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The action of Galois

Let y2 = x3 +Ax +B be an elliptic curve over a number field K .

Let K (E [m]) be the extension of K obtained by adjoining the
coordinates of all the m-torsion points of E(K ).

This is a Galois extension, and Gal(K (E [m])/K ) acts on

E [m] ' Z/m ⊕ Z/m

via its action on points, σ : (x : y : z) 7→ (xσ : yσ : zσ).

This induces a group representation

Gal(K (E [m])/K )→ Aut(E [m]) ' GL2(Z/m).
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Galois representations

The action of Gal(K (E [m])/K ) extends to GK := Gal(K/K ):

ρE ,m : GK −→ Aut(E [m]) ' GL2(Z/m),

The ρE ,m are compatible; they determine a representation

ρE : GK −→ GL2(Ẑ)

satisfying ρE ,m = πm ◦ ρE (here πm : GL2(Ẑ)� GL2(Z/m)).

Theorem (Serre’s open image theorem)
For E/K without CM, the index of ρE(GK ) in GL2(Ẑ) is finite.

Thus for any E/K without CM there is a minimal mE ∈ Z such
that ρE(GK ) = π−1

mE
(ρE ,mE (GK )).
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Mod-` representations

A first step toward computing mE and ρE(GK ) is to determine
the primes ` and groups ρE ,`(GK ) where ρE ,` is non-surjective.1

By Serre’s theorem, if E does not have CM, this is a finite list
(henceforth E does not have CM).

Under the GRH, the largest such ` is quasi-linear in the bit-size
of E (this follows from the conductor bound in [LV 14]). If we put

‖E‖ := max(|NK/Q(A)|, |NK/Q(B)|).

then ` is bounded by (log ‖E‖)1+o(1). Conjecturally this bound
depends only on K ; for K = Q we expect ` ≤ 37.

1This does not determine mE , not even when mE is squarefree.
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Non-surjectivity

Generically, ρE ,` (and ρE ,`∞) is surjective for every prime `.
But the exceptions are interesting.

If E has a rational point of order `, then ρE ,` is not surjective.
For E/Q this occurs for ` ≤ 7 (Mazur).

If E admits a rational `-isogeny, then ρE ,` is not surjective.
For E/Q without CM, this occurs for ` ≤ 17 and ` = 37 (Mazur).

But ρE ,` may be non-surjective even when E does not admit a
rational `-isogeny, and even when E has a rational `-torsion
point, this does not determine the image of ρE ,`.

Classifying the possible images of ρE ,` that can arise may be
viewed as a refinement of Mazur’s theorems.
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Applications

There are many practical and theoretical reasons for wanting to
compute the images of ρE ,`, and for searching for elliptic curves
with a particular mod-` or mod-m Galois image:

I Explicit BSD computations

I Modularity lifting

I Computing Lang-Trotter constants

I The Koblitz-Zywina conjecture

I Optimizing the elliptic curve factorization method (ECM)

I Local-global questions
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Computing the image of Galois the hard way

In principle, there is a completely straight-forward algorithm to
compute ρE ,`(GK ) up to conjugacy in GL2(Z/`):

1. Construct the field L = K (E [`]) as an (at most quadratic)
extension of the splitting field of E ’s `th division polynomial.

2. Pick a basis (P,Q) for E [`] and determine the action of
each element of Gal(L/K ) on P and Q.

The complexity can be bounded by Õ(`18[K : Q]9).
It is only practical for very small cases (say ` ≤ 7 when K = Q).

We need something faster, especially if we want to compute
ρE ,`(GK ) for many E and ` (which we do!).
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Main results

I (GRH) Las-Vegas algorithm to compute ρE ,`(GK ) up to
local conjugacy for all primes ` in expected time

(log ‖E‖)11+o(1).

I (GRH) Monte-Carlo algorithm to compute ρE ,`(GK ) up to
local conjugacy for all primes ` in time

(log ‖E‖)1+o(1).

I Complete classification of subgroups of GL2(Z/`) up to
conjugacy and an algorithm to recognize or enumerate
them (with generators) in quasi-linear time.
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Locally conjugate groups

Definition
Subgroups H1 and H2 of GL2(Z/`) are locally conjugate if there
is a bijection between them preserving conjugacy classes.

Theorem
For every subgroup H1 of GL2(Z/`) there is at most one locally
conjugate H2 that is not conjugate to H1. The groups H1 and H2
are isomorphic and have the same semisimplification.

Theorem
If ρE1,`(GK ) = H1 is locally conjugate but not conjugate to H2
then there is an `n-isogenous E2 such that ρE2,`(GK ) = H2.
The curve E2 is defined over K and unique up to isomorphism.
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Computations

We have computed all the mod-` Galois images of every elliptic
curve in the Cremona and Stein-Watkins databases.

This includes about 140 million curves of conductor up to 1010,
including all curves of conductor ≤ 350,000. The results have
been incorporated into the LMFDB (http://lmfdb.org).

We also analyzed more than 1010 curves in various families.

The result is a conjecturally complete classification of 63
non-surjective mod-` Galois images that can arise for an elliptic
curve E/Q without CM (as expected, they all occur for ` ≤ 37).

We have also run the algorithm on all of the elliptic curves
defined over quadratic fields that are listed in the LMFDB.
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A probabilistic approach

Let Ep be the reduction of E modulo a good prime p of K that
does not divide `, and let p := Np (wlog we assume p is prime).

The action of the Frobenius endomorphism on Ep[`] is given by
(the conjugacy class of) an element Ap,` ∈ ρE ,`(GK ) with

tr Ap,` ≡ ap mod ` and det Ap,` ≡ p mod `,

where ap := p + 1−#Ep(Fp) is the trace of Frobenius.

By varying p, we can “randomly” sample ρE ,`(GK ).

The Čebotarev density theorem implies equidistribution, and
under the GRH we can assume log p = O(log `).
This implies log p = O(log log ||E ||), so computations with
complexity subexponential in log p are negligible.
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Example: ` = 2

GL2(Z/2) ' S3 has 6 subgroups in 4 conjugacy classes.
For H ⊆ GL2(Z/2), let ta(H) = #{A ∈ H : tr A = a}.
Consider the trace frequencies t(H) = (t0(H), t1(H)):

1. For GL2(Z/2) we have t(H) = (4,2).
2. The subgroup of order 3 has t(H) = (1,2).
3. The 3 conjugate subgroups of order 2 have t(H) = (2,0)
4. The trivial subgroup has t(H) = (1,0).

1,2 are distinguished from 3,4 by a trace 1 element (easy).
We can distinguish 1 from 2 by comparing frequencies (harder).
We cannot distinguish 3 from 4 at all (impossible).

Sampling traces does not give enough information!

Andrew V. Sutherland (MIT) Computing the image of Galois (AGCT 15) 12 of 18



Using the 1-eigenspsace space of Ap

The `-torsion points fixed by the Frobenius endomorphism
form the Fp-rational subgroup Ep[`](Fp) of Ep[`]. Thus

fix Ap := ker(Ap − I) = Ep[`](Fq) = Ep(Fp)[`]

Equivalently, fix Ap is the 1-eigenspace of Ap.
It is easy to compute Ep(Fp)[`] (use the Weil pairing), and this
gives us information that cannot be derived from ap alone.

We can now easily distinguish the subgroups of GL2(Z/2Z) by
looking at pairs (ap, rp), where rp is the rank of fix Ap (0, 1, or 2).
There are three possible pairs, (0,2), (0,1), and (1,0).
The subgroups of order 2 contain (0,2) and (0,1) but not (1,0).
The subgroup of order 3 contains (0,2) and (1,0) but not (0,1).
The trivial subgroup contains only (0,2).
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Identifying subgroups by their signatures

The signature of a subgroup H of GL2(Z/`) is defined by

sH := {
(
det A, tr A, rk fix A

)
: A ∈ H}.

We also define the trace-zero ratio of H,

zH := #{A : tr A = 0}/#H.

Given sH there are at most two possibilities for zH .
There exist O(1) elements that determine sH .
O(`) random elements determine sH , zH with high probability.

Theorem
If H1 and H2 are subgroups of GL2(Z/`) for which sH1 = sH2

and zH1 = zH2 then H1 and H2 are locally conjugate.
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Efficient implementation

Asymptotic optimization
There is an integer matrix Ap for which Ap,` ≡ Ap mod ` for all
primes `. The matrix Ap is determined by End(E), and under
the GRH it can be computed in time subexponential in log p,
which is asymptotically negligible [DT02, B11, BS11].

Practical optimization
By precomputing the values ap and rp for every elliptic curve
over Fp, say for all primes p up to 218, the algorithm reduces to
a sequence of table-lookups. This makes it extremely fast.

It takes less than a minute to analyze all 1,887,909 curves
in Cremona’s tables (typically ≤ 10 table lookups per curve).
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Distinguishing locally-conjugate non-conjugate groups

In GL2(Z/3) the subgroups

H1 = 〈
(

1 1
0 1

)
,
(

1 0
0 2

)
〉 and H2 = 〈

(
1 1
0 1

)
,
(

2 0
0 1

)
〉

both have signature {(1,2,1), (2,0,1), (1,2,2)},
and are isomorphic to S3.

Every element of H1 and H2 has 1 as an eigenvalue.
In H1 the 1-eigenspaces all coincide, but in H2 they do not.

H1 corresponds to an elliptic curve with a rational point of
order 3, whereas H2 corresponds to an elliptic curve that has a
rational point of order 3 locally everywhere, but not globally.
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Distinguishing locally-conjugate non-conjugate groups

Let d1(H) denote the least index of a subgroup of H that fixes a
nonzero vector in (Z/`)2. Then d1(H1) = 1, but d1(H2) = 2.

For H = ρE ,`(GK ), the quantity d1(H) is the degree of the
minimal extension L/K over which E has an L-rational point of
order `. This can be determined using the `-division polynomial
(in fact, using X0(`), since these cases all lie in a Borel).

Using d1(H) we can distinguish locally conjugate but
non-conjugate ρE ,`(GQ) in all but one case that arises over Q.
In this one case, we computed ρE ,`(GQ) the hard way.2

2Using the modular curves in [Z15], this can now be done more efficiently.
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Non-surjective mod-` images for E/Q without CM of conductor ≤ 350,000.

subgroup index generators -1 d0 d1 d curve

2Cs 6 - yes 1 1 1 15.a.1
2B 3 [1, 1, 0, 1] yes 1 1 2 14.a.1
2Cn 2 [0, 1, 1, 1] yes 3 3 3 196.a.1

3Cs.1.1 24 [1, 0, 0, 2] no 1 1 2 14.a.1
3Cs 12 [2, 0, 0, 1], [1, 0, 0, 2] yes 1 2 4 98.a.3
3B.1.1 8 [1, 0, 0, 2], [1, 1, 0, 1] no 1 1 6 14.a.4
3B.1.2 8 [2, 0, 0, 1], [1, 1, 0, 1] no 1 2 6 14.a.3
3Ns 6 [1, 0, 0, 2], [2, 0, 0, 1], [0, 1, 1, 0] yes 2 4 8 338.d.1
3B 4 [1, 0, 0, 2], [2, 0, 0, 1], [1, 1, 0, 1] yes 1 2 12 50.b.1
3Nn 3 [1, 2, 1, 1], [1, 0, 0, 2] yes 4 8 16 245.a.1

5Cs.1.1 120 [1, 0, 0, 2] no 1 1 4 11.a.1
5Cs.1.3 120 [3, 0, 0, 4] no 1 2 4 275.b.2
5Cs.4.1 60 [4, 0, 0, 4], [1, 0, 0, 2] yes 1 2 8 99.d.2
5Ns.2.1 30 [2, 0, 0, 3], [0, 1, 3, 0] yes 2 8 16 6975.a.1
5Cs 30 [1, 0, 0, 2], [2, 0, 0, 1] yes 1 4 16 18176.b.2
5B.1.1 24 [1, 0, 0, 2], [1, 1, 0, 1] no 1 1 20 11.a.3
5B.1.2 24 [2, 0, 0, 1], [1, 1, 0, 1] no 1 4 20 11.a.2
5B.1.3 24 [3, 0, 0, 4], [1, 1, 0, 1] no 1 4 20 50.a.1
5B.1.4 24 [4, 0, 0, 3], [1, 1, 0, 1] no 1 2 20 50.a.3
5Ns 15 [1, 0, 0, 2], [2, 0, 0, 1], [0, 1, 1, 0] yes 2 8 32 608.b.1
5B.4.1 12 [4, 0, 0, 4], [1, 0, 0, 2], [1, 1, 0, 1] yes 1 2 40 99.d.1
5B.4.2 12 [4, 0, 0, 4], [2, 0, 0, 1], [1, 1, 0, 1] yes 1 4 40 99.d.3
5Nn 10 [1, 4, 2, 1], [1, 0, 0, 4] yes 6 24 48 675.b.1
5B 6 [1, 0, 0, 2], [2, 0, 0, 1], [1, 1, 0, 1] yes 1 4 80 338.d.1
5S4 5 [1, 4, 1, 1], [1, 0, 0, 2] yes 6 24 96 324.b.1
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Non-surjective mod-` images for E/Q without CM of conductor ≤ 350,000.

subgroup index generators -1 d0 d1 d curve

7Ns.2.1 112 [2, 0, 0, 4], [0, 1, 4, 0] no 2 6 18 2450.ba.1
7Ns.3.1 56 [3, 0, 0, 5], [0, 1, 4, 0] yes 2 12 36 2450.a.1
7B.1.1 48 [1, 0, 0, 3], [1, 1, 0, 1] no 1 1 42 26.b.1
7B.1.2 48 [2, 0, 0, 5], [1, 1, 0, 1] no 1 3 42 637.a.1
7B.1.5 48 [5, 0, 0, 2], [1, 1, 0, 1] no 1 6 42 637.a.2
7B.1.3 48 [3, 0, 0, 1], [1, 1, 0, 1] no 1 6 42 26.b.2
7B.1.4 48 [4, 0, 0, 6], [1, 1, 0, 1] no 1 3 42 294.a.1
7B.1.6 48 [6, 0, 0, 4], [1, 1, 0, 1] no 1 2 42 294.a.2
7Ns 28 [1, 0, 0, 3], [3, 0, 0, 1], [0, 1, 1, 0] yes 2 12 72 9225.a.1
7B.6.1 24 [6, 0, 0, 6], [1, 0, 0, 3], [1, 1, 0, 1] yes 1 2 84 208.d.1
7B.6.2 24 [6, 0, 0, 6], [2, 0, 0, 5], [1, 1, 0, 1] yes 1 6 84 5733.d.1
7B.6.3 24 [6, 0, 0, 6], [3, 0, 0, 1], [1, 1, 0, 1] yes 1 6 84 208.d.2
7Nn 21 [1, 3, 1, 1], [1, 0, 0, 6] yes 8 48 96 15341.a.1
7B.2.1 16 [2, 0, 0, 4], [1, 0, 0, 3], [1, 1, 0, 1] no 1 3 126 162.b.1
7B.2.3 16 [2, 0, 0, 4], [3, 0, 0, 1], [1, 1, 0, 1] no 1 6 126 162.b.3
7B 8 [3, 0, 0, 1], [1, 0, 0, 3], [1, 1, 0, 1] yes 1 6 252 162.c.1

11B.1.4 120 [4, 0, 0, 6], [1, 1, 0, 1] no 1 5 110 121.a.2
11B.1.6 120 [6, 0, 0, 4], [1, 1, 0, 1] no 1 10 110 121.a.1
11B.1.5 120 [5, 0, 0, 7], [1, 1, 0, 1] no 1 5 110 121.c.2
11B.1.7 120 [7, 0, 0, 5], [1, 1, 0, 1] no 1 10 110 121.c.1
11B.10.4 60 [10, 0, 0, 10], [4, 0, 0, 6], [1, 1, 0, 1] yes 1 10 220 1089.f.2
11B.10.5 60 [10, 0, 0, 10], [5, 0, 0, 7], [1, 1, 0, 1] yes 1 10 220 1089.f.1
11Nn 55 [2, 2, 1, 2], [1, 0, 0, 10] yes 12 120 240 232544.f.1
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Non-surjective mod-` images for E/Q without CM of conductor ≤ 350,000.

subgroup index generators -1 d0 d1 d curve

13S4 91 [1, 12, 1, 1], [1, 0, 0, 8] yes 6 72 288 152100.g.1
13B.3.1 56 [3, 0, 0, 9], [1, 0, 0, 2], [1, 1, 0, 1] no 1 3 468 147.b.1
13B.3.2 56 [3, 0, 0, 9], [2, 0, 0, 1], [1, 1, 0, 1] no 1 12 468 147.b.2
13B.3.4 56 [3, 0, 0, 9], [4, 0, 0, 7], [1, 1, 0, 1] no 1 6 468 24843.o.1
13B.3.7 56 [3, 0, 0, 9], [7, 0, 0, 4], [1, 1, 0, 1] no 1 12 468 24843.o.2
13B.5.1 42 [5, 0, 0, 8], [1, 0, 0, 2], [1, 1, 0, 1] yes 1 4 624 2890.d.1
13B.5.2 42 [5, 0, 0, 8], [2, 0, 0, 1], [1, 1, 0, 1] yes 1 12 624 2890.d.2
13B.5.4 42 [5, 0, 0, 8], [4, 0, 0, 7], [1, 1, 0, 1] yes 1 12 624 216320.i.1
13B.4.1 28 [4, 0, 0, 10], [1, 0, 0, 2], [1, 1, 0, 1] yes 1 6 936 147.c.1
13B.4.2 28 [4, 0, 0, 10], [2, 0, 0, 1], [1, 1, 0, 1] yes 1 12 936 147.c.2
13B 14 [1, 0, 0, 2], [2, 0, 0, 1], [1, 1, 0, 1] yes 1 12 1872 2450.l.1

17B.4.2 72 [4, 0, 0, 13], [2, 0, 0, 10], [1, 1, 0, 1] yes 1 8 1088 14450.n.1
17B.4.6 72 [4, 0, 0, 13], [6, 0, 0, 9], [1, 1, 0, 1] yes 1 16 1088 14450.n.2

37B.8.1 114 [8, 0, 0, 14], [1, 0, 0, 2], [1, 1, 0, 1] yes 1 12 15984 1225.e.1
37B.8.2 114 [8, 0, 0, 14], [2, 0, 0, 1], [1, 1, 0, 1] yes 1 36 15984 1225.e.2
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