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Algebraic curves

In arithmetic geometry we study solutions of polynomial equations over
arithmetically interesting fields (and rings), such as Q, Z, and Fp.

The simplest examples are plane algebraic curves:

x2 + y2 = 1 y2 = x3 + x + 1

y2 = x5 + 3x3 − 5x + 4 x4 + 4y3 − xy3 + 2xy + 3 = 0

The most basic question we might ask is this:

How many solutions are there?



Counting points modulo p

Let’s count points on the curve x2 + y2 = 1 mod p:

p 3 5 7 11 13 17 19 23 29 . . .

4 4 8 12 12 16 20 24 28 p± 1

The variation with p in this example is actually misleading.
For more consistent results we should count projective solutions
(x, y, z) ∼ (cx, cy, cz) to the homogeneous equation x2 + y2 = z2 mod p.

p 3 5 7 11 13 17 19 23 29 . . .

4 6 8 12 14 18 20 24 30 p + 1

The same pattern holds for all (smooth) curves of genus zero.



Elliptic curves
Smooth curves of genus one with a rational point are elliptic curves.
Provided the field characteristic is not 2 or 3 they can be written as

E : y2 = f (x) = x3 + Ax + B.

Over a finite field Fp the number of projective solutions is:

#E(Fp) = 1 +
∑

x0∈Fp

(
1 +

(
x3

0 + Ax0 + B
p

))
= p + 1− ap.

The integer ap := p + 1−#E(Fp) is the trace of Frobenius.

This definition applies to any smooth curve X/Fp. The trace of
Frobenius ap always satisfies the Hasse-Weil bound

|ap| ≤ 2g
√

p,

where g is the genus of X.



Traces of Frobenius
If we fix an integral model y2 = x3 + Ax + B for an elliptic curve E/Q,
we get Frobenius traces ap for each prime p of good reduction
(those for which reduction mod p gives an elliptic curve Ep/Fp).

The integers ap appear in the L-function of the elliptic curve

L(E, s) :=
∏

p

Lp(p−s)−1,

where Lp ∈ Z[T], with Lp(T) = p2T − apT + 1 at good primes.

The sequence of Frobenius traces ap lies at the heart of several
important questions in number theory, including:

the Birch and Swinnerton-Dyer conjecture
the Lang-Trotter conjecture
the Sato-Tate conjecture (recently proved by Taylor et al.)
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Exceptional trace distributions for genus 2 curves:



Zeta functions and L-functions
Let X/Q be a nice (smooth, projective, geometrically integral) curve of
genus g. For primes p of good reduction (for X) we have a zeta function

Z(Xp; s) := exp

∑
r≥1

#X(Fpr )
Tr

r

 =
Lp(T)

(1− T)(1− pT)
,

in which the L-polynomial Lp ∈ Z[T] in the numerator satisfies

Lp(T) = T2gχp(1/T) = 1− apT + · · ·+ pgT2g,

where χp(T) is the charpoly of the Frobenius endomorphism of Jac(Xp)
(this implies #Jac(Xp) = Lp(1), for example). The L-function of X is

L(X, s) = L(Jac(X), s) :=
∑
n≥1

ann−s :=
∏

p

Lp(p−s)−1,

with Dirichlet coefficients an ∈ Z determined by the Lp(T).



The Selberg class with polynomial Euler factors

The Selberg class Spoly consists of Dirichlet series L(s) =
∑

n≥1 ann−s:

1 L(s) has an analytic continuation that is holomorphic at s 6= 1;

2 For some γ(s) = Qs∏r
i=1 Γ(λis + µi) and ε, the completed

L-function Λ(s) := γ(s)L(s) satisfies the functional equation

Λ(s) = εΛ(1− s̄),

where Q > 0, λi > 0, Re(µi) ≥ 0, |ε| = 1. Define deg L := 2
∑r

i λi.

3 a1 = 1 and an = O(nε) for all ε > 0 (Ramanujan conjecture).

4 L(s) =
∏

p Lp(p−s)−1 for some Lp ∈ Z[T] with deg Lp ≤ deg L
(has an Euler product).

The Dirichlet series Lan(s,X) := L(X, s + 1
2) satisfies (3) and (4),

and conjecturally lies in Spoly; for g = 1 this is known (via modularity).



Strong multiplicity one

Theorem (Kaczorowski-Perelli 2001)
If A(s) =

∑
n≥1 ann−s and B(s) =

∑
n≥1 bnn−s lie in Spoly and ap = bp for

all but finitely many primes p, then A(s) = B(s).

Corollary
If Lan(s,X) lies in Spoly then it is determined by (any choice of) all but
finitely many coefficients ap. In particular, the integers ap at bad primes
are determined by the Frobenius traces ap at good primes.

Henceforth we assume that Lan(s,X) ∈ Spoly.

Let ΓC(s) = 2(2π)sΓ(s) and define Λ(X, s) := ΓC(s)gL(X, s). Then

Λ(X, s) = εN1−sΛ(X, 2− s).

where the root number ε = ±1 and the analytic conductor N ∈ Z≥1 are
also determined by the Frobenius traces ap.



Algorithms to compute zeta functions

Given X/Q of genus g, we want to compute Lp(T) for all good p ≤ B.

complexity per prime
(ignoring (log log p)O(1) factors

algorithm g = 1 g = 2 g = 3

point enumeration p log p p2 log p p3(log p)2

group computation p1/4 log p p3/4 log p p(log p)2

p-adic cohomology p1/2(log p)2 p1/2(log p)2 p1/2(log p)2

CRT (Schoof-Pila) (log p)5 (log p)8 (log p)12?

average poly-time (log p)4 (log p)4 (log p)4

For L(X, s) =
∑

ann−s, we only need ap2 for p2 ≤ B, and ap3 for p3 ≤ B.
For 1 < r ≤ g we can easily compute apr for pr ≤ B in time O(B log B).

Bottom line: it all comes down to computing Frobenius traces.



Warmup: average polynomial-time in genus 1

Let X : y2 = f (x) with deg f = 3, 4 and f (0) 6= 0, and let f n
k denote the

coefficient of xk in f n. For each prime p of good reduction we have

ap = −
∑

x0∈Fp

(
f (x0)

p

)
≡ f (p−1)/2

p−1 mod p.

(recall that |ap| ≤ 2
√

p, so this determines ap ∈ Z for p ≥ 17).

The relations f n+1 = f · f n and (f n+1)′ = (n + 1)f ′ · f n yield the identity

kf0f n
k =

∑
1≤i≤d

(n + 1)− k)fif n
k−i,

valid for all k, n ≥ 0. Suppose for simplicity deg f = 3, and define

vn
k := [f n

k−2, f
n
k−1, f

n
k ], Mn

k :=

 0 0 (3n + 3− k)f3
kf0 0 (2n + 2− k)f2
0 kf0 (n + 1− k)f1

 .



Warmup: average polynomial-time in genus 1
For any integers k, n ≥ 0 we then have

vn
k =

1
kf0

vn
k−1Mn

k =
1

(f0)kk!
vn

0Mn
1 · · ·Mn

k .

We want to compute ap ≡ f n
2n mod p with n := (p− 1)/2.

This is the last entry of the vector vn
2n reduced modulo p = 2n + 1.

Observe that 2(n + 1) ≡ 1 mod p, so 2Mn
k ≡ Mk mod p, where

Mk :=

 0 0 (3− 2k)f3
kf0 0 (2− 2k)f2
0 kf0 (1− 2k)f1


is an integer matrix that is independent of p. For each odd p we have

vn
2n ≡ −

(
f0
p

)
V0M1 · · ·Mp−1 mod p (where V0 = [0, 0, 1]).



Accumulating remainder tree

Given matrices M0, . . . ,Mn−1 and moduli m1, . . . ,mn, to compute

M0 mod m1

M0M1 mod m2

M0M1M2 mod m3

M0M1M2M3 mod m4

· · ·
M0M1 · · ·Mn−2Mn−1 mod mn

multiply adjacent pairs and recursively compute

(M0M1) mod m2m3

(M0M1)(M2M3) mod m4m5

· · ·
(M0M1) · · · (Mn−2Mn−1) mod mn

and adjust the results as required (for better results, use a forest).



Complexity analysis

Assume log |fi| = O(log B). The recursion has depth O(log B) and in
each recursive step we multiply and reduce 3× 3 matrices with integer
entries whose total bitsize is O(B log B).

We can do all the multiplications/reductions at any given level of the
recursion in O(M(B log B)) = B(log B)2+o(1).

Total complexity is B(log B)3+o(1), or (log p)4+o(1) per prime p ≤ B.

For a single prime p we do not have a polynomial-time algorithm, but
we can give an O(p1/2(log p)1+o(1)) algorithm using the same matrices.

This is a silly way to compute a single ap in genus 1, but its
generalization to genus 2 is competitive, and in genus 3 it yields the
fastest method known within the feasible range of p (by a wide margin).



Efficiently handling a single prime

Simply computing V0M1 · · ·Mp−1 modulo p is surprisingly quick
(faster than semi-naı̈ve point-counting); it takes p(log p)1+o(1) time.
But we can do better.

Viewing Mk mod p as M ∈ Fp[k]3×3, we compute

A(k) := M(k)M(k + 1) · · ·M(k + r − 1) ∈ Fp[k]3×3

with r ≈ √p and then instantiate A(k) at roughly r points to get

M1M2 · · ·Mp−1 ≡p A(1)A(r + 1)A(2r + 1) · · ·A(p− r).

Using standard product tree and multipoint evaluation techniques this
takes O(M(p1/2) log p) = p1/2(log p)2+o(1) time.

Bostan-Gaudry-Schost: p1/2(log p)1+o(1) time.



Genus 3 curves

The canonical embedding of a genus 3 curve into P2 is either
1 a degree-2 cover of a smooth conic (hyperelliptic case);
2 a smooth plane quartic (generic case).

Average polynomial-time implementations available for the first case:
rational hyperelliptic model [Harvey-S 2014]
no rational hyperelliptic model [Harvey-Massierer-S 2016].

Recent work (joint with Harvey): smooth plane quartics.

Prior work has all been based on p-adic cohomology:

[Lauder 2004], [Castryck-Denef-Vercauteren 2006],
[Abott-Kedlaya-Roe 2006], [Harvey 2010], [Tuitman-Pancrantz 2013],

[Tuitman 2015], [Costa 2015], [Tuitman-Castryck 2016], [Shieh 2016]

Current implementations of these algorithms are all O(p1+o(1)).



The Hasse-Witt matrix of a hyperelliptic curve

Let Xp/Fp be a hyperelliptic curve y2 = f (x) of genus g (assume p odd).
As in the warmup, let f n

k denote the coefficient of xk in f n.

The Hasse–Witt matrix of Xp is Wp := [f n
pi−j]ij ∈ Fg×g

p with n = (p− 1)/2.
In genus g = 3 we have deg f = 7, 8 and

Wp :=

 f n
p−1 f n

p−2 f n
p−3

f n
2p−1 f n

2p−2 f n
2p−3

f n
3p−1 f n

3p−2 f n
3p−3

 .
This is the matrix of the p-power Frobenius acting on H1(Cp,OCp)
(and of the Cartier-Manin operator acting on regular differentials).
As proved by Manin, we have

Lp(T) ≡ det(I − TWp) mod p;

in particular, ap ≡ tr Wp mod p. For p > 144 this yields ap ∈ [−6
√

p, 6
√

p].



Hyperelliptic average polynomial-time

As in our warmup, assume f (0) 6= 0 and define vn
k := [f n

k−d+1, . . . , f
n
k ].

The last g entries of vn
2n form the first row of Wp, and we have

vn
2n = −

(
f0
p

)
V0M1 · · ·Mp−1 mod p (where V0 = [0, . . . , 0, 1]).

Compute the first row of Wp for good p ≤ B in O(g2B(log B)3+o(1)) time.

To get the remaining rows, consider the isomorphic curve y2 = f (x + a)
whose Hasse-Witt matrix Wp(a) = T(a)WpT(−a) is conjugate to Wp via

T(a) :=

[(
j− 1
i− 1

)
aj−1

]
ij
∈ Fg×g

p .

Given the first row of Wp(a) for g distinct values of a we can compute all
the rows of Wp. Total complexity is O(g3B(log B)3+o(1)), with an average
complexity of O(g3p4+o(1)), which is polynomial in both g and log p.



The Hasse-Witt matrix of a smooth plane quartic

Let Xp/Fp be a smooth plane quartic defined by f (x, y, z) = 0.
For n ≥ 0 let f n

i,j,k denote the coefficient of xiyjzk in f n.

The Hasse–Witt matrix of Xp is the 3× 3 matrix

Wp :=

f p−1
p−1,p−1,2p−2 f p−1

2p−1,p−1,p−2 f p−1
p−1,2p−1,p−2

f p−1
p−2,p−1,2p−1 f p−1

2p−2,p−1,p−1 f p−1
p−2,2p−1,p−1

f p−1
p−1,p−2,2p−1 f p−1

2p−1,p−2,p−1 f p−1
p−1,2p−2,p−1

 .
This case of smooth plane curves of degree d > 4 is similar.

More generally, given a singular plane model for any nice curve
(equivalently, a defining polynomial for its function field) one can use
the methods of Stohr-Voloch to explicitly determine Wp.



Target coefficients of f p−1 for p = 7:

x4p−4 y4p−4

z4p−4



Coefficient relations

Let ∂x = x ∂
∂x (degree-preserving). The relations

f p−1 = f · f p−2 and ∂xf p−1 = −(∂xf )f p−2

yield the relation ∑
i′+j′+k′=4

(i + i′)fi′,j′,k′ f
p−2
i−i′,j−j′,k−k′ = 0.

among nearby coefficients of f p−2 (a triangle of side length 5).

Replacing ∂x by ∂y yields a similar relation (replace i + i′ with j + j′).



Coefficient triangle

For p = 7 with i = 12, j = 5, k = 7 the related coefficients of f p−2 are:

x4p−8 y4p−8

z4p−8



Moving the triangle

Now consider a bigger triangle with side length 7.
Our relations allow us to move the triangle around:

=⇒

An initial “triangle” at the edge can be efficiently computed using
coefficients of f (x, 0, z)p−2.



Computing one Hasse-Witt matrix

Nondegeneracy: we need f (1, 0, 0), f (0, 1, 0), f (0, 0, 1) nonzero and
f (0, y, z), f (x, 0, z), f (x, y, 0) squarefree (easily achieved for large p).

The basic strategy to compute Wp is as follows:

There is a 28× 28 matrix Mj that shifts our 7-triangle from
y-coordinate j to j + 1; its coefficients depend on j and f .
In fact a 16× 16 matrix Mi suffices (use smoothness of C).
Applying the product M0 · · ·Mp−2 to an initial triangle on the edge
and applying a final adjustment to shift from f p−2 to f p−1 gets us
one column of the Hasse-Witt matrix Wp.
By applying the same product (or its inverse) to different initial
triangles we can compute all three columns of Wp.

We have thus reduced the problem to computing M1 · · ·Mp−2 mod p,
which we already know how to do, either in p1/2(log p)1+o(1) time, or in
average polynomial time (log p)4+o(1).



Cumulative timings for genus 3 curves
Time to compute Lp(T) mod p for all good p ≤ B.

B spq-Costa-AKR spq-HS ghyp-MHS hyp-HS hyp-Harvey

212 18 1.4 0.3 0.1 1.3
213 49 2.4 0.7 0.2 2.6
214 142 4.6 1.7 0.5 5.4
215 475 9.4 4.6 1.0 12
216 1,670 21 11 2.1 29
217 5,880 47 27 5.3 74
218 22,300 112 62 14 192
219 78,100 241 153 37 532
220 297,000 551 370 97 1,480
221 1,130,000 1,240 891 244 4,170
222 4,280,000 2,980 2,190 617 12,200
223 16,800,000 6,330 5,110 1,500 36,800
224 66,800,000 14,200 11,750 3,520 113,000
225 244,000,000 31,900 28,200 8,220 395,000
226 972,000,000 83,300 62,700 19,700 1,060,000

(Intel Xeon E7-8867v3 3.3 GHz CPU seconds).
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