# Computing zeta functions in average polynomial time

Andrew V. Sutherland

Massachusetts Institute of Technology

Applied Mathematics, Modeling, and Computational Science AMMCS 2017

Joint work with David Harvey

# Algebraic curves

In arithmetic geometry we study solutions of polynomial equations over arithmetically interesting fields (and rings), such as  $\mathbb{Q}$ ,  $\mathbb{Z}$ , and  $\mathbb{F}_p$ .

The simplest examples are plane algebraic curves:

$$x^2 + y^2 = 1 \qquad \qquad y^2 = x^3 + x + 1$$

$$y^{2} = x^{5} + 3x^{3} - 5x + 4$$
  $x^{4} + 4y^{3} - xy^{3} + 2xy + 3 = 0$ 

The most basic question we might ask is this:

How many solutions are there?

# Counting points modulo p

Let's count points on the curve  $x^2 + y^2 = 1 \mod p$ :

The variation with *p* in this example is actually misleading. For more consistent results we should count projective solutions  $(x, y, z) \sim (cx, cy, cz)$  to the homogeneous equation  $x^2 + y^2 = z^2 \mod p$ .

The same pattern holds for all (smooth) curves of genus zero.

#### Elliptic curves

Smooth curves of genus one with a rational point are elliptic curves. Provided the field characteristic is not 2 or 3 they can be written as

$$E: y^2 = f(x) = x^3 + Ax + B.$$

Over a finite field  $\mathbb{F}_p$  the number of projective solutions is:

$$\#E(\mathbb{F}_p) = 1 + \sum_{x_0 \in \mathbb{F}_p} \left( 1 + \left( \frac{x_0^3 + Ax_0 + B}{p} \right) \right) = p + 1 - a_p.$$

The integer  $a_p := p + 1 - \#E(\mathbb{F}_p)$  is the trace of Frobenius.

This definition applies to any smooth curve  $X/\mathbb{F}_p$ . The trace of Frobenius  $a_p$  always satisfies the Hasse-Weil bound

$$|a_p| \leq 2g\sqrt{p},$$

where g is the genus of X.

### **Traces of Frobenius**

If we fix an integral model  $y^2 = x^3 + Ax + B$  for an elliptic curve  $E/\mathbb{Q}$ , we get Frobenius traces  $a_p$  for each prime p of good reduction (those for which reduction mod p gives an elliptic curve  $E_p/\mathbb{F}_p$ ).

The integers  $a_p$  appear in the *L*-function of the elliptic curve

$$L(E,s) := \prod_{p} L_{p}(p^{-s})^{-1},$$

where  $L_p \in \mathbb{Z}[T]$ , with  $L_p(T) = p^2T - a_pT + 1$  at good primes.

The sequence of Frobenius traces  $a_p$  lies at the heart of several important questions in number theory, including:

- the Birch and Swinnerton-Dyer conjecture
- the Lang-Trotter conjecture
- the Sato-Tate conjecture (recently proved by Taylor et al.)

# Exceptional trace distributions for genus 2 curves:



## Zeta functions and L-functions

Let  $X/\mathbb{Q}$  be a nice (smooth, projective, geometrically integral) curve of genus g. For primes p of good reduction (for X) we have a zeta function

$$Z(X_p;s) := \exp\left(\sum_{r\geq 1} \#X(\mathbb{F}_{p^r})\frac{T^r}{r}\right) = \frac{L_p(T)}{(1-T)(1-pT)},$$

in which the *L*-polynomial  $L_p \in \mathbb{Z}[T]$  in the numerator satisfies

$$L_p(T) = T^{2g}\chi_p(1/T) = 1 - a_pT + \dots + p^gT^{2g},$$

where  $\chi_p(T)$  is the charpoly of the Frobenius endomorphism of  $Jac(X_p)$  (this implies  $\#Jac(X_p) = L_p(1)$ , for example). The *L*-function of *X* is

$$L(X,s) = L(\operatorname{Jac}(X),s) := \sum_{n \ge 1} a_n n^{-s} := \prod_p L_p(p^{-s})^{-1},$$

with Dirichlet coefficients  $a_n \in \mathbb{Z}$  determined by the  $L_p(T)$ .

### The Selberg class with polynomial Euler factors

The Selberg class  $S^{\text{poly}}$  consists of Dirichlet series  $L(s) = \sum_{n>1} a_n n^{-s}$ :

- L(s) has an analytic continuation that is holomorphic at  $s \neq 1$ ;
- **2** For some  $\gamma(s) = Q^s \prod_{i=1}^r \Gamma(\lambda_i s + \mu_i)$  and  $\varepsilon$ , the completed *L*-function  $\Lambda(s) := \gamma(s)L(s)$  satisfies the functional equation

$$\Lambda(s) = \varepsilon \overline{\Lambda(1-\bar{s})},$$

where Q > 0,  $\lambda_i > 0$ ,  $\operatorname{Re}(\mu_i) \ge 0$ ,  $|\varepsilon| = 1$ . Define deg  $L := 2 \sum_i^r \lambda_i$ .

- $a_1 = 1$  and  $a_n = O(n^{\epsilon})$  for all  $\epsilon > 0$  (Ramanujan conjecture).
- 3  $L(s) = \prod_p L_p(p^{-s})^{-1}$  for some  $L_p \in \mathbb{Z}[T]$  with deg  $L_p \leq \deg L$  (has an Euler product).

The Dirichlet series  $L_{an}(s, X) := L(X, s + \frac{1}{2})$  satisfies (3) and (4), and conjecturally lies in  $S^{poly}$ ; for g = 1 this is known (via modularity).

# Strong multiplicity one

#### Theorem (Kaczorowski-Perelli 2001)

If  $A(s) = \sum_{n \ge 1} a_n n^{-s}$  and  $B(s) = \sum_{n \ge 1} b_n n^{-s}$  lie in  $S^{\text{poly}}$  and  $a_p = b_p$  for all but finitely many primes p, then A(s) = B(s).

#### Corollary

If  $L_{an}(s, X)$  lies in  $S^{poly}$  then it is determined by (any choice of) all but finitely many coefficients  $a_p$ . In particular, the integers  $a_p$  at bad primes are determined by the Frobenius traces  $a_p$  at good primes.

Henceforth we assume that  $L_{an}(s, X) \in S^{poly}$ .

Let  $\Gamma_{\mathbb{C}}(s) = 2(2\pi)^s \Gamma(s)$  and define  $\Lambda(X, s) := \Gamma_{\mathbb{C}}(s)^g L(X, s)$ . Then

$$\Lambda(X,s) = \varepsilon N^{1-s} \Lambda(X,2-s).$$

where the root number  $\varepsilon = \pm 1$  and the analytic conductor  $N \in \mathbb{Z}_{\geq 1}$  are also determined by the Frobenius traces  $a_p$ .

# Algorithms to compute zeta functions

Given  $X/\mathbb{Q}$  of genus g, we want to compute  $L_p(T)$  for all good  $p \leq B$ .

|                   | (ightening (isgisgp) haddere |                     |                     |  |
|-------------------|------------------------------|---------------------|---------------------|--|
| algorithm         | g = 1                        | g = 2               | <i>g</i> = 3        |  |
| point enumeration | $p \log p$                   | $p^2 \log p$        | $p^3(\log p)^2$     |  |
| group computation | $p^{1/4}\log p$              | $p^{3/4}\log p$     | $p(\log p)^2$       |  |
| p-adic cohomology | $p^{1/2}(\log p)^2$          | $p^{1/2}(\log p)^2$ | $p^{1/2}(\log p)^2$ |  |
| CRT (Schoof-Pila) | $(\log p)^5$                 | $(\log p)^8$        | $(\log p)^{12?}$    |  |
| average poly-time | $(\log p)^4$                 | $(\log p)^4$        | $(\log p)^4$        |  |

complexity per prime

(ignoring  $(\log \log p)^{O(1)}$  factors

For  $L(X,s) = \sum a_n n^{-s}$ , we only need  $a_{p^2}$  for  $p^2 \leq B$ , and  $a_{p^3}$  for  $p^3 \leq B$ . For  $1 < r \leq g$  we can easily compute  $a_{p^r}$  for  $p^r \leq B$  in time  $O(B \log B)$ .

Bottom line: it all comes down to computing Frobenius traces.

#### Warmup: average polynomial-time in genus 1

Let  $X : y^2 = f(x)$  with deg f = 3, 4 and  $f(0) \neq 0$ , and let  $f_k^n$  denote the coefficient of  $x^k$  in  $f^n$ . For each prime p of good reduction we have

$$a_p = -\sum_{x_0 \in \mathbb{F}_p} \left( \frac{f(x_0)}{p} \right) \equiv f_{p-1}^{(p-1)/2} \mod p.$$

(recall that  $|a_p| \leq 2\sqrt{p}$ , so this determines  $a_p \in \mathbb{Z}$  for  $p \geq 17$ ).

The relations  $f^{n+1} = f \cdot f^n$  and  $(f^{n+1})' = (n+1)f' \cdot f^n$  yield the identity

$$kf_0f_k^n = \sum_{1 \le i \le d} (n+1) - k)f_if_{k-i}^n,$$

valid for all  $k, n \ge 0$ . Suppose for simplicity deg f = 3, and define

$$v_k^n := [f_{k-2}^n, f_{k-1}^n, f_k^n], \qquad M_k^n := \begin{bmatrix} 0 & 0 & (3n+3-k)f_3\\ kf_0 & 0 & (2n+2-k)f_2\\ 0 & kf_0 & (n+1-k)f_1 \end{bmatrix}.$$

#### Warmup: average polynomial-time in genus 1

For any integers  $k, n \ge 0$  we then have

$$v_k^n = \frac{1}{kf_0} v_{k-1}^n M_k^n = \frac{1}{(f_0)^k k!} v_0^n M_1^n \cdots M_k^n.$$

We want to compute  $a_p \equiv f_{2n}^n \mod p$  with n := (p-1)/2. This is the last entry of the vector  $v_{2n}^n$  reduced modulo p = 2n + 1.

Observe that  $2(n+1) \equiv 1 \mod p$ , so  $2M_k^n \equiv M_k \mod p$ , where

$$M_k := \begin{bmatrix} 0 & 0 & (3-2k)f_3 \\ kf_0 & 0 & (2-2k)f_2 \\ 0 & kf_0 & (1-2k)f_1 \end{bmatrix}$$

is an integer matrix that is *independent* of p. For each odd p we have

$$v_{2n}^n \equiv -\left(rac{f_0}{p}
ight) V_0 M_1 \cdots M_{p-1} ext{ mod } p \qquad ext{(where } V_0 = [0,0,1]).$$

# Accumulating remainder tree

Given matrices  $M_0, \ldots, M_{n-1}$  and moduli  $m_1, \ldots, m_n$ , to compute

 $M_0 \mod m_1$  $M_0M_1 \mod m_2$  $M_0M_1M_2 \mod m_3$  $M_0M_1M_2M_3 \mod m_4$ 

. . .

 $M_0M_1\cdots M_{n-2}M_{n-1} \mod m_n$ 

multiply adjacent pairs and recursively compute

 $(M_0M_1) \mod m_2m_3$  $(M_0M_1)(M_2M_3) \mod m_4m_5$ 

 $(M_0M_1)\cdots(M_{n-2}M_{n-1}) \mod m_n$ 

and adjust the results as required (for better results, use a forest).

# Complexity analysis

Assume  $\log |f_i| = O(\log B)$ . The recursion has depth  $O(\log B)$  and in each recursive step we multiply and reduce  $3 \times 3$  matrices with integer entries whose total bitsize is  $O(B \log B)$ .

We can do all the multiplications/reductions at any given level of the recursion in  $O(M(B \log B)) = B(\log B)^{2+o(1)}$ .

Total complexity is  $B(\log B)^{3+o(1)}$ , or  $(\log p)^{4+o(1)}$  per prime  $p \leq B$ .

For a single prime *p* we do not have a polynomial-time algorithm, but we can give an  $O(p^{1/2}(\log p)^{1+o(1)})$  algorithm using the same matrices.

This is a silly way to compute a single  $a_p$  in genus 1, but its generalization to genus 2 is competitive, and in genus 3 it yields the fastest method known within the feasible range of p (by a wide margin).

# Efficiently handling a single prime

Simply computing  $V_0M_1 \cdots M_{p-1}$  modulo p is surprisingly quick (faster than semi-naïve point-counting); it takes  $p(\log p)^{1+o(1)}$  time. But we can do better.

Viewing  $M_k \mod p$  as  $M \in \mathbb{F}_p[k]^{3 \times 3}$ , we compute

$$A(k) := M(k)M(k+1)\cdots M(k+r-1) \in \mathbb{F}_p[k]^{3\times 3}$$

with  $r \approx \sqrt{p}$  and then instantiate A(k) at roughly *r* points to get

$$M_1M_2\cdots M_{p-1} \equiv_p A(1)A(r+1)A(2r+1)\cdots A(p-r).$$

Using standard product tree and multipoint evaluation techniques this takes  $O(M(p^{1/2})\log p) = p^{1/2}(\log p)^{2+o(1)}$  time.

Bostan-Gaudry-Schost:  $p^{1/2}(\log p)^{1+o(1)}$  time.

# Genus 3 curves

The canonical embedding of a genus 3 curve into  $\mathbb{P}^2$  is either

- a degree-2 cover of a smooth conic (hyperelliptic case);
- a smooth plane quartic (generic case).

Average polynomial-time implementations available for the first case:

- rational hyperelliptic model [Harvey-S 2014]
- no rational hyperelliptic model [Harvey-Massierer-S 2016].

Recent work (joint with Harvey): smooth plane quartics.

Prior work has all been based on *p*-adic cohomology:

[Lauder 2004], [Castryck-Denef-Vercauteren 2006], [Abott-Kedlaya-Roe 2006], [Harvey 2010], [Tuitman-Pancrantz 2013], [Tuitman 2015], [Costa 2015], [Tuitman-Castryck 2016], [Shieh 2016]

Current implementations of these algorithms are all  $O(p^{1+o(1)})$ .

## The Hasse-Witt matrix of a hyperelliptic curve

Let  $X_p/\mathbb{F}_p$  be a hyperelliptic curve  $y^2 = f(x)$  of genus g (assume p odd). As in the warmup, let  $f_k^n$  denote the coefficient of  $x^k$  in  $f^n$ .

The Hasse–Witt matrix of  $X_p$  is  $W_p := [f_{pi-j}^n]_{ij} \in \mathbb{F}_p^{g \times g}$  with n = (p-1)/2. In genus g = 3 we have deg f = 7, 8 and

$$W_p := \begin{bmatrix} f_{p-1}^n & f_{p-2}^n & f_{p-3}^n \\ f_{2p-1}^n & f_{2p-2}^n & f_{2p-3}^n \\ f_{3p-1}^n & f_{3p-2}^n & f_{3p-3}^n \end{bmatrix}.$$

This is the matrix of the *p*-power Frobenius acting on  $H^1(C_p, \mathcal{O}_{C_p})$  (and of the Cartier-Manin operator acting on regular differentials). As proved by Manin, we have

$$L_p(T) \equiv \det(I - TW_p) \mod p;$$

in particular,  $a_p \equiv \operatorname{tr} W_p \mod p$ . For p > 144 this yields  $a_p \in [-6\sqrt{p}, 6\sqrt{p}]$ .

# Hyperelliptic average polynomial-time

As in our warmup, assume  $f(0) \neq 0$  and define  $v_k^n := [f_{k-d+1}^n, \dots, f_k^n]$ . The last *g* entries of  $v_{2n}^n$  form the first row of  $W_p$ , and we have

$$v_{2n}^n=-\left(rac{f_0}{p}
ight)V_0M_1\cdots M_{p-1} ext{ mod } p \qquad ext{(where } V_0=[0,\ldots,0,1]).$$

Compute the first row of  $W_p$  for good  $p \le B$  in  $O(g^2 B(\log B)^{3+o(1)})$  time.

To get the remaining rows, consider the isomorphic curve  $y^2 = f(x + a)$ whose Hasse-Witt matrix  $W_p(a) = T(a)W_pT(-a)$  is conjugate to  $W_p$  via

$$T(a) := \left[ \binom{j-1}{i-1} a^{j-1} \right]_{ij} \in \mathbb{F}_p^{g \times g}.$$

Given the first row of  $W_p(a)$  for *g* distinct values of *a* we can compute all the rows of  $W_p$ . Total complexity is  $O(g^3B(\log B)^{3+o(1)})$ , with an average complexity of  $O(g^3p^{4+o(1)})$ , which is *polynomial in both g* and  $\log p$ .

#### The Hasse-Witt matrix of a smooth plane quartic

Let  $X_p/\mathbb{F}_p$  be a smooth plane quartic defined by f(x, y, z) = 0. For  $n \ge 0$  let  $f_{i,j,k}^n$  denote the coefficient of  $x^i y^j z^k$  in  $f^n$ .

The Hasse–Witt matrix of  $X_p$  is the 3  $\times$  3 matrix

$$W_{p} := \begin{bmatrix} f_{p-1,p-1,2p-2}^{p-1} & f_{2p-1,p-1,p-2}^{p-1} & f_{p-1,2p-1,p-2}^{p-1} \\ f_{p-2,p-1,2p-1}^{p-1} & f_{2p-2,p-1,p-1}^{p-1} & f_{p-2,2p-1,p-1}^{p-1} \\ f_{p-1,p-2,2p-1}^{p-1} & f_{2p-1,p-2,p-1}^{p-1} & f_{p-1,2p-2,p-1}^{p-1} \end{bmatrix}$$

This case of smooth plane curves of degree d > 4 is similar.

More generally, given a singular plane model for any nice curve (equivalently, a defining polynomial for its function field) one can use the methods of Stohr-Voloch to explicitly determine  $W_p$ .

Target coefficients of  $f^{p-1}$  for p = 7:

 $z^{4p-4}$  $v^{4p-4}$  $x^{4p-4}$ 

#### **Coefficient relations**

Let  $\partial_x = x \frac{\partial}{\partial x}$  (degree-preserving). The relations

$$f^{p-1} = f \cdot f^{p-2}$$
 and  $\partial_x f^{p-1} = -(\partial_x f) f^{p-2}$ 

yield the relation

$$\sum_{i'+j'+k'=4} (i+i') f_{i',j',k'} f_{i-i',j-j',k-k'}^{p-2} = 0.$$

among nearby coefficients of  $f^{p-2}$  (a triangle of side length 5).

Replacing  $\partial_x$  by  $\partial_y$  yields a similar relation (replace i + i' with j + j').

#### **Coefficient triangle**

For p = 7 with i = 12, j = 5, k = 7 the related coefficients of  $f^{p-2}$  are:



# Moving the triangle

Now consider a bigger triangle with side length 7. Our relations allow us to move the triangle around:



An initial "triangle" at the edge can be efficiently computed using coefficients of  $f(x, 0, z)^{p-2}$ .

# Computing one Hasse-Witt matrix

Nondegeneracy: we need f(1,0,0), f(0,1,0), f(0,0,1) nonzero and f(0,y,z), f(x,0,z), f(x,y,0) squarefree (easily achieved for large p).

The basic strategy to compute  $W_p$  is as follows:

- There is a 28 × 28 matrix M<sub>j</sub> that shifts our 7-triangle from y-coordinate j to j + 1; its coefficients depend on j and f.
   In fact a 16 × 16 matrix M<sub>i</sub> suffices (use smoothness of C).
- Applying the product  $M_0 \cdots M_{p-2}$  to an initial triangle on the edge and applying a final adjustment to shift from  $f^{p-2}$  to  $f^{p-1}$  gets us one column of the Hasse-Witt matrix  $W_p$ .
- By applying the same product (or its inverse) to different initial triangles we can compute all three columns of *W*<sub>p</sub>.

We have thus reduced the problem to computing  $M_1 \cdots M_{p-2} \mod p$ , which we already know how to do, either in  $p^{1/2} (\log p)^{1+o(1)}$  time, or in average polynomial time  $(\log p)^{4+o(1)}$ .

#### Cumulative timings for genus 3 curves

Time to compute  $L_p(T) \mod p$  for all good  $p \leq B$ .

| В               | spq-Costa-AKR | spq-HS | ghyp-MHS | hyp-HS | hyp-Harvey |
|-----------------|---------------|--------|----------|--------|------------|
| 2 <sup>12</sup> | 18            | 1.4    | 0.3      | 0.1    | 1.3        |
| $2^{13}$        | 49            | 2.4    | 0.7      | 0.2    | 2.6        |
| $2^{14}$        | 142           | 4.6    | 1.7      | 0.5    | 5.4        |
| $2^{15}$        | 475           | 9.4    | 4.6      | 1.0    | 12         |
| $2^{16}$        | 1,670         | 21     | 11       | 2.1    | 29         |
| $2^{17}$        | 5,880         | 47     | 27       | 5.3    | 74         |
| $2^{18}$        | 22,300        | 112    | 62       | 14     | 192        |
| $2^{19}$        | 78,100        | 241    | 153      | 37     | 532        |
| $2^{20}$        | 297,000       | 551    | 370      | 97     | 1,480      |
| $2^{21}$        | 1,130,000     | 1,240  | 891      | 244    | 4,170      |
| $2^{22}$        | 4,280,000     | 2,980  | 2,190    | 617    | 12,200     |
| $2^{23}$        | 16,800,000    | 6,330  | 5,110    | 1,500  | 36,800     |
| $2^{24}$        | 66,800,000    | 14,200 | 11,750   | 3,520  | 113,000    |
| $2^{25}$        | 244,000,000   | 31,900 | 28,200   | 8,220  | 395,000    |
| $2^{26}$        | 972,000,000   | 83,300 | 62,700   | 19,700 | 1,060,000  |

(Intel Xeon E7-8867v3 3.3 GHz CPU seconds).