genus 2 is competitive, and in genus 3 it yields the fastest method known within the feasible range of p (by a wide margin).

Efficiently handling a single prime

Simply computing $V_{0} M_{1} \cdots M_{p-1}$ modulo p is surprisingly quick (faster than semi-naïve point-counting); it takes $p(\log p)^{1+o(1)}$ time.
But we can do better.
Viewing $M_{k} \bmod p$ as $M \in \mathbb{F}_{p}[k]^{3 \times 3}$, we compute

$$
A(k):=M(k) M(k+1) \cdots M(k+r-1) \in \mathbb{F}_{p}[k]^{3 \times 3}
$$

with $r \approx \sqrt{p}$ and then instantiate $A(k)$ at roughly r points to get

$$
M_{1} M_{2} \cdots M_{p-1} \equiv_{p} A(1) A(r+1) A(2 r+1) \cdots A(p-r)
$$

Using standard product tree and multipoint evaluation techniques this takes $O\left(\mathrm{M}\left(p^{1 / 2}\right) \log p\right)=p^{1 / 2}(\log p)^{2+o(1)}$ time.

Bostan-Gaudry-Schost: $p^{1 / 2}(\log p)^{1+o(1)}$ time.

Genus 3 curves

The canonical embedding of a genus 3 curve into \mathbb{P}^{2} is either
(1) a degree-2 cover of a smooth conic (hyperelliptic case);
(2) a smooth plane quartic (generic case).

Average polynomial-time implementations available for the first case:

- rational hyperelliptic model [Harvey-S 2014]
- no rational hyperelliptic model [Harvey-Massierer-S 2016].

Recent work (joint with Harvey): smooth plane quartics.
Prior work has all been based on p-adic cohomology:
[Lauder 2004], [Castryck-Denef-Vercauteren 2006], [Abott-Kedlaya-Roe 2006], [Harvey 2010], [Tuitman-Pancrantz 2013], [Tuitman 2015], [Costa 2015], [Tuitman-Castryck 2016], [Shieh 2016]

Current implementations of these algorithms are all $O\left(p^{1+o(1)}\right)$.

The Hasse-Witt matrix of a hyperelliptic curve

Let X_{p} / \mathbb{F}_{p} be a hyperelliptic curve $y^{2}=f(x)$ of genus g (assume p odd). As in the warmup, let f_{k}^{n} denote the coefficient of x^{k} in f^{n}.

The Hasse-Witt matrix of X_{p} is $W_{p}:=\left[f_{p i-j}^{n}\right]_{i j} \in \mathbb{F}_{p}^{g \times g}$ with $n=(p-1) / 2$. In genus $g=3$ we have $\operatorname{deg} f=7,8$ and

$$
W_{p}:=\left[\begin{array}{ccc}
f_{p-1}^{n} & f_{p-2}^{n} & f_{p-3}^{n} \\
f_{2 p-1}^{n} & f_{2 p-2}^{n} & f_{2 p-3}^{n} \\
f_{3 p-1}^{n} & f_{3 p-2}^{n} & f_{3 p-3}^{n}
\end{array}\right]
$$

This is the matrix of the p-power Frobenius acting on $H^{1}\left(C_{p}, \mathcal{O}_{C_{p}}\right)$ (and of the Cartier-Manin operator acting on regular differentials). As proved by Manin, we have

$$
L_{p}(T) \equiv \operatorname{det}\left(I-T W_{p}\right) \bmod p
$$

in particular, $a_{p} \equiv \operatorname{tr} W_{p} \bmod p$. For $p>144$ this yields $a_{p} \in[-6 \sqrt{p}, 6 \sqrt{p}]$.

Hyperelliptic average polynomial-time

As in our warmup, assume $f(0) \neq 0$ and define $v_{k}^{n}:=\left[f_{k-d+1}^{n}, \ldots, f_{k}^{n}\right]$. The last g entries of $v_{2 n}^{n}$ form the first row of W_{p}, and we have

$$
v_{2 n}^{n}=-\left(\frac{f_{0}}{p}\right) V_{0} M_{1} \cdots M_{p-1} \bmod p \quad\left(\text { where } V_{0}=[0, \ldots, 0,1]\right)
$$

Compute the first row of W_{p} for good $p \leq B$ in $O\left(g^{2} B(\log B)^{3+o(1)}\right)$ time.
To get the remaining rows, consider the isomorphic curve $y^{2}=f(x+a)$ whose Hasse-Witt matrix $W_{p}(a)=T(a) W_{p} T(-a)$ is conjugate to W_{p} via

$$
T(a):=\left[\binom{j-1}{i-1} a^{j-1}\right]_{i j} \in \mathbb{F}_{p}^{g \times g} .
$$

Given the first row of $W_{p}(a)$ for g distinct values of a we can compute all the rows of W_{p}. Total complexity is $O\left(g^{3} B(\log B)^{3+o(1)}\right)$, with an average complexity of $O\left(g^{3} p^{4+o(1)}\right)$, which is polynomial in both g and $\log p$.

The Hasse-Witt matrix of a smooth plane quartic

Let X_{p} / \mathbb{F}_{p} be a smooth plane quartic defined by $f(x, y, z)=0$. For $n \geq 0$ let $f_{i, j, k}^{n}$ denote the coefficient of $x^{i} y^{j} z^{k}$ in f^{n}.

The Hasse-Witt matrix of X_{p} is the 3×3 matrix

$$
W_{p}:=\left[\begin{array}{lll}
f_{p-1, p-1,2 p-2}^{p-1} & f_{2 p}^{p-1}-1, p-1, p-2 & f_{p-1,2 p-1, p-2}^{p-1} \\
f_{p-1}^{p-1, p-1,2 p-1} & f_{2 p}^{p-1, p-1, p-1} & f_{p-2,2 p-1, p-1}^{p-1} \\
f_{p-1, p-2,2 p-1}^{p-1} & f_{2 p-1, p-2, p-1}^{p-1} & f_{p-1,2 p-2, p-1}^{p-1}
\end{array}\right] .
$$

This case of smooth plane curves of degree $d>4$ is similar.
More generally, given a singular plane model for any nice curve (equivalently, a defining polynomial for its function field) one can use the methods of Stohr-Voloch to explicitly determine W_{p}.

Target coefficients of f^{p-1} for $p=7$:

Coefficient relations

Let $\partial_{x}=x \frac{\partial}{\partial x}$ (degree-preserving). The relations

$$
f^{p-1}=f \cdot f^{p-2} \quad \text { and } \quad \partial_{x} f^{p-1}=-\left(\partial_{x} f\right) f^{p-2}
$$

yield the relation

$$
\sum_{i^{\prime}+j^{\prime}+k^{\prime}=4}\left(i+i^{\prime}\right) f_{i^{\prime}, j^{\prime}, k^{\prime}} f_{i-i^{\prime}, j-j^{\prime}, k-k^{\prime}}^{p-2}=0
$$

among nearby coefficients of f^{p-2} (a triangle of side length 5).
Replacing ∂_{x} by ∂_{y} yields a similar relation (replace $i+i^{\prime}$ with $j+j^{\prime}$).

Coefficient triangle

For $p=7$ with $i=12, j=5, k=7$ the related coefficients of f^{p-2} are:

Moving the triangle

Now consider a bigger triangle with side length 7 . Our relations allow us to move the triangle around:

An initial "triangle" at the edge can be efficiently computed using coefficients of $f(x, 0, z)^{p-2}$.

Computing one Hasse-Witt matrix

Nondegeneracy: we need $f(1,0,0), f(0,1,0), f(0,0,1)$ nonzero and $f(0, y, z), f(x, 0, z), f(x, y, 0)$ squarefree (easily achieved for large p).

The basic strategy to compute W_{p} is as follows:

- There is a 28×28 matrix M_{j} that shifts our 7-triangle from y-coordinate j to $j+1$; its coefficients depend on j and f. In fact a 16×16 matrix M_{i} suffices (use smoothness of C).
- Applying the product $M_{0} \cdots M_{p-2}$ to an initial triangle on the edge and applying a final adjustment to shift from f^{p-2} to f^{p-1} gets us one column of the Hasse-Witt matrix W_{p}.
- By applying the same product (or its inverse) to different initial triangles we can compute all three columns of W_{p}.

We have thus reduced the problem to computing $M_{1} \cdots M_{p-2} \bmod p$, which we already know how to do, either in $p^{1 / 2}(\log p)^{1+o(1)}$ time, or in average polynomial time $(\log p)^{4+o(1)}$.

Cumulative timings for genus 3 curves

Time to compute $L_{p}(T) \bmod p$ for all $\operatorname{good} p \leq B$.

B	spq-Costa-AKR	spq-HS	ghyp-MHS	hyp-HS	hyp-Harvey
2^{12}	18	1.4	0.3	0.1	1.3
2^{13}	49	2.4	0.7	0.2	2.6
2^{14}	142	4.6	1.7	0.5	5.4
2^{15}	475	9.4	4.6	1.0	12
2^{16}	1,670	21	11	2.1	29
2^{17}	5,880	47	27	5.3	74
2^{18}	22,300	112	62	14	192
2^{19}	78,100	241	153	37	532
2^{20}	297,000	551	370	97	1,480
2^{21}	$1,130,000$	1,240	891	244	4,170
2^{22}	$4,280,000$	2,980	2,190	617	12,200
2^{23}	$16,800,000$	6,330	5,110	1,500	36,800
2^{24}	$66,800,000$	14,200	11,750	3,520	113,000
2^{25}	$244,000,000$	31,900	28,200	8,220	395,000
2^{26}	$972,000,000$	83,300	62,700	19,700	$1,060,000$

(Intel Xeon E7-8867v3 3.3 GHz CPU seconds).

