Computing the image of Galois representations attached to elliptic curves

Andrew V. Sutherland Massachusetts Institute of Technology

May 18, 2015

http://arxiv.org/abs/1504.07618

The action of Galois

Let $y^2 = x^3 + Ax + B$ be an elliptic curve over a number field *K*.

Let K(E[m]) be the extension of K obtained by adjoining the coordinates of all the *m*-torsion points of $E(\overline{K})$.

This is a Galois extension, and Gal(K(E[m])/K) acts on

 $E[m] \simeq \mathbb{Z}/m \oplus \mathbb{Z}/m$

via its action on points, $\sigma : (x : y : z) \mapsto (x^{\sigma} : y^{\sigma} : z^{\sigma})$.

This induces a group representation

 $\operatorname{Gal}(K(E[m])/K) \to \operatorname{Aut}(E[m]) \simeq \operatorname{GL}_2(\mathbb{Z}/m).$

Galois representations

The action of Gal(K(E[m])/K) extends to $G_K := Gal(\overline{K}/K)$:

$$\rho_{E,m}: G_{\mathcal{K}} \longrightarrow \operatorname{Aut}(E[m]) \simeq \operatorname{GL}_2(\mathbb{Z}/m),$$

The $\rho_{E,m}$ are compatible; they determine a representation

$$\rho_E \colon G_K \longrightarrow \operatorname{GL}_2(\hat{\mathbb{Z}})$$

satisfying $\rho_{E,m} = \pi_m \circ \rho_E$ (here $\pi_m : \operatorname{GL}_2(\hat{\mathbb{Z}}) \twoheadrightarrow \operatorname{GL}_2(\mathbb{Z}/m)$).

Theorem (Serre's open image theorem) For E/K without CM, the index of $\rho_E(G_K)$ in $GL_2(\hat{\mathbb{Z}})$ is finite.

Thus for any E/K without CM there is a minimal $m_E \in \mathbb{Z}$ such that $\rho_E(G_K) = \pi_{m_E}^{-1}(\rho_{E,m_E}(G_K))$.

Mod-*l* representations

A first step toward computing m_E and $\rho_E(G_K)$ is to determine the primes ℓ and groups $\rho_{E,\ell}(G_K)$ where $\rho_{E,\ell}$ is non-surjective.¹

By Serre's theorem, if E does not have CM, this is a finite list (henceforth E does not have CM).

Under the GRH, the largest such ℓ is quasi-linear in the bit-size of *E* (this follows from the conductor bound in [LV 14]). If we put

$$\|E\| := \max(|N_{\mathcal{K}/\mathbb{Q}}(A)|, |N_{\mathcal{K}/\mathbb{Q}}(B)|).$$

then ℓ is bounded by $(\log ||E||)^{1+o(1)}$. Conjecturally this bound depends only on *K*; for $K = \mathbb{Q}$ we expect $\ell \leq 37$.

¹This does not determine m_E , not even when m_E is squarefree.

Non-surjectivity

Generically, $\rho_{E,\ell}$ (and $\rho_{E,\ell^{\infty}}$) is surjective for every prime ℓ . But the exceptions are interesting.

If *E* has a rational point of order ℓ , then $\rho_{E,\ell}$ is not surjective. For E/\mathbb{Q} this occurs for $\ell \leq 7$ (Mazur).

If *E* admits a rational ℓ -isogeny, then $\rho_{E,\ell}$ is not surjective. For E/\mathbb{Q} without CM, this occurs for $\ell \leq 17$ and $\ell = 37$ (Mazur).

But $\rho_{E,\ell}$ may be non-surjective even when *E* does not admit a rational ℓ -isogeny, and even when *E* has a rational ℓ -torsion point, this does not determine the image of $\rho_{E,\ell}$.

Classifying the possible images of $\rho_{E,\ell}$ that can arise may be viewed as a refinement of Mazur's theorems.

Applications

There are many practical and theoretical reasons for wanting to compute the images of $\rho_{E,\ell}$, and for searching for elliptic curves with a particular mod- ℓ or mod-m Galois image:

- Explicit BSD computations
- Modularity lifting
- Computing Lang-Trotter constants
- The Koblitz-Zywina conjecture
- Optimizing the elliptic curve factorization method (ECM)
- Local-global questions

Computing the image of Galois the hard way

In principle, there is a completely straight-forward algorithm to compute $\rho_{E,\ell}(G_K)$ up to conjugacy in $GL_2(\mathbb{Z}/\ell)$:

- 1. Construct the field $L = K(E[\ell])$ as an (at most quadratic) extension of the splitting field of *E*'s ℓ th division polynomial.
- 2. Pick a basis (P, Q) for $E[\ell]$ and determine the action of each element of Gal(L/K) on P and Q.

The complexity can be bounded by $\tilde{O}(\ell^{18}[K : \mathbb{Q}]^9)$. It is only practical for very small cases (say $\ell \leq 7$ when $K = \mathbb{Q}$).

We need something faster, especially if we want to compute $\rho_{E,\ell}(G_K)$ for many *E* and ℓ (which we do!).

Main results

► (GRH) Las-Vegas algorithm to compute \(\rho_{E,\ell}(G_K)\) up to local conjugacy for all primes \(\ell\) in expected time

```
(\log ||E||)^{11+o(1)}.
```

► (GRH) Monte-Carlo algorithm to compute \(\rho_{E,l}(G_K)\) up to local conjugacy for all primes \(l \) in time

 $(\log ||E||)^{1+o(1)}.$

Complete classification of subgroups of GL₂(Z/l) up to conjugacy and an algorithm to recognize or enumerate them (with generators) in quasi-linear time.

Locally conjugate groups

Definition

Subgroups H_1 and H_2 of $GL_2(\mathbb{Z}/\ell)$ are *locally conjugate* if there is a bijection between them preserving conjugacy classes.

Theorem

For every subgroup H_1 of $GL_2(\mathbb{Z}/\ell)$ there is at most one locally conjugate H_2 that is not conjugate to H_1 . The groups H_1 and H_2 are isomorphic and have the same semisimplification.

Theorem

If $\rho_{E_1,\ell}(G_K) = H_1$ is locally conjugate but not conjugate to H_2 then there is an ℓ^n -isogenous E_2 such that $\rho_{E_2,\ell}(G_K) = H_2$. The curve E_2 is defined over K and unique up to isomorphism.

Computations

We have computed all the mod- ℓ Galois images of every elliptic curve in the Cremona and Stein-Watkins databases.

This includes about 140 million curves of conductor up to 10^{10} , including all curves of conductor $\leq 350,000$. The results have been incorporated into the LMFDB (http://lmfdb.org).

We also analyzed more than 10¹⁰ curves in various families.

The result is a conjecturally complete classification of 63 non-surjective mod- ℓ Galois images that can arise for an elliptic curve E/\mathbb{Q} without CM (as expected, they all occur for $\ell \leq 37$).

We have also run the algorithm on all of the elliptic curves defined over quadratic fields that are listed in the LMFDB.

A probabilistic approach

Let $E_{\mathfrak{p}}$ be the reduction of *E* modulo a good prime \mathfrak{p} of *K* that does not divide ℓ , and let $p := N\mathfrak{p}$ (wlog we assume *p* is prime).

The action of the Frobenius endomorphism on $E_p[\ell]$ is given by (the conjugacy class of) an element $A_{p,\ell} \in \rho_{E,\ell}(G_K)$ with

tr $A_{\mathfrak{p},\ell} \equiv a_{\mathfrak{p}} \mod \ell$ and $\det A_{\mathfrak{p},\ell} \equiv p \mod \ell$,

where $a_{\mathfrak{p}} := p + 1 - \# E_{\mathfrak{p}}(\mathbb{F}_p)$ is the trace of Frobenius.

By varying \mathfrak{p} , we can "randomly" sample $\rho_{E,\ell}(G_K)$. The Čebotarev density theorem implies equidistribution, and under the GRH we can assume $\log p = O(\log \ell)$. This implies $\log p = O(\log \log ||E||)$, so computations with complexity subexponential in $\log p$ are negligible.

Example: $\ell = 2$

 $\operatorname{GL}_2(\mathbb{Z}/2) \simeq S_3$ has 6 subgroups in 4 conjugacy classes. For $H \subseteq \operatorname{GL}_2(\mathbb{Z}/2)$, let $t_a(H) = \#\{A \in H : \operatorname{tr} A = a\}$. Consider the trace frequencies $t(H) = (t_0(H), t_1(H))$:

- 1. For $GL_2(\mathbb{Z}/2)$ we have t(H) = (4, 2).
- 2. The subgroup of order 3 has t(H) = (1, 2).
- 3. The 3 conjugate subgroups of order 2 have t(H) = (2, 0)
- 4. The trivial subgroup has t(H) = (1, 0).

1,2 are distinguished from 3,4 by a trace 1 element (easy). We can distinguish 1 from 2 by comparing frequencies (harder). We cannot distinguish 3 from 4 at all (impossible).

Sampling traces does not give enough information!

Using the 1-eigenspsace space of A_p

The ℓ -torsion points fixed by the Frobenius endomorphism form the \mathbb{F}_p -rational subgroup $E_p[\ell](\mathbb{F}_p)$ of $E_p[\ell]$. Thus

$$\mathsf{fix}\, A_\mathfrak{p} := \mathsf{ker}(A_\mathfrak{p} - I) = \mathcal{E}_\mathfrak{p}[\ell](\mathbb{F}_q) = \mathcal{E}_\mathfrak{p}(\mathbb{F}_\rho)[\ell]$$

Equivalently, fix A_p is the 1-eigenspace of A_p . It is easy to compute $E_p(\mathbb{F}_p)[\ell]$ (use the Weil pairing), and this gives us information that cannot be derived from a_p alone.

We can now easily distinguish the subgroups of $GL_2(\mathbb{Z}/2\mathbb{Z})$ by looking at pairs (a_p, r_p) , where r_p is the rank of fix A_p (0, 1, or 2). There are three possible pairs, (0, 2), (0, 1), and (1, 0). The subgroups of order 2 contain (0, 2) and (0, 1) but not (1, 0). The subgroup of order 3 contains (0, 2) and (1, 0) but not (0, 1). The trivial subgroup contains only (0, 2).

Identifying subgroups by their signatures

The *signature* of a subgroup *H* of $GL_2(\mathbb{Z}/\ell)$ is defined by

$$s_{\mathcal{H}} := \{ (\det A, \operatorname{tr} A, \operatorname{rk} \operatorname{fix} A) : A \in \mathcal{H} \}.$$

We also define the trace-zero ratio of H,

$$z_H := \# \{ A : \text{tr } A = 0 \} / \# H.$$

Given s_H there are at most two possibilities for z_H . There exist O(1) elements that determine s_H . $O(\ell)$ random elements determine s_H, z_H with high probability.

Theorem

If H_1 and H_2 are subgroups of $GL_2(\mathbb{Z}/\ell)$ for which $s_{H_1} = s_{H_2}$ and $z_{H_1} = z_{H_2}$ then H_1 and H_2 are locally conjugate.

Efficient implementation

Asymptotic optimization

There is an integer matrix A_p for which $A_{p,\ell} \equiv A_p \mod \ell$ for all primes ℓ . The matrix A_p is determined by End(*E*), and under the GRH it can be computed in time subexponential in log *p*, which is asymptotically negligible [DT02, B11, BS11].

Practical optimization

By precomputing the values a_p and r_p for *every* elliptic curve over \mathbb{F}_p , say for all primes p up to 2^{18} , the algorithm reduces to a sequence of table-lookups. This makes it extremely fast.

It takes less than a minute to analyze all 1,887,909 curves in Cremona's tables (typically \leq 10 table lookups per curve).

Distinguishing locally-conjugate non-conjugate groups

In $GL_2(\mathbb{Z}/3)$ the subgroups

 $H_1 = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \rangle$ and $H_2 = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \rangle$

both have signature $\{(1, 2, 1), (2, 0, 1), (1, 2, 2)\}$, and are isomorphic to S_3 .

Every element of H_1 and H_2 has 1 as an eigenvalue. In H_1 the 1-eigenspaces all coincide, but in H_2 they do not.

 H_1 corresponds to an elliptic curve with a rational point of order 3, whereas H_2 corresponds to an elliptic curve that has a rational point of order 3 locally everywhere, but not globally.

Distinguishing locally-conjugate non-conjugate groups

Let $d_1(H)$ denote the least index of a subgroup of H that fixes a nonzero vector in $(\mathbb{Z}/\ell)^2$. Then $d_1(H_1) = 1$, but $d_1(H_2) = 2$.

For $H = \rho_{E,\ell}(G_K)$, the quantity $d_1(H)$ is the degree of the minimal extension L/K over which *E* has an *L*-rational point of order ℓ . This can be determined using the ℓ -division polynomial (in fact, using $X_0(\ell)$, since these cases all lie in a Borel).

Using $d_1(H)$ we can distinguish locally conjugate but non-conjugate $\rho_{E,\ell}(G_{\mathbb{Q}})$ in all but one case that arises over \mathbb{Q} . In this one case, we computed $\rho_{E,\ell}(G_{\mathbb{Q}})$ the hard way.²

²Using the modular curves in [Z15], this can now be done more efficiently.

Non-surjective mod- ℓ images for E/\mathbb{Q} without CM of conductor \leq 350,000.

subgroup	index	generators	-1	d_0	d ₁	d	curve
2Cs 2B 2Cn	6 3 2	- [1, 1, 0, 1] [0, 1, 1, 1]	yes yes yes	1 1 3	1 1 3	1 2 3	15.a.1 14.a.1 196.a.1
3Cs.1.1 3Cs 3B.1.1 3B.1.2 3Ns 3B 3Nn	24 12 8 8 6 4 3		no yes no yes yes yes	1 1 1 2 1 4	1 2 1 2 4 2 8	2 4 6 8 12 16	14.a.1 98.a.3 14.a.4 14.a.3 338.d.1 50.b.1 245.a.1
SCs.1.1 SCs.1.3 SCs.4.1 SNs.2.1 SCs 5B.1.1 SB.1.2 SB.1.3 SB.1.4 SNs SB.4.1 SB.4.2 SNn SB SB.4.1 SB.4.2 SNn	120 120 60 30 24 24 24 24 15 12 12 10 6 5		no yes yes no no no yes yes yes yes yes yes	1 1 2 1 1 1 1 2 1 1 6 1 6	1 2 8 4 1 4 2 8 2 4 24 24 24	4 8 16 20 20 20 20 20 32 40 40 48 80 96	11.a.1 275.b.2 99.d.2 6975.a.1 18176.b.2 11.a.3 11.a.2 50.a.1 50.a.3 608.b.1 99.d.1 99.d.1 99.d.1 338.d.1 338.d.1 324.b.1

Non-surjective mod- ℓ images for E/\mathbb{Q} without CM of conductor \leq 350,000.

subgroup	index	generators	-1	d ₀	<i>d</i> ₁	d	curve
7Ns.2.1	112	[2,0,0,4], [0,1,4,0]	no	2	6	18	2450.ba.1
7Ns.3.1	56	[3, 0, 0, 5], [0, 1, 4, 0]	yes	2	12	36	2450.a.1
7B.1.1	48	[1, 0, 0, 3], [1, 1, 0, 1]	no	1	1	42	26.b.1
7B.1.2	48	[2, 0, 0, 5], [1, 1, 0, 1]	no	1	3	42	637.a.1
7B.1.5	48	[5, 0, 0, 2], [1, 1, 0, 1]	no	1	6	42	637.a.2
7B.1.3	48	[3, 0, 0, 1], [1, 1, 0, 1]	no	1	6	42	26.b.2
7B.1.4	48	[4, 0, 0, 6], [1, 1, 0, 1]	no	1	3	42	294.a.1
7B.1.6	48	[6, 0, 0, 4], [1, 1, 0, 1]	no	1	2	42	294.a.2
7Ns	28	[1, 0, 0, 3], [3, 0, 0, 1], [0, 1, 1, 0]	yes	2	12	72	9225.a.1
7B.6.1	24	[6, 0, 0, 6], [1, 0, 0, 3], [1, 1, 0, 1]	yes	1	2	84	208.d.1
7B.6.2	24	[6, 0, 0, 6], [2, 0, 0, 5], [1, 1, 0, 1]	yes	1	6	84	5733.d.1
7B.6.3	24	[6, 0, 0, 6], [3, 0, 0, 1], [1, 1, 0, 1]	yes	1	6	84	208.d.2
7Nn	21	[1, 3, 1, 1], [1, 0, 0, 6]	yes	8	48	96	15341.a.1
7B.2.1	16	[2, 0, 0, 4], [1, 0, 0, 3], [1, 1, 0, 1]	no	1	3	126	162.b.1
7B.2.3	16	[2, 0, 0, 4], [3, 0, 0, 1], [1, 1, 0, 1]	no	1	6	126	162.b.3
7в	8	[3, 0, 0, 1], [1, 0, 0, 3], [1, 1, 0, 1]	yes	1	6	252	162.c.1
11B.1.4	120	[4, 0, 0, 6], [1, 1, 0, 1]	no	1	5	110	121.a.2
11B.1.6	120	[6, 0, 0, 4], [1, 1, 0, 1]	no	1	10	110	121.a.1
11B.1.5	120	[5, 0, 0, 7], [1, 1, 0, 1]	no	1	5	110	121.c.2
11B.1.7	120	[7, 0, 0, 5], [1, 1, 0, 1]	no	1	10	110	121.c.1
11B.10.4	60	[10, 0, 0, 10], [4, 0, 0, 6], [1, 1, 0, 1]	ves	1	10	220	1089.f.2
11B.10.5	60	[10, 0, 0, 10], [5, 0, 0, 7], [1, 1, 0, 1]	ves	1	10	220	1089.f.1
11Nn	55	[2, 2, 1, 2], [1, 0, 0, 10]	ves	12	120	240	232544.f.1

Non-surjective mod- ℓ images for E/\mathbb{Q} without CM of conductor \leq 350,000.

subgroup	index	generators	-1	d ₀	<i>d</i> ₁	d	curve
1354	91	[1, 12, 1, 1], [1, 0, 0, 8]	yes	6	72	288	152100.g.1
13B.3.1	56	[3, 0, 0, 9], [1, 0, 0, 2], [1, 1, 0, 1]	no	1	3	468	147.b.1
13B.3.2	56	[3, 0, 0, 9], [2, 0, 0, 1], [1, 1, 0, 1]	no	1	12	468	147.b.2
13B.3.4	56	[3, 0, 0, 9], [4, 0, 0, 7], [1, 1, 0, 1]	no	1	6	468	24843.0.1
13B.3.7	56	[3, 0, 0, 9], [7, 0, 0, 4], [1, 1, 0, 1]	no	1	12	468	24843.0.2
13B.5.1	42	[5, 0, 0, 8], [1, 0, 0, 2], [1, 1, 0, 1]	yes	1	4	624	2890.d.1
13B.5.2	42	[5, 0, 0, 8], [2, 0, 0, 1], [1, 1, 0, 1]	yes	1	12	624	2890.d.2
13B.5.4	42	[5, 0, 0, 8], [4, 0, 0, 7], [1, 1, 0, 1]	yes	1	12	624	216320.i.1
13B.4.1	28	[4, 0, 0, 10], [1, 0, 0, 2], [1, 1, 0, 1]	yes	1	6	936	147.c.1
13B.4.2	28	[4, 0, 0, 10], [2, 0, 0, 1], [1, 1, 0, 1]	yes	1	12	936	147.c.2
13B	14	[1,0,0,2], [2,0,0,1], [1,1,0,1]	yes	1	12	1872	2450.1.1
17B.4.2	72	[4,0,0,13], [2,0,0,10], [1,1,0,1]	yes	1	8	1088	14450.n.1
17B.4.6	72	[4, 0, 0, 13], [6, 0, 0, 9], [1, 1, 0, 1]	yes	1	16	1088	14450.n.2
37B.8.1	114	[8, 0, 0, 14], [1, 0, 0, 2], [1, 1, 0, 1]	yes	1	12	15984	1225.e.1
37B.8.2	114	[8, 0, 0, 14], [2, 0, 0, 1], [1, 1, 0, 1]	yes	1	36	15984	1225.e.2

References

[B11] G. Bisson, *Computing endomorphism rings of elliptic curves under the GRH*, Journal of Mathematical Cryptology **5** (2011), 101–113.

[BS11] G. Bisson and A.V. Sutherland, *Computing the endomorphism ring of an ordinary elliptic curve over a finite field*, Journal of Number Theory **131** (2011), 815–831.

[DT02] W. Duke and A. Toth, *The splitting of primes in division fields of elliptic curves*, Experimental Mathematics **11** (2002), 555–565.

[LV14] E. Larson and D. Vaintrob, *On the surjectivity of Galois representations associated to elliptic curves over number fields*, Bulletin of the London Mathematical Society **46** (2014) 197–209.

[S68] Jean-Pierre Serre, *Abelian ℓ-adic representations and elliptic curves* (revised reprint of 1968 original), A.K. Peters, Wellesley MA, 1998.

[Z15] D. Zywina, *The possible images of the mod-\ell representations associated to elliptic curves over* \mathbb{Q} , preprint (2015).